# go-snark [![Go Report Card](https://goreportcard.com/badge/github.com/arnaucube/go-snark)](https://goreportcard.com/report/github.com/arnaucube/go-snark) zkSNARK library implementation in Go - `Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture`, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf - `Pinocchio: Nearly practical verifiable computation`, Bryan Parno, Craig Gentry, Jon Howell, Mariana Raykova https://eprint.iacr.org/2013/279.pdf ## Caution Implementation from scratch in Go to understand the concepts. Do not use in production. Not finished, implementing this in my free time to understand it better, so I don't have much time. ### Usage - [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark?status.svg)](https://godoc.org/github.com/arnaucube/go-snark) zkSnark - [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/bn128?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/bn128) bn128 (more details: https://github.com/arnaucube/go-snark/tree/master/bn128) - [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/fields?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/fields) Finite Fields operations - [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/r1csqap?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/r1csqap) R1CS to QAP (more details: https://github.com/arnaucube/go-snark/tree/master/r1csqap) - [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/circuitcompiler?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/circuitcompiler) Circuit Compiler Example: ```go bn, err := bn128.NewBn128() assert.Nil(t, err) // new Finite Field fqR := fields.NewFq(bn.R) // new Polynomial Field pf := r1csqap.NewPolynomialField(f) /* suppose that we have the following variables with *big.Int elements: a = [[0 1 0 0 0 0] [0 0 0 1 0 0] [0 1 0 0 1 0] [5 0 0 0 0 1]] b = [[0 1 0 0 0 0] [0 1 0 0 0 0] [1 0 0 0 0 0] [1 0 0 0 0 0]] c = [[0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1] [0 0 1 0 0 0]] w = [1, 3, 35, 9, 27, 30] */ alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c) // wittness = 1, 3, 35, 9, 27, 30 w := []*big.Int{b1, b3, b35, b9, b27, b30} circuit := compiler.Circuit{ NVars: 6, NPublic: 0, NSignals: len(w), } ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas) hx := pf.DivisorPolinomial(px, zx) // hx==px/zx so px==hx*zx assert.Equal(t, px, pf.Mul(hx, zx)) // p(x) = a(x) * b(x) - c(x) == h(x) * z(x) abc := pf.Sub(pf.Mul(ax, bx), cx) assert.Equal(t, abc, px) hz := pf.Mul(hx, zx) assert.Equal(t, abc, hz) div, rem := pf.Div(px, zx) assert.Equal(t, hx, div) assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4)) // calculate trusted setup setup, err := GenerateTrustedSetup(bn, fqR, pf, len(w), circuit, alphas, betas, gammas, zx) assert.Nil(t, err) fmt.Println("t", setup.Toxic.T) // piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t) proof, err := GenerateProofs(bn, fqR, circuit, setup, hx, w) assert.Nil(t, err) assert.True(t, VerifyProof(bn, circuit, setup, proof)) ``` ### Test ``` go test ./... -v ``` --- Thanks to [@jbaylina](https://github.com/jbaylina), [@bellesmarta](https://github.com/bellesmarta), [@adriamb](https://github.com/adriamb) for their explanations that helped to understand this a little bit. Also thanks to [@vbuterin](https://github.com/vbuterin) for all the published articles explaining the zkSNARKs.