package snark import ( "bytes" "fmt" "math/big" "strings" "testing" "time" "github.com/arnaucube/go-snark/circuitcompiler" "github.com/arnaucube/go-snark/groth16" "github.com/arnaucube/go-snark/r1csqap" "github.com/stretchr/testify/assert" ) func TestGroth16MinimalFlow(t *testing.T) { fmt.Println("testing Groth16 minimal flow") // circuit function // y = x^3 + x + 5 code := ` func main(private s0, public s1): s2 = s0 * s0 s3 = s2 * s0 s4 = s3 + s0 s5 = s4 + 5 equals(s1, s5) out = 1 * 1 ` fmt.Print("\ncode of the circuit:") // parse the code parser := circuitcompiler.NewParser(strings.NewReader(code)) circuit, err := parser.Parse() assert.Nil(t, err) b3 := big.NewInt(int64(3)) privateInputs := []*big.Int{b3} b35 := big.NewInt(int64(35)) publicSignals := []*big.Int{b35} // wittness w, err := circuit.CalculateWitness(privateInputs, publicSignals) assert.Nil(t, err) // code to R1CS fmt.Println("\ngenerating R1CS from code") a, b, c := circuit.GenerateR1CS() fmt.Println("\nR1CS:") fmt.Println("a:", a) fmt.Println("b:", b) fmt.Println("c:", c) // R1CS to QAP // TODO zxQAP is not used and is an old impl, TODO remove alphas, betas, gammas, _ := Utils.PF.R1CSToQAP(a, b, c) fmt.Println("qap") assert.Equal(t, 8, len(alphas)) assert.Equal(t, 8, len(alphas)) assert.Equal(t, 8, len(alphas)) assert.True(t, !bytes.Equal(alphas[1][1].Bytes(), big.NewInt(int64(0)).Bytes())) ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas) assert.Equal(t, 7, len(ax)) assert.Equal(t, 7, len(bx)) assert.Equal(t, 7, len(cx)) assert.Equal(t, 13, len(px)) // --- // from here is the GROTH16 // --- // calculate trusted setup fmt.Println("groth") setup, err := groth16.GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas) assert.Nil(t, err) fmt.Println("\nt:", setup.Toxic.T) hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z) div, rem := Utils.PF.Div(px, setup.Pk.Z) assert.Equal(t, hx, div) assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(6)) // hx==px/zx so px==hx*zx assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z)) // check length of polynomials H(x) and Z(x) assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1) proof, err := groth16.GenerateProofs(*circuit, setup, w, px) assert.Nil(t, err) // fmt.Println("\n proofs:") // fmt.Println(proof) // fmt.Println("public signals:", proof.PublicSignals) fmt.Println("\nsignals:", circuit.Signals) fmt.Println("witness:", w) b35Verif := big.NewInt(int64(35)) publicSignalsVerif := []*big.Int{b35Verif} before := time.Now() assert.True(t, groth16.VerifyProof(*circuit, setup, proof, publicSignalsVerif, true)) fmt.Println("verify proof time elapsed:", time.Since(before)) // check that with another public input the verification returns false bOtherWrongPublic := big.NewInt(int64(34)) wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic} assert.True(t, !groth16.VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, false)) } func TestZkFromFlatCircuitCode(t *testing.T) { // compile circuit and get the R1CS // circuit function // y = x^3 + x + 5 code := ` func exp3(private a): b = a * a c = a * b return c func sum(private a, private b): c = a + b return c func main(private s0, public s1): s3 = exp3(s0) s4 = sum(s3, s0) s5 = s4 + 5 equals(s1, s5) out = 1 * 1 ` // the same code without the functions calling, all in one func // code := ` // func test(private s0, public s1): // s2 = s0 * s0 // s3 = s2 * s0 // s4 = s3 + s0 // s5 = s4 + 5 // equals(s1, s5) // out = 1 * 1 // ` fmt.Print("\ncode of the circuit:") fmt.Println(code) // parse the code parser := circuitcompiler.NewParser(strings.NewReader(code)) circuit, err := parser.Parse() assert.Nil(t, err) // fmt.Println("\ncircuit data:", circuit) // circuitJson, _ := json.Marshal(circuit) // fmt.Println("circuit:", string(circuitJson)) b3 := big.NewInt(int64(3)) privateInputs := []*big.Int{b3} b35 := big.NewInt(int64(35)) publicSignals := []*big.Int{b35} // wittness w, err := circuit.CalculateWitness(privateInputs, publicSignals) assert.Nil(t, err) // code to R1CS fmt.Println("\ngenerating R1CS from code") a, b, c := circuit.GenerateR1CS() fmt.Println("\nR1CS:") fmt.Println("a:", a) fmt.Println("b:", b) fmt.Println("c:", c) // R1CS to QAP // TODO zxQAP is not used and is an old impl, TODO remove alphas, betas, gammas, zxQAP := Utils.PF.R1CSToQAP(a, b, c) fmt.Println("qap") assert.Equal(t, 8, len(alphas)) assert.Equal(t, 8, len(alphas)) assert.Equal(t, 8, len(alphas)) assert.Equal(t, 7, len(zxQAP)) assert.True(t, !bytes.Equal(alphas[1][1].Bytes(), big.NewInt(int64(0)).Bytes())) ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas) assert.Equal(t, 7, len(ax)) assert.Equal(t, 7, len(bx)) assert.Equal(t, 7, len(cx)) assert.Equal(t, 13, len(px)) hxQAP := Utils.PF.DivisorPolynomial(px, zxQAP) assert.Equal(t, 7, len(hxQAP)) // hx==px/zx so px==hx*zx assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP)) // p(x) = a(x) * b(x) - c(x) == h(x) * z(x) abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx) assert.Equal(t, abc, px) hzQAP := Utils.PF.Mul(hxQAP, zxQAP) assert.Equal(t, abc, hzQAP) div, rem := Utils.PF.Div(px, zxQAP) assert.Equal(t, hxQAP, div) assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(6)) // calculate trusted setup setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas) assert.Nil(t, err) fmt.Println("\nt:", setup.Toxic.T) // zx and setup.Pk.Z should be the same (currently not, the correct one is the calculation used inside GenerateTrustedSetup function), the calculation is repeated. TODO avoid repeating calculation assert.Equal(t, zxQAP, setup.Pk.Z) hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z) assert.Equal(t, hx, hxQAP) // assert.Equal(t, hxQAP, hx) div, rem = Utils.PF.Div(px, setup.Pk.Z) assert.Equal(t, hx, div) assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(6)) assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP)) // hx==px/zx so px==hx*zx assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z)) // check length of polynomials H(x) and Z(x) assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1) assert.Equal(t, len(hxQAP), len(px)-len(zxQAP)+1) proof, err := GenerateProofs(*circuit, setup, w, px) assert.Nil(t, err) // fmt.Println("\n proofs:") // fmt.Println(proof) // fmt.Println("public signals:", proof.PublicSignals) fmt.Println("\nsignals:", circuit.Signals) fmt.Println("witness:", w) b35Verif := big.NewInt(int64(35)) publicSignalsVerif := []*big.Int{b35Verif} before := time.Now() assert.True(t, VerifyProof(*circuit, setup, proof, publicSignalsVerif, true)) fmt.Println("verify proof time elapsed:", time.Since(before)) // check that with another public input the verification returns false bOtherWrongPublic := big.NewInt(int64(34)) wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic} assert.True(t, !VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, false)) } func TestZkMultiplication(t *testing.T) { code := ` func main(private a, private b, public c): d = a * b equals(c, d) out = 1 * 1 ` fmt.Println("code", code) // parse the code parser := circuitcompiler.NewParser(strings.NewReader(code)) circuit, err := parser.Parse() assert.Nil(t, err) b3 := big.NewInt(int64(3)) b4 := big.NewInt(int64(4)) privateInputs := []*big.Int{b3, b4} b12 := big.NewInt(int64(12)) publicSignals := []*big.Int{b12} // wittness w, err := circuit.CalculateWitness(privateInputs, publicSignals) assert.Nil(t, err) // code to R1CS fmt.Println("\ngenerating R1CS from code") a, b, c := circuit.GenerateR1CS() fmt.Println("\nR1CS:") fmt.Println("a:", a) fmt.Println("b:", b) fmt.Println("c:", c) // R1CS to QAP // TODO zxQAP is not used and is an old impl. TODO remove alphas, betas, gammas, zxQAP := Utils.PF.R1CSToQAP(a, b, c) assert.Equal(t, 6, len(alphas)) assert.Equal(t, 6, len(betas)) assert.Equal(t, 6, len(betas)) assert.Equal(t, 5, len(zxQAP)) assert.True(t, !bytes.Equal(alphas[1][1].Bytes(), big.NewInt(int64(0)).Bytes())) ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas) assert.Equal(t, 4, len(ax)) assert.Equal(t, 4, len(bx)) assert.Equal(t, 4, len(cx)) assert.Equal(t, 7, len(px)) hxQAP := Utils.PF.DivisorPolynomial(px, zxQAP) assert.Equal(t, 3, len(hxQAP)) // hx==px/zx so px==hx*zx assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP)) // p(x) = a(x) * b(x) - c(x) == h(x) * z(x) abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx) assert.Equal(t, abc, px) hzQAP := Utils.PF.Mul(hxQAP, zxQAP) assert.Equal(t, abc, hzQAP) div, rem := Utils.PF.Div(px, zxQAP) assert.Equal(t, hxQAP, div) assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4)) // calculate trusted setup setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas) assert.Nil(t, err) // fmt.Println("\nt:", setup.Toxic.T) // zx and setup.Pk.Z should be the same (currently not, the correct one is the calculation used inside GenerateTrustedSetup function), the calculation is repeated. TODO avoid repeating calculation assert.Equal(t, zxQAP, setup.Pk.Z) hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z) assert.Equal(t, 3, len(hx)) assert.Equal(t, hx, hxQAP) div, rem = Utils.PF.Div(px, setup.Pk.Z) assert.Equal(t, hx, div) assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4)) assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP)) // hx==px/zx so px==hx*zx assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z)) // check length of polynomials H(x) and Z(x) assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1) assert.Equal(t, len(hxQAP), len(px)-len(zxQAP)+1) proof, err := GenerateProofs(*circuit, setup, w, px) assert.Nil(t, err) // fmt.Println("\n proofs:") // fmt.Println(proof) // fmt.Println("public signals:", proof.PublicSignals) fmt.Println("\n", circuit.Signals) fmt.Println("witness", w) b12Verif := big.NewInt(int64(12)) publicSignalsVerif := []*big.Int{b12Verif} before := time.Now() assert.True(t, VerifyProof(*circuit, setup, proof, publicSignalsVerif, true)) fmt.Println("verify proof time elapsed:", time.Since(before)) // check that with another public input the verification returns false bOtherWrongPublic := big.NewInt(int64(11)) wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic} assert.True(t, !VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, false)) } func TestMinimalFlow(t *testing.T) { // circuit function // y = x^3 + x + 5 code := ` func main(private s0, public s1): s2 = s0 * s0 s3 = s2 * s0 s4 = s3 + s0 s5 = s4 + 5 equals(s1, s5) out = 1 * 1 ` fmt.Print("\ncode of the circuit:") fmt.Println(code) // parse the code parser := circuitcompiler.NewParser(strings.NewReader(code)) circuit, err := parser.Parse() assert.Nil(t, err) b3 := big.NewInt(int64(3)) privateInputs := []*big.Int{b3} b35 := big.NewInt(int64(35)) publicSignals := []*big.Int{b35} // wittness w, err := circuit.CalculateWitness(privateInputs, publicSignals) assert.Nil(t, err) // code to R1CS fmt.Println("\ngenerating R1CS from code") a, b, c := circuit.GenerateR1CS() fmt.Println("\nR1CS:") fmt.Println("a:", a) fmt.Println("b:", b) fmt.Println("c:", c) // R1CS to QAP // TODO zxQAP is not used and is an old impl, TODO remove alphas, betas, gammas, _ := Utils.PF.R1CSToQAP(a, b, c) fmt.Println("qap") assert.Equal(t, 8, len(alphas)) assert.Equal(t, 8, len(alphas)) assert.Equal(t, 8, len(alphas)) assert.True(t, !bytes.Equal(alphas[1][1].Bytes(), big.NewInt(int64(0)).Bytes())) ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas) assert.Equal(t, 7, len(ax)) assert.Equal(t, 7, len(bx)) assert.Equal(t, 7, len(cx)) assert.Equal(t, 13, len(px)) // calculate trusted setup setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas) assert.Nil(t, err) fmt.Println("\nt:", setup.Toxic.T) hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z) div, rem := Utils.PF.Div(px, setup.Pk.Z) assert.Equal(t, hx, div) assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(6)) // hx==px/zx so px==hx*zx assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z)) // check length of polynomials H(x) and Z(x) assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1) proof, err := GenerateProofs(*circuit, setup, w, px) assert.Nil(t, err) // fmt.Println("\n proofs:") // fmt.Println(proof) // fmt.Println("public signals:", proof.PublicSignals) fmt.Println("\nsignals:", circuit.Signals) fmt.Println("witness:", w) b35Verif := big.NewInt(int64(35)) publicSignalsVerif := []*big.Int{b35Verif} before := time.Now() assert.True(t, VerifyProof(*circuit, setup, proof, publicSignalsVerif, true)) fmt.Println("verify proof time elapsed:", time.Since(before)) // check that with another public input the verification returns false bOtherWrongPublic := big.NewInt(int64(34)) wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic} assert.True(t, !VerifyProof(*circuit, setup, proof, wrongPublicSignalsVerif, false)) }