package snark import ( "fmt" "github.com/mottla/go-snark/circuitcompiler" "github.com/mottla/go-snark/r1csqap" "github.com/stretchr/testify/assert" "math/big" "strings" "testing" ) func TestGenerateProofs(t *testing.T) { z := []*big.Int{big.NewInt(int64(1))} for i := 1; i < 6; i++ { z = Utils.PF.Mul( z, []*big.Int{ Utils.PF.F.Neg( big.NewInt(int64(i))), big.NewInt(int64(1)), }) } fmt.Println(z) for i := 0; i < 7; i++ { fmt.Println(Utils.PF.Eval(z, big.NewInt(int64(i)))) } z = []*big.Int{big.NewInt(int64(1))} for i := 1; i < 6; i++ { z = Utils.PF.Mul( z, []*big.Int{ big.NewInt(int64(i)), big.NewInt(int64(1)), }) } fmt.Println(z) z = []*big.Int{ big.NewInt(int64(1)), big.NewInt(int64( -3)), } z = Utils.PF.Mul( z, []*big.Int{ big.NewInt(int64(1)), big.NewInt(int64(3)), }) fmt.Println(z) fmt.Println(Utils.PF.F.Neg( big.NewInt(int64(1)))) fmt.Println(Utils.PF.F.Inverse(big.NewInt(int64(1)))) } func TestNewProgramm(t *testing.T) { flat := ` def main(a,b,c,d): e = a * b f = c * d g = e * f h = g / e i = h * 5 out = g * i ` parser := circuitcompiler.NewParser(strings.NewReader(flat)) program, err := parser.Parse() if err != nil { panic(err) } fmt.Println("\n unreduced") fmt.Println(flat) program.BuildConstraintTrees() program.PrintContraintTrees() fmt.Println("\nReduced gates") //PrintTree(froots["mul"]) gates := program.ReduceCombinedTree() for _, g := range gates { fmt.Println(g) } fmt.Println("generating R1CS") r1cs := program.GenerateReducedR1CS(gates) a, b, c := r1cs.A, r1cs.B, r1cs.C fmt.Println(a) fmt.Println(b) fmt.Println(c) a1 := big.NewInt(int64(6)) a2 := big.NewInt(int64(5)) inputs := []*big.Int{a1, a2, a1, a2} w := circuitcompiler.CalculateWitness(inputs, r1cs) fmt.Println("witness") fmt.Println(w) // R1CS to QAP alphas, betas, gammas, domain := Utils.PF.R1CSToQAP(a, b, c) fmt.Println("qap") fmt.Println("alphas", len(alphas)) fmt.Println("alphas", alphas) fmt.Println("betas", len(betas)) fmt.Println("gammas", len(gammas)) fmt.Println("domain polynomial ", len(domain)) ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas) fmt.Println("ax length", len(ax)) fmt.Println("bx length", len(bx)) fmt.Println("cx length", len(cx)) fmt.Println("px length", len(px)) hxQAP := Utils.PF.DivisorPolynomial(px, domain) fmt.Println("hx length", hxQAP) // hx==px/zx so px==hx*zx assert.Equal(t, px, Utils.PF.Mul(hxQAP, domain)) // p(x) = a(x) * b(x) - c(x) == h(x) * z(x) abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx) assert.Equal(t, abc, px) div, rem := Utils.PF.Div(px, domain) assert.Equal(t, hxQAP, div) //not necessary, since DivisorPolynomial is Div, just discarding 'rem' assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(len(px)-len(domain))) //calculate trusted setup setup, err := GenerateTrustedSetup(len(w), alphas, betas, gammas) assert.Nil(t, err) fmt.Println("\nt:", setup.Toxic.T) // //// zx and setup.Pk.Z should be the same (currently not, the correct one is the calculation used inside GenerateTrustedSetup function), the calculation is repeated. TODO avoid repeating calculation //assert.Equal(t, domain, setup.Pk.Z) fmt.Println("hx pk.z", hxQAP) hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z) fmt.Println("hx pk.z", hx) // assert.Equal(t, hxQAP, hx) assert.Equal(t, px, Utils.PF.Mul(hxQAP, domain)) assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z)) assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1) assert.Equal(t, len(hxQAP), len(px)-len(domain)+1) // fmt.Println("pk.Z", len(setup.Pk.Z)) // fmt.Println("zxQAP", len(zxQAP)) // piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t) proof, err := GenerateProofs(setup, 5, w, px) assert.Nil(t, err) // fmt.Println("\n proofs:") // fmt.Println(proof) // fmt.Println("public signals:", proof.PublicSignals) fmt.Println("\nwitness", w) // b1 := big.NewInt(int64(1)) //b35 := big.NewInt(int64(35)) //// publicSignals := []*big.Int{b1, b35} //publicSignals := []*big.Int{b35} //before := time.Now() assert.True(t, VerifyProof(setup, proof, w[:5], true)) //fmt.Println("verify proof time elapsed:", time.Since(before)) }