package proof import ( "bytes" "math/big" "strings" "testing" "github.com/stretchr/testify/assert" "github.com/arnaucube/go-snark/circuit" "github.com/arnaucube/go-snark/fields" ) func TestZkFromFlatCircuitCode(t *testing.T) { code := ` func exp3(private a): b = a * a c = a * b return c func sum(private a, private b): c = a + b return c func main(private s0, public s1): s3 = exp3(s0) s4 = sum(s3, s0) s5 = s4 + 5 equals(s1, s5) out = 1 * 1 ` parser := circuit.NewParser(strings.NewReader(code)) cir, err := parser.Parse() assert.Nil(t, err) b3 := big.NewInt(int64(3)) privateInputs := []*big.Int{b3} b35 := big.NewInt(int64(35)) publicSignals := []*big.Int{b35} w, err := cir.CalculateWitness(privateInputs, publicSignals) assert.Nil(t, err) cir.GenerateR1CS() alphas, betas, gammas, zxQAP := R1CSToQAP( cir.R1CS.A, cir.R1CS.B, cir.R1CS.C, ) assert.Equal(t, 8, len(alphas)) assert.Equal(t, 8, len(alphas)) assert.Equal(t, 8, len(alphas)) assert.Equal(t, 7, len(zxQAP)) assert.True(t, !bytes.Equal(alphas[1][1].Bytes(), big.NewInt(int64(0)).Bytes())) ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas) assert.Equal(t, 7, len(ax)) assert.Equal(t, 7, len(bx)) assert.Equal(t, 7, len(cx)) assert.Equal(t, 13, len(px)) hxQAP := Utils.PF.DivisorPolynomial(px, zxQAP) assert.Equal(t, 7, len(hxQAP)) // hx==px/zx so px==hx*zx assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP)) // p(x) = a(x) * b(x) - c(x) == h(x) * z(x) abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx) assert.Equal(t, abc, px) hzQAP := Utils.PF.Mul(hxQAP, zxQAP) assert.Equal(t, abc, hzQAP) div, rem := Utils.PF.Div(px, zxQAP) assert.Equal(t, hxQAP, div) assert.Equal(t, rem, fields.ArrayOfBigZeros(6)) // calculate trusted setup setup := &PinocchioSetup{} err = setup.Init(cir, alphas, betas, gammas) assert.Nil(t, err) // zx and setup.Pk.Z should be the same // currently not, the correct one is the calculation used inside GenerateTrustedSetup function // the calculation is repeated. TODO avoid repeating calculation assert.Equal(t, zxQAP, setup.Pk.Z) hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z) assert.Equal(t, hx, hxQAP) div, rem = Utils.PF.Div(px, setup.Pk.Z) assert.Equal(t, hx, div) assert.Equal(t, rem, fields.ArrayOfBigZeros(6)) assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP)) // hx==px/zx so px==hx*zx assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z)) // check length of polynomials H(x) and Z(x) assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1) assert.Equal(t, len(hxQAP), len(px)-len(zxQAP)+1) proof, err := setup.Generate(cir, w, px) assert.Nil(t, err) b35Verif := big.NewInt(int64(35)) publicSignalsVerif := []*big.Int{b35Verif} { r, err := setup.Verify(proof, publicSignalsVerif) assert.Nil(t, err) assert.True(t, r) } // check that with another public input the verification returns false bOtherWrongPublic := big.NewInt(int64(34)) wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic} { r, err := setup.Verify(proof, wrongPublicSignalsVerif) assert.Nil(t, err) assert.False(t, r) } } func TestZkMultiplication(t *testing.T) { code := ` func main(private a, private b, public c): d = a * b equals(c, d) out = 1 * 1 ` parser := circuit.NewParser(strings.NewReader(code)) cir, err := parser.Parse() assert.Nil(t, err) b3 := big.NewInt(int64(3)) b4 := big.NewInt(int64(4)) privateInputs := []*big.Int{b3, b4} b12 := big.NewInt(int64(12)) publicSignals := []*big.Int{b12} w, err := cir.CalculateWitness(privateInputs, publicSignals) assert.Nil(t, err) cir.GenerateR1CS() // R1CS to QAP // TODO zxQAP is not used and is an old impl. // TODO remove alphas, betas, gammas, zxQAP := R1CSToQAP( cir.R1CS.A, cir.R1CS.B, cir.R1CS.C, ) assert.Equal(t, 6, len(alphas)) assert.Equal(t, 6, len(betas)) assert.Equal(t, 6, len(betas)) assert.Equal(t, 5, len(zxQAP)) assert.True(t, !bytes.Equal(alphas[1][1].Bytes(), big.NewInt(int64(0)).Bytes())) ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas) assert.Equal(t, 4, len(ax)) assert.Equal(t, 4, len(bx)) assert.Equal(t, 4, len(cx)) assert.Equal(t, 7, len(px)) hxQAP := Utils.PF.DivisorPolynomial(px, zxQAP) assert.Equal(t, 3, len(hxQAP)) // hx==px/zx so px==hx*zx assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP)) // p(x) = a(x) * b(x) - c(x) == h(x) * z(x) abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx) assert.Equal(t, abc, px) hzQAP := Utils.PF.Mul(hxQAP, zxQAP) assert.Equal(t, abc, hzQAP) div, rem := Utils.PF.Div(px, zxQAP) assert.Equal(t, hxQAP, div) assert.Equal(t, rem, fields.ArrayOfBigZeros(4)) setup := &PinocchioSetup{} err = setup.Init(cir, alphas, betas, gammas) assert.Nil(t, err) // zx and setup.Pk.Z should be the same // currently not, the correct one is the calculation used inside GenerateTrustedSetup function // the calculation is repeated. TODO avoid repeating calculation assert.Equal(t, zxQAP, setup.Pk.Z) hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z) assert.Equal(t, 3, len(hx)) assert.Equal(t, hx, hxQAP) div, rem = Utils.PF.Div(px, setup.Pk.Z) assert.Equal(t, hx, div) assert.Equal(t, rem, fields.ArrayOfBigZeros(4)) assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP)) // hx==px/zx so px==hx*zx assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z)) // check length of polynomials H(x) and Z(x) assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1) assert.Equal(t, len(hxQAP), len(px)-len(zxQAP)+1) proof, err := setup.Generate(cir, w, px) assert.Nil(t, err) b12Verif := big.NewInt(int64(12)) publicSignalsVerif := []*big.Int{b12Verif} { r, err := setup.Verify(proof, publicSignalsVerif) assert.Nil(t, err) assert.True(t, r) } // check that with another public input the verification returns false bOtherWrongPublic := big.NewInt(int64(11)) wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic} { r, err := setup.Verify(proof, wrongPublicSignalsVerif) assert.Nil(t, err) assert.False(t, r) } } func TestMinimalFlow(t *testing.T) { code := ` func main(private s0, public s1): s2 = s0 * s0 s3 = s2 * s0 s4 = s3 + s0 s5 = s4 + 5 equals(s1, s5) out = 1 * 1 ` parser := circuit.NewParser(strings.NewReader(code)) cir, err := parser.Parse() assert.Nil(t, err) b3 := big.NewInt(int64(3)) privateInputs := []*big.Int{b3} b35 := big.NewInt(int64(35)) publicSignals := []*big.Int{b35} w, err := cir.CalculateWitness(privateInputs, publicSignals) assert.Nil(t, err) cir.GenerateR1CS() // R1CS to QAP // TODO zxQAP is not used and is an old impl, TODO remove alphas, betas, gammas, _ := R1CSToQAP( cir.R1CS.A, cir.R1CS.B, cir.R1CS.C, ) assert.Equal(t, 8, len(alphas)) assert.Equal(t, 8, len(alphas)) assert.Equal(t, 8, len(alphas)) assert.True(t, !bytes.Equal(alphas[1][1].Bytes(), big.NewInt(int64(0)).Bytes())) ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas) assert.Equal(t, 7, len(ax)) assert.Equal(t, 7, len(bx)) assert.Equal(t, 7, len(cx)) assert.Equal(t, 13, len(px)) // calculate trusted setup setup := &PinocchioSetup{} err = setup.Init(cir, alphas, betas, gammas) assert.Nil(t, err) hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z) div, rem := Utils.PF.Div(px, setup.Pk.Z) assert.Equal(t, hx, div) assert.Equal(t, rem, fields.ArrayOfBigZeros(6)) // hx==px/zx so px==hx*zx assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z)) // check length of polynomials H(x) and Z(x) assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1) proof, err := setup.Generate(cir, w, px) assert.Nil(t, err) b35Verif := big.NewInt(int64(35)) publicSignalsVerif := []*big.Int{b35Verif} { r, err := setup.Verify(proof, publicSignalsVerif) assert.Nil(t, err) assert.True(t, r) } // check that with another public input the verification returns false bOtherWrongPublic := big.NewInt(int64(34)) wrongPublicSignalsVerif := []*big.Int{bOtherWrongPublic} { r, err := setup.Verify(proof, wrongPublicSignalsVerif) assert.Nil(t, err) assert.False(t, r) } }