package snark import ( "fmt" "math/big" "strings" "testing" "github.com/arnaucube/go-snark/bn128" "github.com/arnaucube/go-snark/circuitcompiler" "github.com/arnaucube/go-snark/fields" "github.com/arnaucube/go-snark/r1csqap" "github.com/stretchr/testify/assert" ) func TestZkFromFlatCircuitCode(t *testing.T) { bn, err := bn128.NewBn128() assert.Nil(t, err) // new Finite Field fqR := fields.NewFq(bn.R) // new Polynomial Field pf := r1csqap.NewPolynomialField(fqR) // compile circuit and get the R1CS flatCode := ` func test(x): aux = x*x y = aux*x z = x + y out = z + 5 ` fmt.Print("\nflat code of the circuit:") fmt.Println(flatCode) // parse the code parser := circuitcompiler.NewParser(strings.NewReader(flatCode)) circuit, err := parser.Parse() assert.Nil(t, err) fmt.Println("\ncircuit data:", circuit) b3 := big.NewInt(int64(3)) inputs := []*big.Int{b3} // wittness w := circuit.CalculateWitness(inputs) fmt.Println("\nwitness", w) // flat code to R1CS fmt.Println("\ngenerating R1CS from flat code") a, b, c := circuit.GenerateR1CS() fmt.Println("\nR1CS:") fmt.Println("a:", a) fmt.Println("b:", b) fmt.Println("c:", c) alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c) ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas) hx := pf.DivisorPolinomial(px, zx) // hx==px/zx so px==hx*zx assert.Equal(t, px, pf.Mul(hx, zx)) // p(x) = a(x) * b(x) - c(x) == h(x) * z(x) abc := pf.Sub(pf.Mul(ax, bx), cx) assert.Equal(t, abc, px) hz := pf.Mul(hx, zx) assert.Equal(t, abc, hz) div, rem := pf.Div(px, zx) assert.Equal(t, hx, div) assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4)) // calculate trusted setup setup, err := GenerateTrustedSetup(bn, fqR, pf, len(w), *circuit, alphas, betas, gammas, zx) assert.Nil(t, err) fmt.Println("\nt:", setup.Toxic.T) // piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t) proof, err := GenerateProofs(bn, fqR, *circuit, setup, hx, w) assert.Nil(t, err) assert.True(t, VerifyProof(bn, *circuit, setup, proof)) } func TestZkFromHardcodedR1CS(t *testing.T) { bn, err := bn128.NewBn128() assert.Nil(t, err) // new Finite Field fqR := fields.NewFq(bn.R) // new Polynomial Field pf := r1csqap.NewPolynomialField(fqR) b0 := big.NewInt(int64(0)) b1 := big.NewInt(int64(1)) b3 := big.NewInt(int64(3)) b5 := big.NewInt(int64(5)) b9 := big.NewInt(int64(9)) b27 := big.NewInt(int64(27)) b30 := big.NewInt(int64(30)) b35 := big.NewInt(int64(35)) a := [][]*big.Int{ []*big.Int{b0, b1, b0, b0, b0, b0}, []*big.Int{b0, b0, b0, b1, b0, b0}, []*big.Int{b0, b1, b0, b0, b1, b0}, []*big.Int{b5, b0, b0, b0, b0, b1}, } b := [][]*big.Int{ []*big.Int{b0, b1, b0, b0, b0, b0}, []*big.Int{b0, b1, b0, b0, b0, b0}, []*big.Int{b1, b0, b0, b0, b0, b0}, []*big.Int{b1, b0, b0, b0, b0, b0}, } c := [][]*big.Int{ []*big.Int{b0, b0, b0, b1, b0, b0}, []*big.Int{b0, b0, b0, b0, b1, b0}, []*big.Int{b0, b0, b0, b0, b0, b1}, []*big.Int{b0, b0, b1, b0, b0, b0}, } alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c) // wittness = 1, 3, 35, 9, 27, 30 w := []*big.Int{b1, b3, b35, b9, b27, b30} circuit := circuitcompiler.Circuit{ NVars: 6, NPublic: 0, NSignals: len(w), } ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas) hx := pf.DivisorPolinomial(px, zx) // hx==px/zx so px==hx*zx assert.Equal(t, px, pf.Mul(hx, zx)) // p(x) = a(x) * b(x) - c(x) == h(x) * z(x) abc := pf.Sub(pf.Mul(ax, bx), cx) assert.Equal(t, abc, px) hz := pf.Mul(hx, zx) assert.Equal(t, abc, hz) div, rem := pf.Div(px, zx) assert.Equal(t, hx, div) assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4)) // calculate trusted setup setup, err := GenerateTrustedSetup(bn, fqR, pf, len(w), circuit, alphas, betas, gammas, zx) assert.Nil(t, err) fmt.Println("t", setup.Toxic.T) // piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t) proof, err := GenerateProofs(bn, fqR, circuit, setup, hx, w) assert.Nil(t, err) assert.True(t, VerifyProof(bn, circuit, setup, proof)) }