Browse Source

circuit CalculateWitness, added - & / in GenerateR1CS(), added doc

pull/5/head
arnaucube 5 years ago
parent
commit
aefb298bb0
10 changed files with 211 additions and 95 deletions
  1. +19
    -2
      README.md
  2. +24
    -20
      bn128/bn128.go
  3. +5
    -5
      bn128/bn128_test.go
  4. +58
    -2
      circuitcompiler/circuit.go
  5. +6
    -0
      circuitcompiler/circuit_test.go
  6. +4
    -1
      circuitcompiler/lexer.go
  7. +7
    -3
      circuitcompiler/parser.go
  8. +16
    -0
      r1csqap/r1csqap.go
  9. +5
    -0
      snark.go
  10. +67
    -62
      snark_test.go

+ 19
- 2
README.md

@ -11,6 +11,20 @@ Implementation from scratch in Go to understand the concepts. Do not use in prod
Not finished, implementing this in my free time to understand it better, so I don't have much time.
Current implementation status:
- [x] Finite Fields (1, 2, 6, 12) operations
- [x] G1 and G2 operations
- [x] BN128 Pairing
- [x] circuit code compiler
- [ ] code to flat code
- [x] flat code compiler
- [x] circuit to R1CS
- [x] polynomial operations
- [x] R1CS to QAP
- [x] generate trusted setup
- [x] generate proofs
- [x] verify proofs with BN128 pairing
### Usage
- [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark?status.svg)](https://godoc.org/github.com/arnaucube/go-snark) zkSnark
@ -57,8 +71,11 @@ c == [[0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1] [0 0 1 0 0 0]]
alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)
// wittness = 1, 3, 35, 9, 27, 30
w := []*big.Int{b1, b3, b35, b9, b27, b30}
// wittness
b3 := big.NewInt(int64(3))
inputs := []*big.Int{b3}
w := circuit.CalculateWitness(inputs)
fmt.Println("\nwitness", w)
ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas)

+ 24
- 20
bn128/bn128.go

@ -7,6 +7,7 @@ import (
"github.com/arnaucube/go-snark/fields"
)
// Bn128 is the data structure of the BN128
type Bn128 struct {
Q *big.Int
R *big.Int
@ -33,6 +34,7 @@ type Bn128 struct {
FinalExp *big.Int
}
// NewBn128 returns the BN128
func NewBn128() (Bn128, error) {
var b Bn128
q, ok := new(big.Int).SetString("21888242871839275222246405745257275088696311157297823662689037894645226208583", 10)
@ -105,6 +107,7 @@ func NewBn128() (Bn128, error) {
return b, nil
}
// NewFqR returns a new Finite Field over R
func NewFqR() (fields.Fq, error) {
r, ok := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
if !ok {
@ -172,12 +175,13 @@ func (bn128 *Bn128) preparePairing() error {
}
// Pairing calculates the BN128 Pairing of two given values
func (bn128 Bn128) Pairing(p1 [3]*big.Int, p2 [3][2]*big.Int) [2][3][2]*big.Int {
pre1 := bn128.PreComputeG1(p1)
pre2 := bn128.PreComputeG2(p2)
pre1 := bn128.preComputeG1(p1)
pre2 := bn128.preComputeG2(p2)
r1 := bn128.MillerLoop(pre1, pre2)
res := bn128.FinalExponentiation(r1)
res := bn128.finalExponentiation(r1)
return res
}
@ -186,7 +190,7 @@ type AteG1Precomp struct {
Py *big.Int
}
func (bn128 Bn128) PreComputeG1(p [3]*big.Int) AteG1Precomp {
func (bn128 Bn128) preComputeG1(p [3]*big.Int) AteG1Precomp {
pCopy := bn128.G1.Affine(p)
res := AteG1Precomp{
Px: pCopy[0],
@ -206,7 +210,7 @@ type AteG2Precomp struct {
Coeffs []EllCoeffs
}
func (bn128 Bn128) PreComputeG2(p [3][2]*big.Int) AteG2Precomp {
func (bn128 Bn128) preComputeG2(p [3][2]*big.Int) AteG2Precomp {
qCopy := bn128.G2.Affine(p)
res := AteG2Precomp{
qCopy[0],
@ -222,20 +226,20 @@ func (bn128 Bn128) PreComputeG2(p [3][2]*big.Int) AteG2Precomp {
for i := bn128.LoopCount.BitLen() - 2; i >= 0; i-- {
bit := bn128.LoopCount.Bit(i)
c, r = bn128.DoublingStep(r)
c, r = bn128.doublingStep(r)
res.Coeffs = append(res.Coeffs, c)
if bit == 1 {
c, r = bn128.MixedAdditionStep(qCopy, r)
c, r = bn128.mixedAdditionStep(qCopy, r)
res.Coeffs = append(res.Coeffs, c)
}
}
q1 := bn128.G2.Affine(bn128.G2MulByQ(qCopy))
q1 := bn128.G2.Affine(bn128.g2MulByQ(qCopy))
if !bn128.Fq2.Equal(q1[2], bn128.Fq2.One()) {
// return res, errors.New("q1[2] != Fq2.One")
panic(errors.New("q1[2] != Fq2.One()"))
}
q2 := bn128.G2.Affine(bn128.G2MulByQ(q1))
q2 := bn128.G2.Affine(bn128.g2MulByQ(q1))
if !bn128.Fq2.Equal(q2[2], bn128.Fq2.One()) {
// return res, errors.New("q2[2] != Fq2.One")
panic(errors.New("q2[2] != Fq2.One()"))
@ -246,16 +250,16 @@ func (bn128 Bn128) PreComputeG2(p [3][2]*big.Int) AteG2Precomp {
}
q2[1] = bn128.Fq2.Neg(q2[1])
c, r = bn128.MixedAdditionStep(q1, r)
c, r = bn128.mixedAdditionStep(q1, r)
res.Coeffs = append(res.Coeffs, c)
c, r = bn128.MixedAdditionStep(q2, r)
c, r = bn128.mixedAdditionStep(q2, r)
res.Coeffs = append(res.Coeffs, c)
return res
}
func (bn128 Bn128) DoublingStep(current [3][2]*big.Int) (EllCoeffs, [3][2]*big.Int) {
func (bn128 Bn128) doublingStep(current [3][2]*big.Int) (EllCoeffs, [3][2]*big.Int) {
x := current[0]
y := current[1]
z := current[2]
@ -286,7 +290,7 @@ func (bn128 Bn128) DoublingStep(current [3][2]*big.Int) (EllCoeffs, [3][2]*big.I
return res, current
}
func (bn128 Bn128) MixedAdditionStep(base, current [3][2]*big.Int) (EllCoeffs, [3][2]*big.Int) {
func (bn128 Bn128) mixedAdditionStep(base, current [3][2]*big.Int) (EllCoeffs, [3][2]*big.Int) {
x1 := current[0]
y1 := current[1]
z1 := current[2]
@ -320,7 +324,7 @@ func (bn128 Bn128) MixedAdditionStep(base, current [3][2]*big.Int) (EllCoeffs, [
}
return coef, current
}
func (bn128 Bn128) G2MulByQ(p [3][2]*big.Int) [3][2]*big.Int {
func (bn128 Bn128) g2MulByQ(p [3][2]*big.Int) [3][2]*big.Int {
fmx := [2]*big.Int{
p[0][0],
bn128.Fq1.Mul(p[0][1], bn128.Fq1.Copy(bn128.FrobeniusCoeffsC11)),
@ -356,7 +360,7 @@ func (bn128 Bn128) MillerLoop(pre1 AteG1Precomp, pre2 AteG2Precomp) [2][3][2]*bi
idx++
f = bn128.Fq12.Square(f)
f = bn128.MulBy024(f,
f = bn128.mulBy024(f,
c.Ell0,
bn128.Fq2.MulScalar(c.EllVW, pre1.Py),
bn128.Fq2.MulScalar(c.EllVV, pre1.Px))
@ -364,7 +368,7 @@ func (bn128 Bn128) MillerLoop(pre1 AteG1Precomp, pre2 AteG2Precomp) [2][3][2]*bi
if bit == 1 {
c = pre2.Coeffs[idx]
idx++
f = bn128.MulBy024(
f = bn128.mulBy024(
f,
c.Ell0,
bn128.Fq2.MulScalar(c.EllVW, pre1.Py),
@ -377,7 +381,7 @@ func (bn128 Bn128) MillerLoop(pre1 AteG1Precomp, pre2 AteG2Precomp) [2][3][2]*bi
c = pre2.Coeffs[idx]
idx++
f = bn128.MulBy024(
f = bn128.mulBy024(
f,
c.Ell0,
bn128.Fq2.MulScalar(c.EllVW, pre1.Py),
@ -386,7 +390,7 @@ func (bn128 Bn128) MillerLoop(pre1 AteG1Precomp, pre2 AteG2Precomp) [2][3][2]*bi
c = pre2.Coeffs[idx]
idx++
f = bn128.MulBy024(
f = bn128.mulBy024(
f,
c.Ell0,
bn128.Fq2.MulScalar(c.EllVW, pre1.Py),
@ -395,7 +399,7 @@ func (bn128 Bn128) MillerLoop(pre1 AteG1Precomp, pre2 AteG2Precomp) [2][3][2]*bi
return f
}
func (bn128 Bn128) MulBy024(a [2][3][2]*big.Int, ell0, ellVW, ellVV [2]*big.Int) [2][3][2]*big.Int {
func (bn128 Bn128) mulBy024(a [2][3][2]*big.Int, ell0, ellVW, ellVV [2]*big.Int) [2][3][2]*big.Int {
b := [2][3][2]*big.Int{
[3][2]*big.Int{
ell0,
@ -411,7 +415,7 @@ func (bn128 Bn128) MulBy024(a [2][3][2]*big.Int, ell0, ellVW, ellVV [2]*big.Int)
return bn128.Fq12.Mul(a, b)
}
func (bn128 Bn128) FinalExponentiation(r [2][3][2]*big.Int) [2][3][2]*big.Int {
func (bn128 Bn128) finalExponentiation(r [2][3][2]*big.Int) [2][3][2]*big.Int {
res := bn128.Fq12.Exp(r, bn128.FinalExp)
return res
}

+ 5
- 5
bn128/bn128_test.go

@ -21,11 +21,11 @@ func TestBN128(t *testing.T) {
g1b := bn128.G1.MulScalar(bn128.G1.G, bn128.Fq1.Copy(big75))
g2b := bn128.G2.MulScalar(bn128.G2.G, bn128.Fq1.Copy(big40))
pre1a := bn128.PreComputeG1(g1a)
pre2a := bn128.PreComputeG2(g2a)
pre1a := bn128.preComputeG1(g1a)
pre2a := bn128.preComputeG2(g2a)
assert.Nil(t, err)
pre1b := bn128.PreComputeG1(g1b)
pre2b := bn128.PreComputeG2(g2b)
pre1b := bn128.preComputeG1(g1b)
pre2b := bn128.preComputeG2(g2b)
assert.Nil(t, err)
r1 := bn128.MillerLoop(pre1a, pre2a)
@ -33,7 +33,7 @@ func TestBN128(t *testing.T) {
rbe := bn128.Fq12.Mul(r1, bn128.Fq12.Inverse(r2))
res := bn128.FinalExponentiation(rbe)
res := bn128.finalExponentiation(rbe)
a := bn128.Fq12.Affine(res)
b := bn128.Fq12.Affine(bn128.Fq12.One())

+ 58
- 2
circuitcompiler/circuit.go

@ -8,6 +8,7 @@ import (
"github.com/arnaucube/go-snark/r1csqap"
)
// Circuit is the data structure of the compiled circuit
type Circuit struct {
NVars int
NPublic int
@ -22,6 +23,8 @@ type Circuit struct {
C [][]*big.Int
}
}
// Constraint is the data structure of a flat code operation
type Constraint struct {
// v1 op v2 = out
Op string
@ -61,7 +64,21 @@ func insertVar(arr []*big.Int, signals []string, v string, used map[string]bool)
}
return arr, used
}
func insertVarNeg(arr []*big.Int, signals []string, v string, used map[string]bool) ([]*big.Int, map[string]bool) {
isVal, value := isValue(v)
valueBigInt := big.NewInt(int64(value))
if isVal {
arr[0] = new(big.Int).Add(arr[0], valueBigInt)
} else {
if !used[v] {
panic(errors.New("using variable before it's set"))
}
arr[indexInArray(signals, v)] = new(big.Int).Add(arr[indexInArray(signals, v)], big.NewInt(int64(-1)))
}
return arr, used
}
// GenerateR1CS generates the R1CS polynomials from the Circuit
func (circ *Circuit) GenerateR1CS() ([][]*big.Int, [][]*big.Int, [][]*big.Int) {
// from flat code to R1CS
@ -71,7 +88,6 @@ func (circ *Circuit) GenerateR1CS() ([][]*big.Int, [][]*big.Int, [][]*big.Int) {
used := make(map[string]bool)
for _, constraint := range circ.Constraints {
aConstraint := r1csqap.ArrayOfBigZeros(len(circ.Signals))
bConstraint := r1csqap.ArrayOfBigZeros(len(circ.Signals))
cConstraint := r1csqap.ArrayOfBigZeros(len(circ.Signals))
@ -86,7 +102,6 @@ func (circ *Circuit) GenerateR1CS() ([][]*big.Int, [][]*big.Int, [][]*big.Int) {
aConstraint[indexInArray(circ.Signals, constraint.Out)] = new(big.Int).Add(aConstraint[indexInArray(circ.Signals, constraint.Out)], big.NewInt(int64(1)))
aConstraint, used = insertVar(aConstraint, circ.Signals, constraint.Out, used)
bConstraint[0] = big.NewInt(int64(1))
}
continue
@ -95,10 +110,19 @@ func (circ *Circuit) GenerateR1CS() ([][]*big.Int, [][]*big.Int, [][]*big.Int) {
aConstraint, used = insertVar(aConstraint, circ.Signals, constraint.V1, used)
aConstraint, used = insertVar(aConstraint, circ.Signals, constraint.V2, used)
bConstraint[0] = big.NewInt(int64(1))
} else if constraint.Op == "-" {
cConstraint[indexInArray(circ.Signals, constraint.Out)] = big.NewInt(int64(1))
aConstraint, used = insertVarNeg(aConstraint, circ.Signals, constraint.V1, used)
aConstraint, used = insertVarNeg(aConstraint, circ.Signals, constraint.V2, used)
bConstraint[0] = big.NewInt(int64(1))
} else if constraint.Op == "*" {
cConstraint[indexInArray(circ.Signals, constraint.Out)] = big.NewInt(int64(1))
aConstraint, used = insertVar(aConstraint, circ.Signals, constraint.V1, used)
bConstraint, used = insertVar(bConstraint, circ.Signals, constraint.V2, used)
} else if constraint.Op == "/" {
cConstraint, used = insertVar(cConstraint, circ.Signals, constraint.V1, used)
cConstraint[indexInArray(circ.Signals, constraint.Out)] = big.NewInt(int64(1))
bConstraint, used = insertVar(bConstraint, circ.Signals, constraint.V2, used)
}
a = append(a, aConstraint)
@ -108,3 +132,35 @@ func (circ *Circuit) GenerateR1CS() ([][]*big.Int, [][]*big.Int, [][]*big.Int) {
}
return a, b, c
}
func grabVar(signals []string, w []*big.Int, vStr string) *big.Int {
isVal, v := isValue(vStr)
vBig := big.NewInt(int64(v))
if isVal {
return vBig
} else {
return w[indexInArray(signals, vStr)]
}
}
// CalculateWitness calculates the Witness of a Circuit based on the given inputs
func (circ *Circuit) CalculateWitness(inputs []*big.Int) []*big.Int {
w := r1csqap.ArrayOfBigZeros(len(circ.Signals))
w[0] = big.NewInt(int64(1))
for i, input := range inputs {
w[i+1] = input
}
for _, constraint := range circ.Constraints {
if constraint.Op == "in" {
} else if constraint.Op == "+" {
w[indexInArray(circ.Signals, constraint.Out)] = new(big.Int).Add(grabVar(circ.Signals, w, constraint.V1), grabVar(circ.Signals, w, constraint.V2))
} else if constraint.Op == "-" {
w[indexInArray(circ.Signals, constraint.Out)] = new(big.Int).Sub(grabVar(circ.Signals, w, constraint.V1), grabVar(circ.Signals, w, constraint.V2))
} else if constraint.Op == "*" {
w[indexInArray(circ.Signals, constraint.Out)] = new(big.Int).Mul(grabVar(circ.Signals, w, constraint.V1), grabVar(circ.Signals, w, constraint.V2))
} else if constraint.Op == "/" {
w[indexInArray(circ.Signals, constraint.Out)] = new(big.Int).Div(grabVar(circ.Signals, w, constraint.V1), grabVar(circ.Signals, w, constraint.V2))
}
}
return w
}

+ 6
- 0
circuitcompiler/circuit_test.go

@ -74,4 +74,10 @@ func TestCircuitParser(t *testing.T) {
fmt.Println(a)
fmt.Println(b)
fmt.Println(c)
b3 := big.NewInt(int64(3))
inputs := []*big.Int{b3}
// Calculate Witness
w := circuit.CalculateWitness(inputs)
fmt.Println("w", w)
}

+ 4
- 1
circuitcompiler/lexer.go

@ -42,10 +42,12 @@ func isDigit(ch rune) bool {
return (ch >= '0' && ch <= '9')
}
// Scanner holds the bufio.Reader
type Scanner struct {
r *bufio.Reader
}
// NewScanner creates a new Scanner with the given io.Reader
func NewScanner(r io.Reader) *Scanner {
return &Scanner{r: bufio.NewReader(r)}
}
@ -62,7 +64,8 @@ func (s *Scanner) unread() {
_ = s.r.UnreadRune()
}
func (s *Scanner) Scan() (tok Token, lit string) {
// Scan returns the Token and literal string of the current value
func (s *Scanner) scan() (tok Token, lit string) {
ch := s.read()
if isWhitespace(ch) {

+ 7
- 3
circuitcompiler/parser.go

@ -7,6 +7,7 @@ import (
"strings"
)
// Parser data structure holds the Scanner and the Parsing functions
type Parser struct {
s *Scanner
buf struct {
@ -16,6 +17,7 @@ type Parser struct {
}
}
// NewParser creates a new parser from a io.Reader
func NewParser(r io.Reader) *Parser {
return &Parser{s: NewScanner(r)}
}
@ -26,7 +28,7 @@ func (p *Parser) scan() (tok Token, lit string) {
p.buf.n = 0
return p.buf.tok, p.buf.lit
}
tok, lit = p.s.Scan()
tok, lit = p.s.scan()
p.buf.tok, p.buf.lit = tok, lit
@ -45,7 +47,8 @@ func (p *Parser) scanIgnoreWhitespace() (tok Token, lit string) {
return
}
func (p *Parser) ParseLine() (*Constraint, error) {
// parseLine parses the current line
func (p *Parser) parseLine() (*Constraint, error) {
/*
in this version,
line will be for example s3 = s1 * s4
@ -111,12 +114,13 @@ func addToArrayIfNotExist(arr []string, elem string) []string {
return arr
}
// Parse parses the lines and returns the compiled Circuit
func (p *Parser) Parse() (*Circuit, error) {
circuit := &Circuit{}
circuit.Signals = append(circuit.Signals, "one")
nInputs := 0
for {
constraint, err := p.ParseLine()
constraint, err := p.parseLine()
if err != nil {
break
}

+ 16
- 0
r1csqap/r1csqap.go

@ -6,6 +6,7 @@ import (
"github.com/arnaucube/go-snark/fields"
)
// Transpose transposes the *big.Int matrix
func Transpose(matrix [][]*big.Int) [][]*big.Int {
var r [][]*big.Int
for i := 0; i < len(matrix[0]); i++ {
@ -18,6 +19,7 @@ func Transpose(matrix [][]*big.Int) [][]*big.Int {
return r
}
// ArrayOfBigZeros creates a *big.Int array with n elements to zero
func ArrayOfBigZeros(num int) []*big.Int {
bigZero := big.NewInt(int64(0))
var r []*big.Int
@ -27,15 +29,19 @@ func ArrayOfBigZeros(num int) []*big.Int {
return r
}
// PolynomialField is the Polynomial over a Finite Field where the polynomial operations are performed
type PolynomialField struct {
F fields.Fq
}
// NewPolynomialField creates a new PolynomialField with the given FiniteField
func NewPolynomialField(f fields.Fq) PolynomialField {
return PolynomialField{
f,
}
}
// Mul multiplies two polinomials over the Finite Field
func (pf PolynomialField) Mul(a, b []*big.Int) []*big.Int {
r := ArrayOfBigZeros(len(a) + len(b) - 1)
for i := 0; i < len(a); i++ {
@ -47,6 +53,8 @@ func (pf PolynomialField) Mul(a, b []*big.Int) []*big.Int {
}
return r
}
// Div divides two polinomials over the Finite Field, returning the result and the remainder
func (pf PolynomialField) Div(a, b []*big.Int) ([]*big.Int, []*big.Int) {
// https://en.wikipedia.org/wiki/Division_algorithm
r := ArrayOfBigZeros(len(a) - len(b) + 1)
@ -70,6 +78,7 @@ func max(a, b int) int {
return b
}
// Add adds two polinomials over the Finite Field
func (pf PolynomialField) Add(a, b []*big.Int) []*big.Int {
r := ArrayOfBigZeros(max(len(a), len(b)))
for i := 0; i < len(a); i++ {
@ -81,6 +90,7 @@ func (pf PolynomialField) Add(a, b []*big.Int) []*big.Int {
return r
}
// Sub substracts two polinomials over the Finite Field
func (pf PolynomialField) Sub(a, b []*big.Int) []*big.Int {
r := ArrayOfBigZeros(max(len(a), len(b)))
for i := 0; i < len(a); i++ {
@ -92,6 +102,7 @@ func (pf PolynomialField) Sub(a, b []*big.Int) []*big.Int {
return r
}
// Eval evaluates the polinomial over the Finite Field at the given value x
func (pf PolynomialField) Eval(v []*big.Int, x *big.Int) *big.Int {
r := big.NewInt(int64(0))
for i := 0; i < len(v); i++ {
@ -102,6 +113,7 @@ func (pf PolynomialField) Eval(v []*big.Int, x *big.Int) *big.Int {
return r
}
// NewPolZeroAt generates a new polynomial that has value zero at the given value
func (pf PolynomialField) NewPolZeroAt(pointPos, totalPoints int, height *big.Int) []*big.Int {
fac := 1
for i := 1; i < totalPoints+1; i++ {
@ -122,6 +134,7 @@ func (pf PolynomialField) NewPolZeroAt(pointPos, totalPoints int, height *big.In
return r
}
// LagrangeInterpolation performs the Lagrange Interpolation / Lagrange Polynomials operation
func (pf PolynomialField) LagrangeInterpolation(v []*big.Int) []*big.Int {
// https://en.wikipedia.org/wiki/Lagrange_polynomial
var r []*big.Int
@ -132,6 +145,7 @@ func (pf PolynomialField) LagrangeInterpolation(v []*big.Int) []*big.Int {
return r
}
// R1CSToQAP converts the R1CS values to the QAP values
func (pf PolynomialField) R1CSToQAP(a, b, c [][]*big.Int) ([][]*big.Int, [][]*big.Int, [][]*big.Int, []*big.Int) {
aT := Transpose(a)
bT := Transpose(b)
@ -157,6 +171,7 @@ func (pf PolynomialField) R1CSToQAP(a, b, c [][]*big.Int) ([][]*big.Int, [][]*bi
return alphas, betas, gammas, z
}
// CombinePolynomials combine the given polynomials arrays into one, also returns the P(x)
func (pf PolynomialField) CombinePolynomials(r []*big.Int, ap, bp, cp [][]*big.Int) ([]*big.Int, []*big.Int, []*big.Int, []*big.Int) {
var alpha []*big.Int
for i := 0; i < len(r); i++ {
@ -178,6 +193,7 @@ func (pf PolynomialField) CombinePolynomials(r []*big.Int, ap, bp, cp [][]*big.I
return alpha, beta, gamma, px
}
// DivisorPolynomial returns the divisor polynomial given two polynomials
func (pf PolynomialField) DivisorPolinomial(px, z []*big.Int) []*big.Int {
quo, _ := pf.Div(px, z)
return quo

+ 5
- 0
snark.go

@ -11,6 +11,7 @@ import (
"github.com/arnaucube/go-snark/r1csqap"
)
// Setup is the data structure holding the Trusted Setup data. The Setup.Toxic sub struct must be destroyed after the GenerateTrustedSetup function is completed
type Setup struct {
Toxic struct {
T *big.Int // trusted setup secret
@ -48,6 +49,7 @@ type Setup struct {
}
}
// Proof contains the parameters to proof the zkSNARK
type Proof struct {
PiA [3]*big.Int
PiAp [3]*big.Int
@ -60,6 +62,7 @@ type Proof struct {
PublicSignals []*big.Int
}
// GenerateTrustedSetup generates the Trusted Setup from a compiled Circuit. The Setup.Toxic sub data structure must be destroyed
func GenerateTrustedSetup(bn bn128.Bn128, fqR fields.Fq, pf r1csqap.PolynomialField, witnessLength int, circuit circuitcompiler.Circuit, alphas, betas, gammas [][]*big.Int, zx []*big.Int) (Setup, error) {
var setup Setup
var err error
@ -172,6 +175,7 @@ func GenerateTrustedSetup(bn bn128.Bn128, fqR fields.Fq, pf r1csqap.PolynomialFi
return setup, nil
}
// GenerateProofs generates all the parameters to proof the zkSNARK from the Circuit, Setup and the Witness
func GenerateProofs(bn bn128.Bn128, f fields.Fq, circuit circuitcompiler.Circuit, setup Setup, hx []*big.Int, w []*big.Int) (Proof, error) {
var proof Proof
proof.PiA = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
@ -206,6 +210,7 @@ func GenerateProofs(bn bn128.Bn128, f fields.Fq, circuit circuitcompiler.Circuit
return proof, nil
}
// VerifyProof verifies over the BN128 the Pairings of the Proof
func VerifyProof(bn bn128.Bn128, circuit circuitcompiler.Circuit, setup Setup, proof Proof) bool {
// e(piA, Va) == e(piA', g2)

+ 67
- 62
snark_test.go

@ -13,7 +13,7 @@ import (
"github.com/stretchr/testify/assert"
)
func TestZkFromHardcodedR1CS(t *testing.T) {
func TestZkFromFlatCircuitCode(t *testing.T) {
bn, err := bn128.NewBn128()
assert.Nil(t, err)
@ -23,41 +23,39 @@ func TestZkFromHardcodedR1CS(t *testing.T) {
// new Polynomial Field
pf := r1csqap.NewPolynomialField(fqR)
b0 := big.NewInt(int64(0))
b1 := big.NewInt(int64(1))
// compile circuit and get the R1CS
flatCode := `
func test(x):
aux = x*x
y = aux*x
z = x + y
out = z + 5
`
fmt.Print("\nflat code of the circuit:")
fmt.Println(flatCode)
// parse the code
parser := circuitcompiler.NewParser(strings.NewReader(flatCode))
circuit, err := parser.Parse()
assert.Nil(t, err)
fmt.Println("\ncircuit data:", circuit)
b3 := big.NewInt(int64(3))
b5 := big.NewInt(int64(5))
b9 := big.NewInt(int64(9))
b27 := big.NewInt(int64(27))
b30 := big.NewInt(int64(30))
b35 := big.NewInt(int64(35))
a := [][]*big.Int{
[]*big.Int{b0, b1, b0, b0, b0, b0},
[]*big.Int{b0, b0, b0, b1, b0, b0},
[]*big.Int{b0, b1, b0, b0, b1, b0},
[]*big.Int{b5, b0, b0, b0, b0, b1},
}
b := [][]*big.Int{
[]*big.Int{b0, b1, b0, b0, b0, b0},
[]*big.Int{b0, b1, b0, b0, b0, b0},
[]*big.Int{b1, b0, b0, b0, b0, b0},
[]*big.Int{b1, b0, b0, b0, b0, b0},
}
c := [][]*big.Int{
[]*big.Int{b0, b0, b0, b1, b0, b0},
[]*big.Int{b0, b0, b0, b0, b1, b0},
[]*big.Int{b0, b0, b0, b0, b0, b1},
[]*big.Int{b0, b0, b1, b0, b0, b0},
}
inputs := []*big.Int{b3}
// wittness
w := circuit.CalculateWitness(inputs)
fmt.Println("\nwitness", w)
// flat code to R1CS
fmt.Println("\ngenerating R1CS from flat code")
a, b, c := circuit.GenerateR1CS()
fmt.Println("\nR1CS:")
fmt.Println("a:", a)
fmt.Println("b:", b)
fmt.Println("c:", c)
alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)
// wittness = 1, 3, 35, 9, 27, 30
w := []*big.Int{b1, b3, b35, b9, b27, b30}
circuit := circuitcompiler.Circuit{
NVars: 6,
NPublic: 0,
NSignals: len(w),
}
ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas)
hx := pf.DivisorPolinomial(px, zx)
@ -76,18 +74,18 @@ func TestZkFromHardcodedR1CS(t *testing.T) {
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4))
// calculate trusted setup
setup, err := GenerateTrustedSetup(bn, fqR, pf, len(w), circuit, alphas, betas, gammas, zx)
setup, err := GenerateTrustedSetup(bn, fqR, pf, len(w), *circuit, alphas, betas, gammas, zx)
assert.Nil(t, err)
fmt.Println("t", setup.Toxic.T)
fmt.Println("\nt:", setup.Toxic.T)
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
proof, err := GenerateProofs(bn, fqR, circuit, setup, hx, w)
proof, err := GenerateProofs(bn, fqR, *circuit, setup, hx, w)
assert.Nil(t, err)
assert.True(t, VerifyProof(bn, circuit, setup, proof))
assert.True(t, VerifyProof(bn, *circuit, setup, proof))
}
func TestZkFromFlatCircuitCode(t *testing.T) {
func TestZkFromHardcodedR1CS(t *testing.T) {
bn, err := bn128.NewBn128()
assert.Nil(t, err)
@ -97,34 +95,41 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
// new Polynomial Field
pf := r1csqap.NewPolynomialField(fqR)
// compile circuit and get the R1CS
flatCode := `
func test(x):
aux = x*x
y = aux*x
z = x + y
out = z + 5
`
// parse the code
parser := circuitcompiler.NewParser(strings.NewReader(flatCode))
circuit, err := parser.Parse()
assert.Nil(t, err)
fmt.Println(circuit)
// flat code to R1CS
fmt.Println("generating R1CS from flat code")
a, b, c := circuit.GenerateR1CS()
alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)
// wittness = 1, 3, 35, 9, 27, 30
b0 := big.NewInt(int64(0))
b1 := big.NewInt(int64(1))
b3 := big.NewInt(int64(3))
b5 := big.NewInt(int64(5))
b9 := big.NewInt(int64(9))
b27 := big.NewInt(int64(27))
b30 := big.NewInt(int64(30))
b35 := big.NewInt(int64(35))
w := []*big.Int{b1, b3, b35, b9, b27, b30}
a := [][]*big.Int{
[]*big.Int{b0, b1, b0, b0, b0, b0},
[]*big.Int{b0, b0, b0, b1, b0, b0},
[]*big.Int{b0, b1, b0, b0, b1, b0},
[]*big.Int{b5, b0, b0, b0, b0, b1},
}
b := [][]*big.Int{
[]*big.Int{b0, b1, b0, b0, b0, b0},
[]*big.Int{b0, b1, b0, b0, b0, b0},
[]*big.Int{b1, b0, b0, b0, b0, b0},
[]*big.Int{b1, b0, b0, b0, b0, b0},
}
c := [][]*big.Int{
[]*big.Int{b0, b0, b0, b1, b0, b0},
[]*big.Int{b0, b0, b0, b0, b1, b0},
[]*big.Int{b0, b0, b0, b0, b0, b1},
[]*big.Int{b0, b0, b1, b0, b0, b0},
}
alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)
// wittness = 1, 3, 35, 9, 27, 30
w := []*big.Int{b1, b3, b35, b9, b27, b30}
circuit := circuitcompiler.Circuit{
NVars: 6,
NPublic: 0,
NSignals: len(w),
}
ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas)
hx := pf.DivisorPolinomial(px, zx)
@ -143,13 +148,13 @@ func TestZkFromFlatCircuitCode(t *testing.T) {
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4))
// calculate trusted setup
setup, err := GenerateTrustedSetup(bn, fqR, pf, len(w), *circuit, alphas, betas, gammas, zx)
setup, err := GenerateTrustedSetup(bn, fqR, pf, len(w), circuit, alphas, betas, gammas, zx)
assert.Nil(t, err)
fmt.Println("t", setup.Toxic.T)
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
proof, err := GenerateProofs(bn, fqR, *circuit, setup, hx, w)
proof, err := GenerateProofs(bn, fqR, circuit, setup, hx, w)
assert.Nil(t, err)
assert.True(t, VerifyProof(bn, *circuit, setup, proof))
assert.True(t, VerifyProof(bn, circuit, setup, proof))
}

Loading…
Cancel
Save