|
// implementation of https://eprint.iacr.org/2016/260.pdf
|
|
|
|
package groth16
|
|
|
|
import (
|
|
"fmt"
|
|
"math/big"
|
|
|
|
"github.com/arnaucube/go-snark/bn128"
|
|
"github.com/arnaucube/go-snark/circuitcompiler"
|
|
"github.com/arnaucube/go-snark/fields"
|
|
"github.com/arnaucube/go-snark/r1csqap"
|
|
)
|
|
|
|
type Pk struct { // Proving Key
|
|
BACDelta [][3]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m
|
|
Z []*big.Int
|
|
G1 struct {
|
|
Alpha [3]*big.Int
|
|
Beta [3]*big.Int
|
|
Delta [3]*big.Int
|
|
At [][3]*big.Int // {a(τ)} from 0 to m
|
|
BACGamma [][3]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / γ } from 0 to m
|
|
}
|
|
G2 struct {
|
|
Beta [3][2]*big.Int
|
|
Gamma [3][2]*big.Int
|
|
Delta [3][2]*big.Int
|
|
BACGamma [][3][2]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / γ } from 0 to m
|
|
}
|
|
PowersTauDelta [][3]*big.Int // powers of τ encrypted in G1 curve, divided by δ
|
|
}
|
|
type Vk struct {
|
|
IC [][3]*big.Int
|
|
G1 struct {
|
|
Alpha [3]*big.Int
|
|
}
|
|
G2 struct {
|
|
Beta [3][2]*big.Int
|
|
Gamma [3][2]*big.Int
|
|
Delta [3][2]*big.Int
|
|
}
|
|
}
|
|
|
|
// Setup is the data structure holding the Trusted Setup data. The Setup.Toxic sub struct must be destroyed after the GenerateTrustedSetup function is completed
|
|
type Setup struct {
|
|
Toxic struct {
|
|
T *big.Int // trusted setup secret
|
|
Kalpha *big.Int
|
|
Kbeta *big.Int
|
|
Kgamma *big.Int
|
|
Kdelta *big.Int
|
|
}
|
|
|
|
// public
|
|
Pk Pk
|
|
Vk Vk
|
|
}
|
|
|
|
// Proof contains the parameters to proof the zkSNARK
|
|
type Proof struct {
|
|
PiA [3]*big.Int
|
|
PiB [3][2]*big.Int
|
|
PiC [3]*big.Int
|
|
}
|
|
|
|
type utils struct {
|
|
Bn bn128.Bn128
|
|
FqR fields.Fq
|
|
PF r1csqap.PolynomialField
|
|
}
|
|
|
|
// Utils is the data structure holding the BN128, FqR Finite Field over R, PolynomialField, that will be used inside the snarks operations
|
|
var Utils = prepareUtils()
|
|
|
|
func prepareUtils() utils {
|
|
bn, err := bn128.NewBn128()
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
// new Finite Field
|
|
fqR := fields.NewFq(bn.R)
|
|
// new Polynomial Field
|
|
pf := r1csqap.NewPolynomialField(fqR)
|
|
|
|
return utils{
|
|
Bn: bn,
|
|
FqR: fqR,
|
|
PF: pf,
|
|
}
|
|
}
|
|
|
|
// GenerateTrustedSetup generates the Trusted Setup from a compiled Circuit. The Setup.Toxic sub data structure must be destroyed
|
|
func GenerateTrustedSetup(witnessLength int, circuit circuitcompiler.Circuit, alphas, betas, gammas [][]*big.Int) (Setup, error) {
|
|
var setup Setup
|
|
var err error
|
|
|
|
// generate random t value
|
|
setup.Toxic.T, err = Utils.FqR.Rand()
|
|
if err != nil {
|
|
return Setup{}, err
|
|
}
|
|
|
|
setup.Toxic.Kalpha, err = Utils.FqR.Rand()
|
|
if err != nil {
|
|
return Setup{}, err
|
|
}
|
|
setup.Toxic.Kbeta, err = Utils.FqR.Rand()
|
|
if err != nil {
|
|
return Setup{}, err
|
|
}
|
|
setup.Toxic.Kgamma, err = Utils.FqR.Rand()
|
|
if err != nil {
|
|
return Setup{}, err
|
|
}
|
|
setup.Toxic.Kdelta, err = Utils.FqR.Rand()
|
|
if err != nil {
|
|
return Setup{}, err
|
|
}
|
|
|
|
// z pol
|
|
zpol := []*big.Int{big.NewInt(int64(1))}
|
|
for i := 1; i < len(alphas)-1; i++ {
|
|
zpol = Utils.PF.Mul(
|
|
zpol,
|
|
[]*big.Int{
|
|
Utils.FqR.Neg(
|
|
big.NewInt(int64(i))),
|
|
big.NewInt(int64(1)),
|
|
})
|
|
}
|
|
setup.Pk.Z = zpol
|
|
zt := Utils.PF.Eval(zpol, setup.Toxic.T)
|
|
invDelta := Utils.FqR.Inverse(setup.Toxic.Kdelta)
|
|
ztinvDelta := Utils.FqR.Mul(invDelta, zt)
|
|
|
|
// encrypt t values with curve generators
|
|
// powers of tau divided by delta
|
|
var ptd [][3]*big.Int
|
|
ini := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, ztinvDelta)
|
|
ptd = append(ptd, ini)
|
|
tEncr := setup.Toxic.T
|
|
for i := 1; i < len(zpol); i++ {
|
|
ptd = append(ptd, Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, Utils.FqR.Mul(tEncr, ztinvDelta)))
|
|
tEncr = Utils.FqR.Mul(tEncr, setup.Toxic.T)
|
|
}
|
|
// powers of τ encrypted in G1 curve, divided by δ
|
|
// (G1 * τ) / δ
|
|
setup.Pk.PowersTauDelta = ptd
|
|
|
|
setup.Pk.G1.Alpha = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kalpha)
|
|
setup.Pk.G1.Beta = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kbeta)
|
|
setup.Pk.G1.Delta = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kdelta)
|
|
setup.Pk.G2.Beta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kbeta)
|
|
setup.Pk.G2.Delta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kdelta)
|
|
|
|
setup.Vk.G1.Alpha = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kalpha)
|
|
setup.Vk.G2.Beta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kbeta)
|
|
setup.Vk.G2.Gamma = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kgamma)
|
|
setup.Vk.G2.Delta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kdelta)
|
|
|
|
for i := 0; i < len(circuit.Signals); i++ {
|
|
// Pk.G1.At: {a(τ)} from 0 to m
|
|
at := Utils.PF.Eval(alphas[i], setup.Toxic.T)
|
|
a := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, at)
|
|
setup.Pk.G1.At = append(setup.Pk.G1.At, a)
|
|
|
|
bt := Utils.PF.Eval(betas[i], setup.Toxic.T)
|
|
g1bt := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, bt)
|
|
g2bt := Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, bt)
|
|
// G1.BACGamma: {( βui(x)+αvi(x)+wi(x) ) / γ } from 0 to m in G1
|
|
setup.Pk.G1.BACGamma = append(setup.Pk.G1.BACGamma, g1bt)
|
|
// G2.BACGamma: {( βui(x)+αvi(x)+wi(x) ) / γ } from 0 to m in G2
|
|
setup.Pk.G2.BACGamma = append(setup.Pk.G2.BACGamma, g2bt)
|
|
}
|
|
|
|
zero3 := [3]*big.Int{Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero()}
|
|
for i := 0; i < circuit.NPublic+1; i++ {
|
|
setup.Pk.BACDelta = append(setup.Pk.BACDelta, zero3)
|
|
}
|
|
for i := circuit.NPublic + 1; i < circuit.NVars; i++ {
|
|
// TODO calculate all at, bt, ct outside, to avoid repeating calculations
|
|
at := Utils.PF.Eval(alphas[i], setup.Toxic.T)
|
|
bt := Utils.PF.Eval(betas[i], setup.Toxic.T)
|
|
ct := Utils.PF.Eval(gammas[i], setup.Toxic.T)
|
|
c := Utils.FqR.Mul(
|
|
invDelta,
|
|
Utils.FqR.Add(
|
|
Utils.FqR.Add(
|
|
Utils.FqR.Mul(at, setup.Toxic.Kbeta),
|
|
Utils.FqR.Mul(bt, setup.Toxic.Kalpha),
|
|
),
|
|
ct,
|
|
),
|
|
)
|
|
g1c := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, c)
|
|
|
|
// Pk.BACDelta: {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m
|
|
setup.Pk.BACDelta = append(setup.Pk.BACDelta, g1c)
|
|
}
|
|
|
|
for i := 0; i <= circuit.NPublic; i++ {
|
|
at := Utils.PF.Eval(alphas[i], setup.Toxic.T)
|
|
bt := Utils.PF.Eval(betas[i], setup.Toxic.T)
|
|
ct := Utils.PF.Eval(gammas[i], setup.Toxic.T)
|
|
ic := Utils.FqR.Mul(
|
|
Utils.FqR.Inverse(setup.Toxic.Kgamma),
|
|
Utils.FqR.Add(
|
|
Utils.FqR.Add(
|
|
Utils.FqR.Mul(at, setup.Toxic.Kbeta),
|
|
Utils.FqR.Mul(bt, setup.Toxic.Kalpha),
|
|
),
|
|
ct,
|
|
),
|
|
)
|
|
g1ic := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, ic)
|
|
// used in verifier
|
|
setup.Vk.IC = append(setup.Vk.IC, g1ic)
|
|
}
|
|
|
|
return setup, nil
|
|
}
|
|
|
|
// GenerateProofs generates all the parameters to proof the zkSNARK from the Circuit, Setup and the Witness
|
|
func GenerateProofs(circuit circuitcompiler.Circuit, pk Pk, w []*big.Int, px []*big.Int) (Proof, error) {
|
|
var proof Proof
|
|
proof.PiA = [3]*big.Int{Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero()}
|
|
proof.PiB = Utils.Bn.Fq6.Zero()
|
|
proof.PiC = [3]*big.Int{Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero()}
|
|
|
|
r, err := Utils.FqR.Rand()
|
|
if err != nil {
|
|
return Proof{}, err
|
|
}
|
|
s, err := Utils.FqR.Rand()
|
|
if err != nil {
|
|
return Proof{}, err
|
|
}
|
|
|
|
// piBG1 will hold all the same than proof.PiB but in G1 curve
|
|
piBG1 := [3]*big.Int{Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero()}
|
|
|
|
for i := 0; i < circuit.NVars; i++ {
|
|
proof.PiA = Utils.Bn.G1.Add(proof.PiA, Utils.Bn.G1.MulScalar(pk.G1.At[i], w[i]))
|
|
piBG1 = Utils.Bn.G1.Add(piBG1, Utils.Bn.G1.MulScalar(pk.G1.BACGamma[i], w[i]))
|
|
proof.PiB = Utils.Bn.G2.Add(proof.PiB, Utils.Bn.G2.MulScalar(pk.G2.BACGamma[i], w[i]))
|
|
}
|
|
for i := circuit.NPublic + 1; i < circuit.NVars; i++ {
|
|
proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(pk.BACDelta[i], w[i]))
|
|
}
|
|
|
|
// piA = (Σ from 0 to m (pk.A * w[i])) + pk.Alpha1 + r * δ
|
|
proof.PiA = Utils.Bn.G1.Add(proof.PiA, pk.G1.Alpha)
|
|
deltaR := Utils.Bn.G1.MulScalar(pk.G1.Delta, r)
|
|
proof.PiA = Utils.Bn.G1.Add(proof.PiA, deltaR)
|
|
|
|
// piBG1 = (Σ from 0 to m (pk.B1 * w[i])) + pk.g1.Beta + s * δ
|
|
// piB = piB2 = (Σ from 0 to m (pk.B2 * w[i])) + pk.g2.Beta + s * δ
|
|
piBG1 = Utils.Bn.G1.Add(piBG1, pk.G1.Beta)
|
|
proof.PiB = Utils.Bn.G2.Add(proof.PiB, pk.G2.Beta)
|
|
deltaSG1 := Utils.Bn.G1.MulScalar(pk.G1.Delta, s)
|
|
piBG1 = Utils.Bn.G1.Add(piBG1, deltaSG1)
|
|
deltaSG2 := Utils.Bn.G2.MulScalar(pk.G2.Delta, s)
|
|
proof.PiB = Utils.Bn.G2.Add(proof.PiB, deltaSG2)
|
|
|
|
hx := Utils.PF.DivisorPolynomial(px, pk.Z) // maybe move this calculation to a previous step
|
|
|
|
// piC = (Σ from l+1 to m (w[i] * (pk.g1.Beta + pk.g1.Alpha + pk.C)) + h(tau)) / δ) + piA*s + r*piB - r*s*δ
|
|
for i := 0; i < len(hx); i++ {
|
|
proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(pk.PowersTauDelta[i], hx[i]))
|
|
}
|
|
proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(proof.PiA, s))
|
|
proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(piBG1, r))
|
|
negRS := Utils.FqR.Neg(Utils.FqR.Mul(r, s))
|
|
proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(pk.G1.Delta, negRS))
|
|
|
|
return proof, nil
|
|
}
|
|
|
|
// VerifyProof verifies over the BN128 the Pairings of the Proof
|
|
func VerifyProof(vk Vk, proof Proof, publicSignals []*big.Int, debug bool) bool {
|
|
|
|
icPubl := vk.IC[0]
|
|
for i := 0; i < len(publicSignals); i++ {
|
|
icPubl = Utils.Bn.G1.Add(icPubl, Utils.Bn.G1.MulScalar(vk.IC[i+1], publicSignals[i]))
|
|
}
|
|
|
|
if !Utils.Bn.Fq12.Equal(
|
|
Utils.Bn.Pairing(proof.PiA, proof.PiB),
|
|
Utils.Bn.Fq12.Mul(
|
|
Utils.Bn.Pairing(vk.G1.Alpha, vk.G2.Beta),
|
|
Utils.Bn.Fq12.Mul(
|
|
Utils.Bn.Pairing(icPubl, vk.G2.Gamma),
|
|
Utils.Bn.Pairing(proof.PiC, vk.G2.Delta)))) {
|
|
if debug {
|
|
fmt.Println("❌ groth16 verification not passed")
|
|
}
|
|
return false
|
|
}
|
|
if debug {
|
|
fmt.Println("✓ groth16 verification passed")
|
|
}
|
|
|
|
return true
|
|
}
|