Browse Source

add Groth16 setup calculation

pull/10/head
arnaucube 5 years ago
parent
commit
fa91b9ffad
3 changed files with 225 additions and 14 deletions
  1. +7
    -8
      fields/fq.go
  2. +0
    -6
      fields/fq12.go
  3. +218
    -0
      groth16/groth16.go

+ 7
- 8
fields/fq.go

@ -32,35 +32,30 @@ func (fq Fq) One() *big.Int {
func (fq Fq) Add(a, b *big.Int) *big.Int { func (fq Fq) Add(a, b *big.Int) *big.Int {
r := new(big.Int).Add(a, b) r := new(big.Int).Add(a, b)
return new(big.Int).Mod(r, fq.Q) return new(big.Int).Mod(r, fq.Q)
// return r
} }
// Double performs a doubling on the Fq // Double performs a doubling on the Fq
func (fq Fq) Double(a *big.Int) *big.Int { func (fq Fq) Double(a *big.Int) *big.Int {
r := new(big.Int).Add(a, a) r := new(big.Int).Add(a, a)
return new(big.Int).Mod(r, fq.Q) return new(big.Int).Mod(r, fq.Q)
// return r
} }
// Sub performs a subtraction on the Fq // Sub performs a subtraction on the Fq
func (fq Fq) Sub(a, b *big.Int) *big.Int { func (fq Fq) Sub(a, b *big.Int) *big.Int {
r := new(big.Int).Sub(a, b) r := new(big.Int).Sub(a, b)
return new(big.Int).Mod(r, fq.Q) return new(big.Int).Mod(r, fq.Q)
// return r
} }
// Neg performs a negation on the Fq // Neg performs a negation on the Fq
func (fq Fq) Neg(a *big.Int) *big.Int { func (fq Fq) Neg(a *big.Int) *big.Int {
m := new(big.Int).Neg(a) m := new(big.Int).Neg(a)
return new(big.Int).Mod(m, fq.Q) return new(big.Int).Mod(m, fq.Q)
// return m
} }
// Mul performs a multiplication on the Fq // Mul performs a multiplication on the Fq
func (fq Fq) Mul(a, b *big.Int) *big.Int { func (fq Fq) Mul(a, b *big.Int) *big.Int {
m := new(big.Int).Mul(a, b) m := new(big.Int).Mul(a, b)
return new(big.Int).Mod(m, fq.Q) return new(big.Int).Mod(m, fq.Q)
// return m
} }
func (fq Fq) MulScalar(base, e *big.Int) *big.Int { func (fq Fq) MulScalar(base, e *big.Int) *big.Int {
@ -125,8 +120,6 @@ func (fq Fq) Rand() (*big.Int, error) {
maxbits := fq.Q.BitLen() maxbits := fq.Q.BitLen()
b := make([]byte, (maxbits/8)-1) b := make([]byte, (maxbits/8)-1)
// b := make([]byte, 3)
// b := make([]byte, 3)
_, err := rand.Read(b) _, err := rand.Read(b)
if err != nil { if err != nil {
return nil, err return nil, err
@ -134,7 +127,7 @@ func (fq Fq) Rand() (*big.Int, error) {
r := new(big.Int).SetBytes(b) r := new(big.Int).SetBytes(b)
rq := new(big.Int).Mod(r, fq.Q) rq := new(big.Int).Mod(r, fq.Q)
// return r over q, nil
// r over q, nil
return rq, nil return rq, nil
} }
@ -170,3 +163,9 @@ func (fq Fq) Equal(a, b *big.Int) bool {
bAff := fq.Affine(b) bAff := fq.Affine(b)
return bytes.Equal(aAff.Bytes(), bAff.Bytes()) return bytes.Equal(aAff.Bytes(), bAff.Bytes())
} }
func BigIsOdd(n *big.Int) bool {
one := big.NewInt(int64(1))
and := new(big.Int).And(n, one)
return bytes.Equal(and.Bytes(), big.NewInt(int64(1)).Bytes())
}

+ 0
- 6
fields/fq12.go

@ -136,12 +136,6 @@ func (fq12 Fq12) Square(a [2][3][2]*big.Int) [2][3][2]*big.Int {
} }
} }
func BigIsOdd(n *big.Int) bool {
one := big.NewInt(int64(1))
and := new(big.Int).And(n, one)
return bytes.Equal(and.Bytes(), big.NewInt(int64(1)).Bytes())
}
func (fq12 Fq12) Exp(base [2][3][2]*big.Int, e *big.Int) [2][3][2]*big.Int { func (fq12 Fq12) Exp(base [2][3][2]*big.Int, e *big.Int) [2][3][2]*big.Int {
// TODO fix bottleneck // TODO fix bottleneck

+ 218
- 0
groth16/groth16.go

@ -0,0 +1,218 @@
// implementation of https://eprint.iacr.org/2016/260.pdf
package groth16
import (
"math/big"
"github.com/arnaucube/go-snark/bn128"
"github.com/arnaucube/go-snark/circuitcompiler"
"github.com/arnaucube/go-snark/fields"
"github.com/arnaucube/go-snark/r1csqap"
)
// Setup is the data structure holding the Trusted Setup data. The Setup.Toxic sub struct must be destroyed after the GenerateTrustedSetup function is completed
type Setup struct {
Toxic struct {
T *big.Int // trusted setup secret
Kalpha *big.Int
Kbeta *big.Int
Kgamma *big.Int
Kdelta *big.Int
}
// public
Pk struct { // Proving Key
BACDelta [][3]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / γ } from 0 to l
Z []*big.Int
G1 struct {
Alpha [3]*big.Int
Beta [3]*big.Int
Delta [3]*big.Int
At [][3]*big.Int // {a(τ)} from 0 to m
BACGamma [][3]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m
}
G2 struct {
Beta [3][2]*big.Int
Gamma [3][2]*big.Int
Delta [3][2]*big.Int
BACGamma [][3][2]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m
}
PowersTauDelta [][3]*big.Int // powers of τ encrypted in G1 curve, divided by δ
}
Vk struct {
IC [][3]*big.Int
G1 struct {
Alpha [3]*big.Int
}
G2 struct {
Beta [3][2]*big.Int
Gamma [3][2]*big.Int
Delta [3][2]*big.Int
}
}
}
// ProofGroth contains the parameters to proof the zkSNARK
type ProofGroth struct {
PiA [3]*big.Int
PiB [3][2]*big.Int
PiC [3]*big.Int
}
type utils struct {
Bn bn128.Bn128
FqR fields.Fq
PF r1csqap.PolynomialField
}
// Utils is the data structure holding the BN128, FqR Finite Field over R, PolynomialField, that will be used inside the snarks operations
var Utils = prepareUtils()
func prepareUtils() utils {
bn, err := bn128.NewBn128()
if err != nil {
panic(err)
}
// new Finite Field
fqR := fields.NewFq(bn.R)
// new Polynomial Field
pf := r1csqap.NewPolynomialField(fqR)
return utils{
Bn: bn,
FqR: fqR,
PF: pf,
}
}
// GenerateTrustedSetup generates the Trusted Setup from a compiled Circuit. The Setup.Toxic sub data structure must be destroyed
func GenerateTrustedSetup(witnessLength int, circuit circuitcompiler.Circuit, alphas, betas, gammas [][]*big.Int) (Setup, error) {
var setup Setup
var err error
// generate random t value
setup.Toxic.T, err = Utils.FqR.Rand()
if err != nil {
return Setup{}, err
}
setup.Toxic.Kalpha, err = Utils.FqR.Rand()
if err != nil {
return Setup{}, err
}
setup.Toxic.Kbeta, err = Utils.FqR.Rand()
if err != nil {
return Setup{}, err
}
setup.Toxic.Kgamma, err = Utils.FqR.Rand()
if err != nil {
return Setup{}, err
}
setup.Toxic.Kdelta, err = Utils.FqR.Rand()
if err != nil {
return Setup{}, err
}
// z pol
zpol := []*big.Int{big.NewInt(int64(1))}
for i := 1; i < len(alphas)-1; i++ {
zpol = Utils.PF.Mul(
zpol,
[]*big.Int{
Utils.FqR.Neg(
big.NewInt(int64(i))),
big.NewInt(int64(1)),
})
}
setup.Pk.Z = zpol
zt := Utils.PF.Eval(zpol, setup.Toxic.T)
invDelta := Utils.FqR.Inverse(setup.Toxic.Kdelta)
ztinvDelta := Utils.FqR.Mul(invDelta, zt)
// encrypt t values with curve generators
// powers of tau divided by delta
var ptd [][3]*big.Int
ini := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, ztinvDelta)
ptd = append(ptd, ini)
tEncr := setup.Toxic.T
for i := 1; i < len(zpol); i++ {
ptd = append(ptd, Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, Utils.FqR.Mul(tEncr, ztinvDelta)))
tEncr = Utils.FqR.Mul(tEncr, setup.Toxic.T)
}
// powers of τ encrypted in G1 curve, divided by δ
// (G1 * τ) / δ
setup.Pk.PowersTauDelta = ptd
setup.Pk.G1.Alpha = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kalpha)
setup.Pk.G1.Beta = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kbeta)
setup.Pk.G1.Delta = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kdelta)
setup.Pk.G2.Beta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kbeta)
setup.Pk.G2.Delta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kdelta)
setup.Vk.G1.Alpha = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kalpha)
setup.Vk.G2.Beta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kbeta)
setup.Vk.G2.Gamma = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kgamma)
setup.Vk.G2.Delta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kdelta)
for i := 0; i < len(circuit.Signals); i++ {
// Pk.G1.At: {a(τ)} from 0 to m
at := Utils.PF.Eval(alphas[i], setup.Toxic.T)
a := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, at)
setup.Pk.G1.At = append(setup.Pk.G1.At, a)
bt := Utils.PF.Eval(betas[i], setup.Toxic.T)
g1bt := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, bt)
g2bt := Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, bt)
// G1.BACGamma: {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m in G1
setup.Pk.G1.BACGamma = append(setup.Pk.G1.BACGamma, g1bt)
// G2.BACGamma: {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m in G2
setup.Pk.G2.BACGamma = append(setup.Pk.G2.BACGamma, g2bt)
}
zero3 := [3]*big.Int{Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero()}
for i := 0; i < circuit.NPublic+1; i++ {
setup.Pk.BACDelta = append(setup.Pk.BACDelta, zero3)
}
for i := circuit.NPublic + 1; i < circuit.NVars; i++ {
// TODO calculate all at, bt, ct outside, to avoid repeating calculations
at := Utils.PF.Eval(alphas[i], setup.Toxic.T)
bt := Utils.PF.Eval(betas[i], setup.Toxic.T)
ct := Utils.PF.Eval(gammas[i], setup.Toxic.T)
c := Utils.FqR.Mul(
invDelta,
Utils.FqR.Add(
Utils.FqR.Add(
Utils.FqR.Mul(at, setup.Toxic.Kbeta),
Utils.FqR.Mul(bt, setup.Toxic.Kalpha),
),
ct,
),
)
g1c := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, c)
// Pk.BACDelta: {( βui(x)+αvi(x)+wi(x) ) / γ } from 0 to l
setup.Pk.BACDelta = append(setup.Pk.BACDelta, g1c)
}
for i := 0; i <= circuit.NPublic; i++ {
at := Utils.PF.Eval(alphas[i], setup.Toxic.T)
bt := Utils.PF.Eval(betas[i], setup.Toxic.T)
ct := Utils.PF.Eval(gammas[i], setup.Toxic.T)
ic := Utils.FqR.Mul(
Utils.FqR.Inverse(setup.Toxic.Kgamma),
Utils.FqR.Add(
Utils.FqR.Add(
Utils.FqR.Mul(at, setup.Toxic.Kbeta),
Utils.FqR.Mul(bt, setup.Toxic.Kalpha),
),
ct,
),
)
g1ic := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, ic)
// used in verifier
setup.Vk.IC = append(setup.Vk.IC, g1ic)
}
return setup, nil
}

Loading…
Cancel
Save