You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

193 lines
3.8 KiB

package bn128
import (
"math/big"
"github.com/arnaucube/go-snark-study/fields"
)
type G1 struct {
F fields.Fq
G [3]*big.Int
}
func NewG1(f fields.Fq, g [2]*big.Int) G1 {
var g1 G1
g1.F = f
g1.G = [3]*big.Int{
g[0],
g[1],
g1.F.One(),
}
return g1
}
func (g1 G1) Zero() [2]*big.Int {
return [2]*big.Int{g1.F.Zero(), g1.F.Zero()}
}
func (g1 G1) IsZero(p [3]*big.Int) bool {
return g1.F.IsZero(p[2])
}
func (g1 G1) Add(p1, p2 [3]*big.Int) [3]*big.Int {
// https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
// https://github.com/zcash/zcash/blob/master/src/snark/libsnark/algebra/curves/alt_bn128/alt_bn128_g1.cpp#L208
// http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
if g1.IsZero(p1) {
return p2
}
if g1.IsZero(p2) {
return p1
}
x1 := p1[0]
y1 := p1[1]
z1 := p1[2]
x2 := p2[0]
y2 := p2[1]
z2 := p2[2]
z1z1 := g1.F.Square(z1)
z2z2 := g1.F.Square(z2)
u1 := g1.F.Mul(x1, z2z2)
u2 := g1.F.Mul(x2, z1z1)
t0 := g1.F.Mul(z2, z2z2)
s1 := g1.F.Mul(y1, t0)
t1 := g1.F.Mul(z1, z1z1)
s2 := g1.F.Mul(y2, t1)
h := g1.F.Sub(u2, u1)
t2 := g1.F.Add(h, h)
i := g1.F.Square(t2)
j := g1.F.Mul(h, i)
t3 := g1.F.Sub(s2, s1)
r := g1.F.Add(t3, t3)
v := g1.F.Mul(u1, i)
t4 := g1.F.Square(r)
t5 := g1.F.Add(v, v)
t6 := g1.F.Sub(t4, j)
x3 := g1.F.Sub(t6, t5)
t7 := g1.F.Sub(v, x3)
t8 := g1.F.Mul(s1, j)
t9 := g1.F.Add(t8, t8)
t10 := g1.F.Mul(r, t7)
y3 := g1.F.Sub(t10, t9)
t11 := g1.F.Add(z1, z2)
t12 := g1.F.Square(t11)
t13 := g1.F.Sub(t12, z1z1)
t14 := g1.F.Sub(t13, z2z2)
z3 := g1.F.Mul(t14, h)
return [3]*big.Int{x3, y3, z3}
}
func (g1 G1) Neg(p [3]*big.Int) [3]*big.Int {
return [3]*big.Int{
p[0],
g1.F.Neg(p[1]),
p[2],
}
}
func (g1 G1) Sub(a, b [3]*big.Int) [3]*big.Int {
return g1.Add(a, g1.Neg(b))
}
func (g1 G1) Double(p [3]*big.Int) [3]*big.Int {
// https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
// http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
// https://github.com/zcash/zcash/blob/master/src/snark/libsnark/algebra/curves/alt_bn128/alt_bn128_g1.cpp#L325
if g1.IsZero(p) {
return p
}
a := g1.F.Square(p[0])
b := g1.F.Square(p[1])
c := g1.F.Square(b)
t0 := g1.F.Add(p[0], b)
t1 := g1.F.Square(t0)
t2 := g1.F.Sub(t1, a)
t3 := g1.F.Sub(t2, c)
d := g1.F.Double(t3)
e := g1.F.Add(g1.F.Add(a, a), a)
f := g1.F.Square(e)
t4 := g1.F.Double(d)
x3 := g1.F.Sub(f, t4)
t5 := g1.F.Sub(d, x3)
twoC := g1.F.Add(c, c)
fourC := g1.F.Add(twoC, twoC)
t6 := g1.F.Add(fourC, fourC)
t7 := g1.F.Mul(e, t5)
y3 := g1.F.Sub(t7, t6)
t8 := g1.F.Mul(p[1], p[2])
z3 := g1.F.Double(t8)
return [3]*big.Int{x3, y3, z3}
}
func (g1 G1) MulScalar(p [3]*big.Int, e *big.Int) [3]*big.Int {
// https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Double-and-add
// for more possible implementations see g2.go file, at the function g2.MulScalar()
q := [3]*big.Int{g1.F.Zero(), g1.F.Zero(), g1.F.Zero()}
d := g1.F.Copy(e)
r := p
for i := d.BitLen() - 1; i >= 0; i-- {
q = g1.Double(q)
if d.Bit(i) == 1 {
q = g1.Add(q, r)
}
}
return q
}
func (g1 G1) Affine(p [3]*big.Int) [2]*big.Int {
if g1.IsZero(p) {
return g1.Zero()
}
zinv := g1.F.Inverse(p[2])
zinv2 := g1.F.Square(zinv)
x := g1.F.Mul(p[0], zinv2)
zinv3 := g1.F.Mul(zinv2, zinv)
y := g1.F.Mul(p[1], zinv3)
return [2]*big.Int{x, y}
}
func (g1 G1) Equal(p1, p2 [3]*big.Int) bool {
if g1.IsZero(p1) {
return g1.IsZero(p2)
}
if g1.IsZero(p2) {
return g1.IsZero(p1)
}
z1z1 := g1.F.Square(p1[2])
z2z2 := g1.F.Square(p2[2])
u1 := g1.F.Mul(p1[0], z2z2)
u2 := g1.F.Mul(p2[0], z1z1)
z1cub := g1.F.Mul(p1[2], z1z1)
z2cub := g1.F.Mul(p2[2], z2z2)
s1 := g1.F.Mul(p1[1], z2cub)
s2 := g1.F.Mul(p2[1], z1cub)
return g1.F.Equal(u1, u2) && g1.F.Equal(s1, s2)
}