package groth16 import ( "bytes" "fmt" "math/big" "strings" "testing" "time" "github.com/arnaucube/go-snark/circuitcompiler" "github.com/arnaucube/go-snark/r1csqap" "github.com/stretchr/testify/assert" ) func TestGroth16MinimalFlow(t *testing.T) { fmt.Println("testing Groth16 minimal flow") // circuit function // y = x^3 + x + 5 code := ` func main(private s0, public s1): s2 = s0 * s0 s3 = s2 * s0 s4 = s3 + s0 s5 = s4 + 5 equals(s1, s5) out = 1 * 1 ` fmt.Print("\ncode of the circuit:") // parse the code parser := circuitcompiler.NewParser(strings.NewReader(code)) circuit, err := parser.Parse() assert.Nil(t, err) b3 := big.NewInt(int64(3)) privateInputs := []*big.Int{b3} b35 := big.NewInt(int64(35)) publicSignals := []*big.Int{b35} // wittness w, err := circuit.CalculateWitness(privateInputs, publicSignals) assert.Nil(t, err) // code to R1CS fmt.Println("\ngenerating R1CS from code") a, b, c := circuit.GenerateR1CS() fmt.Println("\nR1CS:") fmt.Println("a:", a) fmt.Println("b:", b) fmt.Println("c:", c) // R1CS to QAP // TODO zxQAP is not used and is an old impl, TODO remove alphas, betas, gammas, _ := Utils.PF.R1CSToQAP(a, b, c) fmt.Println("qap") assert.Equal(t, 8, len(alphas)) assert.Equal(t, 8, len(alphas)) assert.Equal(t, 8, len(alphas)) assert.True(t, !bytes.Equal(alphas[1][1].Bytes(), big.NewInt(int64(0)).Bytes())) ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas) assert.Equal(t, 7, len(ax)) assert.Equal(t, 7, len(bx)) assert.Equal(t, 7, len(cx)) assert.Equal(t, 13, len(px)) // --- // from here is the GROTH16 // --- // calculate trusted setup fmt.Println("groth") setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas) assert.Nil(t, err) fmt.Println("\nt:", setup.Toxic.T) hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z) div, rem := Utils.PF.Div(px, setup.Pk.Z) assert.Equal(t, hx, div) assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(6)) // hx==px/zx so px==hx*zx assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z)) // check length of polynomials H(x) and Z(x) assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1) proof, err := GenerateProofs(*circuit, setup.Pk, w, px) assert.Nil(t, err) // fmt.Println("\n proofs:") // fmt.Println(proof) // fmt.Println("public signals:", proof.PublicSignals) fmt.Println("\nsignals:", circuit.Signals) fmt.Println("witness:", w) b35Verif := big.NewInt(int64(35)) publicSignalsVerif := []*big.Int{b35Verif} before := time.Now() assert.True(t, VerifyProof(setup.Vk, proof, publicSignalsVerif, true)) fmt.Println("verify proof time elapsed:", time.Since(before)) // check that with another public input the verification returns false bOtherWrongPublic := big.NewInt(int64(34)) wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic} assert.True(t, !VerifyProof(setup.Vk, proof, wrongPublicSignalsVerif, false)) }