You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

206 lines
5.2 KiB

package snark
import (
"fmt"
"math/big"
"strings"
"testing"
"time"
"github.com/arnaucube/go-snark/circuitcompiler"
"github.com/arnaucube/go-snark/r1csqap"
"github.com/stretchr/testify/assert"
)
func TestZkFromFlatCircuitCode(t *testing.T) {
// compile circuit and get the R1CS
flatCode := `
func test(x):
aux = x*x
y = aux*x
z = x + y
out = z + 5
`
fmt.Print("\nflat code of the circuit:")
fmt.Println(flatCode)
// parse the code
parser := circuitcompiler.NewParser(strings.NewReader(flatCode))
circuit, err := parser.Parse()
assert.Nil(t, err)
fmt.Println("\ncircuit data:", circuit)
b3 := big.NewInt(int64(3))
inputs := []*big.Int{b3}
// wittness
w, err := circuit.CalculateWitness(inputs)
assert.Nil(t, err)
fmt.Println("\nwitness", w)
// flat code to R1CS
fmt.Println("\ngenerating R1CS from flat code")
a, b, c := circuit.GenerateR1CS()
fmt.Println("\nR1CS:")
fmt.Println("a:", a)
fmt.Println("b:", b)
fmt.Println("c:", c)
// R1CS to QAP
alphas, betas, gammas, zx := Utils.PF.R1CSToQAP(a, b, c)
fmt.Println("qap")
fmt.Println(alphas)
fmt.Println(betas)
fmt.Println(gammas)
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
hx := Utils.PF.DivisorPolynomial(px, zx)
// hx==px/zx so px==hx*zx
assert.Equal(t, px, Utils.PF.Mul(hx, zx))
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx)
assert.Equal(t, abc, px)
hz := Utils.PF.Mul(hx, zx)
assert.Equal(t, abc, hz)
div, rem := Utils.PF.Div(px, zx)
assert.Equal(t, hx, div)
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4))
// calculate trusted setup
setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas, zx)
assert.Nil(t, err)
fmt.Println("\nt:", setup.Toxic.T)
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
proof, err := GenerateProofs(*circuit, setup, hx, w)
assert.Nil(t, err)
fmt.Println("\n proofs:")
fmt.Println(proof)
fmt.Println("public signals:", proof.PublicSignals)
before := time.Now()
assert.True(t, VerifyProof(*circuit, setup, proof, true))
fmt.Println("verify proof time elapsed:", time.Since(before))
}
func TestZkFromHardcodedR1CS(t *testing.T) {
b0 := big.NewInt(int64(0))
b1 := big.NewInt(int64(1))
b3 := big.NewInt(int64(3))
b5 := big.NewInt(int64(5))
b9 := big.NewInt(int64(9))
b27 := big.NewInt(int64(27))
b30 := big.NewInt(int64(30))
b35 := big.NewInt(int64(35))
a := [][]*big.Int{
[]*big.Int{b0, b0, b1, b0, b0, b0},
[]*big.Int{b0, b0, b0, b1, b0, b0},
[]*big.Int{b0, b0, b1, b0, b1, b0},
[]*big.Int{b5, b0, b0, b0, b0, b1},
}
b := [][]*big.Int{
[]*big.Int{b0, b0, b1, b0, b0, b0},
[]*big.Int{b0, b0, b1, b0, b0, b0},
[]*big.Int{b1, b0, b0, b0, b0, b0},
[]*big.Int{b1, b0, b0, b0, b0, b0},
}
c := [][]*big.Int{
[]*big.Int{b0, b0, b0, b1, b0, b0},
[]*big.Int{b0, b0, b0, b0, b1, b0},
[]*big.Int{b0, b0, b0, b0, b0, b1},
[]*big.Int{b0, b1, b0, b0, b0, b0},
}
alphas, betas, gammas, zx := Utils.PF.R1CSToQAP(a, b, c)
// wittness = 1, 35, 3, 9, 27, 30
w := []*big.Int{b1, b35, b3, b9, b27, b30}
circuit := circuitcompiler.Circuit{
NVars: 6,
NPublic: 1,
NSignals: len(w),
}
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
hx := Utils.PF.DivisorPolynomial(px, zx)
// hx==px/zx so px==hx*zx
assert.Equal(t, px, Utils.PF.Mul(hx, zx))
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx)
assert.Equal(t, abc, px)
hz := Utils.PF.Mul(hx, zx)
assert.Equal(t, abc, hz)
div, rem := Utils.PF.Div(px, zx)
assert.Equal(t, hx, div)
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4))
// calculate trusted setup
setup, err := GenerateTrustedSetup(len(w), circuit, alphas, betas, gammas, zx)
assert.Nil(t, err)
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
proof, err := GenerateProofs(circuit, setup, hx, w)
assert.Nil(t, err)
assert.True(t, VerifyProof(circuit, setup, proof, true))
}
func TestZkMultiplication(t *testing.T) {
// compile circuit and get the R1CS
flatCode := `
func test(a, b):
out = a * b
`
// parse the code
parser := circuitcompiler.NewParser(strings.NewReader(flatCode))
circuit, err := parser.Parse()
assert.Nil(t, err)
b3 := big.NewInt(int64(3))
b4 := big.NewInt(int64(4))
inputs := []*big.Int{b3, b4}
// wittness
w, err := circuit.CalculateWitness(inputs)
assert.Nil(t, err)
// flat code to R1CS
a, b, c := circuit.GenerateR1CS()
// R1CS to QAP
alphas, betas, gammas, zx := Utils.PF.R1CSToQAP(a, b, c)
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
hx := Utils.PF.DivisorPolynomial(px, zx)
// hx==px/zx so px==hx*zx
assert.Equal(t, px, Utils.PF.Mul(hx, zx))
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx)
assert.Equal(t, abc, px)
hz := Utils.PF.Mul(hx, zx)
assert.Equal(t, abc, hz)
div, rem := Utils.PF.Div(px, zx)
assert.Equal(t, hx, div)
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(1))
// calculate trusted setup
setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas, zx)
assert.Nil(t, err)
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
proof, err := GenerateProofs(*circuit, setup, hx, w)
assert.Nil(t, err)
assert.True(t, VerifyProof(*circuit, setup, proof, false))
}