// implementation of https://eprint.iacr.org/2016/260.pdf package groth16 import ( "fmt" "math/big" "github.com/arnaucube/go-snark/bn128" "github.com/arnaucube/go-snark/circuitcompiler" "github.com/arnaucube/go-snark/fields" "github.com/arnaucube/go-snark/r1csqap" ) // Setup is the data structure holding the Trusted Setup data. The Setup.Toxic sub struct must be destroyed after the GenerateTrustedSetup function is completed type Setup struct { Toxic struct { T *big.Int // trusted setup secret Kalpha *big.Int Kbeta *big.Int Kgamma *big.Int Kdelta *big.Int } // public Pk struct { // Proving Key BACDelta [][3]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / γ } from 0 to l Z []*big.Int G1 struct { Alpha [3]*big.Int Beta [3]*big.Int Delta [3]*big.Int At [][3]*big.Int // {a(τ)} from 0 to m BACGamma [][3]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m } G2 struct { Beta [3][2]*big.Int Gamma [3][2]*big.Int Delta [3][2]*big.Int BACGamma [][3][2]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m } PowersTauDelta [][3]*big.Int // powers of τ encrypted in G1 curve, divided by δ } Vk struct { IC [][3]*big.Int G1 struct { Alpha [3]*big.Int } G2 struct { Beta [3][2]*big.Int Gamma [3][2]*big.Int Delta [3][2]*big.Int } } } // Proof contains the parameters to proof the zkSNARK type Proof struct { PiA [3]*big.Int PiB [3][2]*big.Int PiC [3]*big.Int } type utils struct { Bn bn128.Bn128 FqR fields.Fq PF r1csqap.PolynomialField } // Utils is the data structure holding the BN128, FqR Finite Field over R, PolynomialField, that will be used inside the snarks operations var Utils = prepareUtils() func prepareUtils() utils { bn, err := bn128.NewBn128() if err != nil { panic(err) } // new Finite Field fqR := fields.NewFq(bn.R) // new Polynomial Field pf := r1csqap.NewPolynomialField(fqR) return utils{ Bn: bn, FqR: fqR, PF: pf, } } // GenerateTrustedSetup generates the Trusted Setup from a compiled Circuit. The Setup.Toxic sub data structure must be destroyed func GenerateTrustedSetup(witnessLength int, circuit circuitcompiler.Circuit, alphas, betas, gammas [][]*big.Int) (Setup, error) { var setup Setup var err error // generate random t value setup.Toxic.T, err = Utils.FqR.Rand() if err != nil { return Setup{}, err } setup.Toxic.Kalpha, err = Utils.FqR.Rand() if err != nil { return Setup{}, err } setup.Toxic.Kbeta, err = Utils.FqR.Rand() if err != nil { return Setup{}, err } setup.Toxic.Kgamma, err = Utils.FqR.Rand() if err != nil { return Setup{}, err } setup.Toxic.Kdelta, err = Utils.FqR.Rand() if err != nil { return Setup{}, err } // z pol zpol := []*big.Int{big.NewInt(int64(1))} for i := 1; i < len(alphas)-1; i++ { zpol = Utils.PF.Mul( zpol, []*big.Int{ Utils.FqR.Neg( big.NewInt(int64(i))), big.NewInt(int64(1)), }) } setup.Pk.Z = zpol zt := Utils.PF.Eval(zpol, setup.Toxic.T) invDelta := Utils.FqR.Inverse(setup.Toxic.Kdelta) ztinvDelta := Utils.FqR.Mul(invDelta, zt) // encrypt t values with curve generators // powers of tau divided by delta var ptd [][3]*big.Int ini := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, ztinvDelta) ptd = append(ptd, ini) tEncr := setup.Toxic.T for i := 1; i < len(zpol); i++ { ptd = append(ptd, Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, Utils.FqR.Mul(tEncr, ztinvDelta))) tEncr = Utils.FqR.Mul(tEncr, setup.Toxic.T) } // powers of τ encrypted in G1 curve, divided by δ // (G1 * τ) / δ setup.Pk.PowersTauDelta = ptd setup.Pk.G1.Alpha = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kalpha) setup.Pk.G1.Beta = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kbeta) setup.Pk.G1.Delta = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kdelta) setup.Pk.G2.Beta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kbeta) setup.Pk.G2.Delta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kdelta) setup.Vk.G1.Alpha = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kalpha) setup.Vk.G2.Beta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kbeta) setup.Vk.G2.Gamma = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kgamma) setup.Vk.G2.Delta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kdelta) for i := 0; i < len(circuit.Signals); i++ { // Pk.G1.At: {a(τ)} from 0 to m at := Utils.PF.Eval(alphas[i], setup.Toxic.T) a := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, at) setup.Pk.G1.At = append(setup.Pk.G1.At, a) bt := Utils.PF.Eval(betas[i], setup.Toxic.T) g1bt := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, bt) g2bt := Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, bt) // G1.BACGamma: {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m in G1 setup.Pk.G1.BACGamma = append(setup.Pk.G1.BACGamma, g1bt) // G2.BACGamma: {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m in G2 setup.Pk.G2.BACGamma = append(setup.Pk.G2.BACGamma, g2bt) } zero3 := [3]*big.Int{Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero()} for i := 0; i < circuit.NPublic+1; i++ { setup.Pk.BACDelta = append(setup.Pk.BACDelta, zero3) } for i := circuit.NPublic + 1; i < circuit.NVars; i++ { // TODO calculate all at, bt, ct outside, to avoid repeating calculations at := Utils.PF.Eval(alphas[i], setup.Toxic.T) bt := Utils.PF.Eval(betas[i], setup.Toxic.T) ct := Utils.PF.Eval(gammas[i], setup.Toxic.T) c := Utils.FqR.Mul( invDelta, Utils.FqR.Add( Utils.FqR.Add( Utils.FqR.Mul(at, setup.Toxic.Kbeta), Utils.FqR.Mul(bt, setup.Toxic.Kalpha), ), ct, ), ) g1c := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, c) // Pk.BACDelta: {( βui(x)+αvi(x)+wi(x) ) / γ } from 0 to l setup.Pk.BACDelta = append(setup.Pk.BACDelta, g1c) } for i := 0; i <= circuit.NPublic; i++ { at := Utils.PF.Eval(alphas[i], setup.Toxic.T) bt := Utils.PF.Eval(betas[i], setup.Toxic.T) ct := Utils.PF.Eval(gammas[i], setup.Toxic.T) ic := Utils.FqR.Mul( Utils.FqR.Inverse(setup.Toxic.Kgamma), Utils.FqR.Add( Utils.FqR.Add( Utils.FqR.Mul(at, setup.Toxic.Kbeta), Utils.FqR.Mul(bt, setup.Toxic.Kalpha), ), ct, ), ) g1ic := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, ic) // used in verifier setup.Vk.IC = append(setup.Vk.IC, g1ic) } return setup, nil } // GenerateProofs generates all the parameters to proof the zkSNARK from the Circuit, Setup and the Witness func GenerateProofs(circuit circuitcompiler.Circuit, setup Setup, w []*big.Int, px []*big.Int) (Proof, error) { var proof Proof proof.PiA = [3]*big.Int{Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero()} proof.PiB = Utils.Bn.Fq6.Zero() proof.PiC = [3]*big.Int{Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero()} r, err := Utils.FqR.Rand() if err != nil { return Proof{}, err } s, err := Utils.FqR.Rand() if err != nil { return Proof{}, err } // piBG1 will hold all the same than proof.PiB but in G1 curve piBG1 := [3]*big.Int{Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero()} for i := 0; i < circuit.NVars; i++ { proof.PiA = Utils.Bn.G1.Add(proof.PiA, Utils.Bn.G1.MulScalar(setup.Pk.G1.At[i], w[i])) piBG1 = Utils.Bn.G1.Add(piBG1, Utils.Bn.G1.MulScalar(setup.Pk.G1.BACGamma[i], w[i])) proof.PiB = Utils.Bn.G2.Add(proof.PiB, Utils.Bn.G2.MulScalar(setup.Pk.G2.BACGamma[i], w[i])) } for i := circuit.NPublic + 1; i < circuit.NVars; i++ { proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(setup.Pk.BACDelta[i], w[i])) } // piA = (Σ from 0 to m (pk.A * w[i])) + pk.Alpha1 + r * δ proof.PiA = Utils.Bn.G1.Add(proof.PiA, setup.Pk.G1.Alpha) deltaR := Utils.Bn.G1.MulScalar(setup.Pk.G1.Delta, r) proof.PiA = Utils.Bn.G1.Add(proof.PiA, deltaR) // piBG1 = (Σ from 0 to m (pk.B1 * w[i])) + pk.g1.Beta + s * δ // piB = piB2 = (Σ from 0 to m (pk.B2 * w[i])) + pk.g2.Beta + s * δ piBG1 = Utils.Bn.G1.Add(piBG1, setup.Pk.G1.Beta) proof.PiB = Utils.Bn.G2.Add(proof.PiB, setup.Pk.G2.Beta) deltaSG1 := Utils.Bn.G1.MulScalar(setup.Pk.G1.Delta, s) piBG1 = Utils.Bn.G1.Add(piBG1, deltaSG1) deltaSG2 := Utils.Bn.G2.MulScalar(setup.Pk.G2.Delta, s) proof.PiB = Utils.Bn.G2.Add(proof.PiB, deltaSG2) hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z) // maybe move this calculation to a previous step // piC = (Σ from l+1 to m (w[i] * (pk.g1.Beta + pk.g1.Alpha + pk.C)) + h(tau)) / δ) + piA*s + r*piB - r*s*δ for i := 0; i < len(hx); i++ { proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(setup.Pk.PowersTauDelta[i], hx[i])) } proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(proof.PiA, s)) proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(piBG1, r)) negRS := Utils.FqR.Neg(Utils.FqR.Mul(r, s)) proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(setup.Pk.G1.Delta, negRS)) return proof, nil } // VerifyProof verifies over the BN128 the Pairings of the Proof func VerifyProof(circuit circuitcompiler.Circuit, setup Setup, proof Proof, publicSignals []*big.Int, debug bool) bool { icPubl := setup.Vk.IC[0] for i := 0; i < len(publicSignals); i++ { icPubl = Utils.Bn.G1.Add(icPubl, Utils.Bn.G1.MulScalar(setup.Vk.IC[i+1], publicSignals[i])) } if !Utils.Bn.Fq12.Equal( Utils.Bn.Pairing(proof.PiA, proof.PiB), Utils.Bn.Fq12.Mul( Utils.Bn.Pairing(setup.Vk.G1.Alpha, setup.Vk.G2.Beta), Utils.Bn.Fq12.Mul( Utils.Bn.Pairing(icPubl, setup.Vk.G2.Gamma), Utils.Bn.Pairing(proof.PiC, setup.Vk.G2.Delta)))) { if debug { fmt.Println("❌ groth16 verification not passed") } return false } if debug { fmt.Println("✓ groth16 verification passed") } return true }