package snark import ( "fmt" "math/big" "os" "github.com/arnaucube/go-snark/bn128" "github.com/arnaucube/go-snark/compiler" "github.com/arnaucube/go-snark/fields" "github.com/arnaucube/go-snark/r1csqap" ) type Setup struct { Toxic struct { T *big.Int // trusted setup secret Ka *big.Int // prover Kb *big.Int // prover Kc *big.Int // prover Kbeta *big.Int Kgamma *big.Int RhoA *big.Int RhoB *big.Int RhoC *big.Int } // public G1T [][3]*big.Int // t encrypted in G1 curve G2T [][3][2]*big.Int // t encrypted in G2 curve Pk struct { // Proving Key pk:=(pkA, pkB, pkC, pkH) A [][3]*big.Int B [][3][2]*big.Int C [][3]*big.Int Kp [][3]*big.Int Ap [][3]*big.Int Bp [][3]*big.Int Cp [][3]*big.Int } Vk struct { Vka [3][2]*big.Int Vkb [3]*big.Int Vkc [3][2]*big.Int A [][3]*big.Int G1Kbg [3]*big.Int // g1 * Kbeta * Kgamma G2Kbg [3][2]*big.Int // g2 * Kbeta * Kgamma G2Kg [3][2]*big.Int // g2 * Kgamma Vkz [3][2]*big.Int } } type Proof struct { PiA [3]*big.Int PiAp [3]*big.Int PiB [3][2]*big.Int PiBp [3]*big.Int PiC [3]*big.Int PiCp [3]*big.Int PiH [3]*big.Int PiKp [3]*big.Int PublicSignals []*big.Int } func GenerateTrustedSetup(bn bn128.Bn128, fqR fields.Fq, pf r1csqap.PolynomialField, witnessLength int, circuit compiler.Circuit, alphas, betas, gammas [][]*big.Int, zx []*big.Int) (Setup, error) { var setup Setup var err error // generate random t value setup.Toxic.T, err = fqR.Rand() if err != nil { return Setup{}, err } // k for calculating pi' and Vk setup.Toxic.Ka, err = fqR.Rand() if err != nil { return Setup{}, err } setup.Toxic.Kb, err = fqR.Rand() if err != nil { return Setup{}, err } setup.Toxic.Kc, err = fqR.Rand() if err != nil { return Setup{}, err } // generate Kβ (Kbeta) and Kγ (Kgamma) setup.Toxic.Kbeta, err = fqR.Rand() if err != nil { return Setup{}, err } setup.Toxic.Kgamma, err = fqR.Rand() if err != nil { return Setup{}, err } // generate ρ (Rho): ρA, ρB, ρC setup.Toxic.RhoA, err = fqR.Rand() if err != nil { return Setup{}, err } setup.Toxic.RhoB, err = fqR.Rand() if err != nil { return Setup{}, err } setup.Toxic.RhoC = fqR.Mul(setup.Toxic.RhoA, setup.Toxic.RhoB) // encrypt t values with curve generators var gt1 [][3]*big.Int var gt2 [][3][2]*big.Int for i := 0; i < witnessLength; i++ { tPow := fqR.Exp(setup.Toxic.T, big.NewInt(int64(i))) tEncr1 := bn.G1.MulScalar(bn.G1.G, tPow) gt1 = append(gt1, tEncr1) tEncr2 := bn.G2.MulScalar(bn.G2.G, tPow) gt2 = append(gt2, tEncr2) } // gt1: g1, g1*t, g1*t^2, g1*t^3, ... // gt2: g2, g2*t, g2*t^2, ... setup.G1T = gt1 setup.G2T = gt2 setup.Vk.Vka = bn.G2.MulScalar(bn.G2.G, setup.Toxic.Ka) setup.Vk.Vkb = bn.G1.MulScalar(bn.G1.G, setup.Toxic.Kb) setup.Vk.Vkc = bn.G2.MulScalar(bn.G2.G, setup.Toxic.Kc) /* Verification keys: - Vk_betagamma1: setup.G1Kbg = g1 * Kbeta*Kgamma - Vk_betagamma2: setup.G2Kbg = g2 * Kbeta*Kgamma - Vk_gamma: setup.G2Kg = g2 * Kgamma */ kbg := fqR.Mul(setup.Toxic.Kbeta, setup.Toxic.Kgamma) setup.Vk.G1Kbg = bn.G1.MulScalar(bn.G1.G, kbg) setup.Vk.G2Kbg = bn.G2.MulScalar(bn.G2.G, kbg) setup.Vk.G2Kg = bn.G2.MulScalar(bn.G2.G, setup.Toxic.Kgamma) // for i := 0; i < circuit.NSignals; i++ { for i := 0; i < circuit.NVars; i++ { at := pf.Eval(alphas[i], setup.Toxic.T) a := bn.G1.MulScalar(bn.G1.G, at) setup.Pk.A = append(setup.Pk.A, a) if i <= circuit.NPublic { setup.Vk.A = append(setup.Vk.A, a) } bt := pf.Eval(betas[i], setup.Toxic.T) bg1 := bn.G1.MulScalar(bn.G1.G, bt) bg2 := bn.G2.MulScalar(bn.G2.G, bt) setup.Pk.B = append(setup.Pk.B, bg2) ct := pf.Eval(gammas[i], setup.Toxic.T) c := bn.G1.MulScalar(bn.G1.G, ct) setup.Pk.C = append(setup.Pk.C, c) kt := fqR.Add(fqR.Add(at, bt), ct) k := bn.G1.Affine(bn.G1.MulScalar(bn.G1.G, kt)) ktest := bn.G1.Affine(bn.G1.Add(bn.G1.Add(a, bg1), c)) if !bn.Fq2.Equal(k, ktest) { os.Exit(1) return setup, err } setup.Pk.Ap = append(setup.Pk.Ap, bn.G1.MulScalar(a, setup.Toxic.Ka)) setup.Pk.Bp = append(setup.Pk.Bp, bn.G1.MulScalar(bg1, setup.Toxic.Kb)) setup.Pk.Cp = append(setup.Pk.Cp, bn.G1.MulScalar(c, setup.Toxic.Kc)) k_ := bn.G1.MulScalar(bn.G1.G, kt) setup.Pk.Kp = append(setup.Pk.Kp, bn.G1.MulScalar(k_, setup.Toxic.Kbeta)) } setup.Vk.Vkz = bn.G2.MulScalar(bn.G2.G, pf.Eval(zx, setup.Toxic.T)) return setup, nil } func GenerateProofs(bn bn128.Bn128, f fields.Fq, circuit compiler.Circuit, setup Setup, hx []*big.Int, w []*big.Int) (Proof, error) { var proof Proof proof.PiA = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()} proof.PiAp = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()} proof.PiB = bn.Fq6.Zero() proof.PiBp = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()} proof.PiC = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()} proof.PiCp = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()} proof.PiH = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()} proof.PiKp = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()} for i := circuit.NPublic + 1; i < circuit.NVars; i++ { proof.PiA = bn.G1.Add(proof.PiA, bn.G1.MulScalar(setup.Pk.A[i], w[i])) proof.PiAp = bn.G1.Add(proof.PiAp, bn.G1.MulScalar(setup.Pk.Ap[i], w[i])) } for i := 0; i < circuit.NVars; i++ { proof.PiB = bn.G2.Add(proof.PiB, bn.G2.MulScalar(setup.Pk.B[i], w[i])) proof.PiBp = bn.G1.Add(proof.PiBp, bn.G1.MulScalar(setup.Pk.Bp[i], w[i])) proof.PiC = bn.G1.Add(proof.PiC, bn.G1.MulScalar(setup.Pk.C[i], w[i])) proof.PiCp = bn.G1.Add(proof.PiCp, bn.G1.MulScalar(setup.Pk.Cp[i], w[i])) proof.PiKp = bn.G1.Add(proof.PiKp, bn.G1.MulScalar(setup.Pk.Kp[i], w[i])) } for i := 0; i < len(hx); i++ { proof.PiH = bn.G1.Add(proof.PiH, bn.G1.MulScalar(setup.G1T[i], hx[i])) } proof.PublicSignals = w[1 : circuit.NPublic+1] return proof, nil } func VerifyProof(bn bn128.Bn128, circuit compiler.Circuit, setup Setup, proof Proof) bool { // e(piA, Va) == e(piA', g2) pairingPiaVa := bn.Pairing(proof.PiA, setup.Vk.Vka) pairingPiapG2 := bn.Pairing(proof.PiAp, bn.G2.G) if !bn.Fq12.Equal(pairingPiaVa, pairingPiapG2) { return false } else { fmt.Println("✓ e(piA, Va) == e(piA', g2), valid knowledge commitment for A") } // e(Vb, piB) == e(piB', g2) pairingVbPib := bn.Pairing(setup.Vk.Vkb, proof.PiB) pairingPibpG2 := bn.Pairing(proof.PiBp, bn.G2.G) if !bn.Fq12.Equal(pairingVbPib, pairingPibpG2) { return false } else { fmt.Println("✓ e(Vb, piB) == e(piB', g2), valid knowledge commitment for B") } // e(piC, Vc) == e(piC', g2) pairingPicVc := bn.Pairing(proof.PiC, setup.Vk.Vkc) pairingPicpG2 := bn.Pairing(proof.PiCp, bn.G2.G) if !bn.Fq12.Equal(pairingPicVc, pairingPicpG2) { return false } else { fmt.Println("✓ e(piC, Vc) == e(piC', g2), valid knowledge commitment for C") } // Vkx, to then calculate Vkx+piA vkxpia := setup.Vk.A[0] for i := 0; i < circuit.NPublic; i++ { vkxpia = bn.G1.Add(vkxpia, bn.G1.MulScalar(setup.Vk.A[i+1], proof.PublicSignals[i])) } // e(Vkx+piA, piB) == e(piH, Vkz) * e(piC, g2) if !bn.Fq12.Equal( bn.Pairing(bn.G1.Add(vkxpia, proof.PiA), proof.PiB), bn.Fq12.Mul( bn.Pairing(proof.PiH, setup.Vk.Vkz), bn.Pairing(proof.PiC, bn.G2.G))) { return false } else { fmt.Println("✓ e(Vkx+piA, piB) == e(piH, Vkz) * e(piC, g2), QAP disibility checked") } // e(Vkx+piA+piC, g2KbetaKgamma) * e(g1KbetaKgamma, piB) // == e(piK, g2Kgamma) piApiC := bn.G1.Add(bn.G1.Add(vkxpia, proof.PiA), proof.PiC) pairingPiACG2Kbg := bn.Pairing(piApiC, setup.Vk.G2Kbg) pairingG1KbgPiB := bn.Pairing(setup.Vk.G1Kbg, proof.PiB) pairingL := bn.Fq12.Mul(pairingPiACG2Kbg, pairingG1KbgPiB) pairingR := bn.Pairing(proof.PiKp, setup.Vk.G2Kg) if !bn.Fq12.Equal(pairingL, pairingR) { return false } else { fmt.Println("✓ e(Vkx+piA+piC, g2KbetaKgamma) * e(g1KbetaKgamma, piB) == e(piK, g2Kgamma)") } return true }