package fields
|
|
|
|
import (
|
|
"math/big"
|
|
)
|
|
|
|
// Fq2 is Field 2
|
|
type Fq2 struct {
|
|
F Fq
|
|
NonResidue *big.Int
|
|
}
|
|
|
|
// NewFq2 generates a new Fq2
|
|
func NewFq2(f Fq, nonResidue *big.Int) Fq2 {
|
|
fq2 := Fq2{
|
|
f,
|
|
nonResidue,
|
|
}
|
|
return fq2
|
|
}
|
|
|
|
// Zero returns a Zero value on the Fq2
|
|
func (fq2 Fq2) Zero() [2]*big.Int {
|
|
return [2]*big.Int{fq2.F.Zero(), fq2.F.Zero()}
|
|
}
|
|
|
|
// One returns a One value on the Fq2
|
|
func (fq2 Fq2) One() [2]*big.Int {
|
|
return [2]*big.Int{fq2.F.One(), fq2.F.Zero()}
|
|
}
|
|
|
|
func (fq2 Fq2) mulByNonResidue(a *big.Int) *big.Int {
|
|
return fq2.F.Mul(fq2.NonResidue, a)
|
|
}
|
|
|
|
// Add performs an addition on the Fq2
|
|
func (fq2 Fq2) Add(a, b [2]*big.Int) [2]*big.Int {
|
|
return [2]*big.Int{
|
|
fq2.F.Add(a[0], b[0]),
|
|
fq2.F.Add(a[1], b[1]),
|
|
}
|
|
}
|
|
|
|
// Double performs a doubling on the Fq2
|
|
func (fq2 Fq2) Double(a [2]*big.Int) [2]*big.Int {
|
|
return fq2.Add(a, a)
|
|
}
|
|
|
|
// Sub performs a subtraction on the Fq2
|
|
func (fq2 Fq2) Sub(a, b [2]*big.Int) [2]*big.Int {
|
|
return [2]*big.Int{
|
|
fq2.F.Sub(a[0], b[0]),
|
|
fq2.F.Sub(a[1], b[1]),
|
|
}
|
|
}
|
|
|
|
// Neg performs a negation on the Fq2
|
|
func (fq2 Fq2) Neg(a [2]*big.Int) [2]*big.Int {
|
|
return fq2.Sub(fq2.Zero(), a)
|
|
}
|
|
|
|
// Mul performs a multiplication on the Fq2
|
|
func (fq2 Fq2) Mul(a, b [2]*big.Int) [2]*big.Int {
|
|
// Multiplication and Squaring on Pairing-Friendly.pdf; Section 3 (Karatsuba)
|
|
// https://pdfs.semanticscholar.org/3e01/de88d7428076b2547b60072088507d881bf1.pdf
|
|
v0 := fq2.F.Mul(a[0], b[0])
|
|
v1 := fq2.F.Mul(a[1], b[1])
|
|
return [2]*big.Int{
|
|
fq2.F.Add(v0, fq2.mulByNonResidue(v1)),
|
|
fq2.F.Sub(
|
|
fq2.F.Mul(
|
|
fq2.F.Add(a[0], a[1]),
|
|
fq2.F.Add(b[0], b[1])),
|
|
fq2.F.Add(v0, v1)),
|
|
}
|
|
}
|
|
|
|
func (fq2 Fq2) MulScalar(p [2]*big.Int, e *big.Int) [2]*big.Int {
|
|
// for more possible implementations see g2.go file, at the function g2.MulScalar()
|
|
|
|
q := fq2.Zero()
|
|
d := fq2.F.Copy(e)
|
|
r := p
|
|
|
|
foundone := false
|
|
for i := d.BitLen(); i >= 0; i-- {
|
|
if foundone {
|
|
q = fq2.Double(q)
|
|
}
|
|
if d.Bit(i) == 1 {
|
|
foundone = true
|
|
q = fq2.Add(q, r)
|
|
}
|
|
}
|
|
return q
|
|
}
|
|
|
|
// Inverse returns the inverse on the Fq2
|
|
func (fq2 Fq2) Inverse(a [2]*big.Int) [2]*big.Int {
|
|
// High-Speed Software Implementation of the Optimal Ate Pairing over Barreto–Naehrig Curves .pdf
|
|
// https://eprint.iacr.org/2010/354.pdf , algorithm 8
|
|
t0 := fq2.F.Square(a[0])
|
|
t1 := fq2.F.Square(a[1])
|
|
t2 := fq2.F.Sub(t0, fq2.mulByNonResidue(t1))
|
|
t3 := fq2.F.Inverse(t2)
|
|
return [2]*big.Int{
|
|
fq2.F.Mul(a[0], t3),
|
|
fq2.F.Neg(fq2.F.Mul(a[1], t3)),
|
|
}
|
|
}
|
|
|
|
// Div performs a division on the Fq2
|
|
func (fq2 Fq2) Div(a, b [2]*big.Int) [2]*big.Int {
|
|
return fq2.Mul(a, fq2.Inverse(b))
|
|
}
|
|
|
|
// Square performs a square operation on the Fq2
|
|
func (fq2 Fq2) Square(a [2]*big.Int) [2]*big.Int {
|
|
// https://pdfs.semanticscholar.org/3e01/de88d7428076b2547b60072088507d881bf1.pdf , complex squaring
|
|
ab := fq2.F.Mul(a[0], a[1])
|
|
return [2]*big.Int{
|
|
fq2.F.Sub(
|
|
fq2.F.Mul(
|
|
fq2.F.Add(a[0], a[1]),
|
|
fq2.F.Add(
|
|
a[0],
|
|
fq2.mulByNonResidue(a[1]))),
|
|
fq2.F.Add(
|
|
ab,
|
|
fq2.mulByNonResidue(ab))),
|
|
fq2.F.Add(ab, ab),
|
|
}
|
|
}
|
|
|
|
func (fq2 Fq2) IsZero(a [2]*big.Int) bool {
|
|
return fq2.F.IsZero(a[0]) && fq2.F.IsZero(a[1])
|
|
}
|
|
|
|
func (fq2 Fq2) Affine(a [2]*big.Int) [2]*big.Int {
|
|
return [2]*big.Int{
|
|
fq2.F.Affine(a[0]),
|
|
fq2.F.Affine(a[1]),
|
|
}
|
|
}
|
|
func (fq2 Fq2) Equal(a, b [2]*big.Int) bool {
|
|
return fq2.F.Equal(a[0], b[0]) && fq2.F.Equal(a[1], b[1])
|
|
}
|
|
|
|
func (fq2 Fq2) Copy(a [2]*big.Int) [2]*big.Int {
|
|
return [2]*big.Int{
|
|
fq2.F.Copy(a[0]),
|
|
fq2.F.Copy(a[1]),
|
|
}
|
|
}
|