package snark
|
|
|
|
import (
|
|
"fmt"
|
|
"github.com/mottla/go-snark/circuitcompiler"
|
|
"github.com/stretchr/testify/assert"
|
|
"math/big"
|
|
"strings"
|
|
"testing"
|
|
)
|
|
|
|
func TestNewProgramm(t *testing.T) {
|
|
|
|
flat := `
|
|
func main(a,b,c,d):
|
|
e = a + b
|
|
f = c * d
|
|
out = e * f
|
|
`
|
|
|
|
parser := circuitcompiler.NewParser(strings.NewReader(flat))
|
|
program, err := parser.Parse()
|
|
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
fmt.Println("\n unreduced")
|
|
fmt.Println(flat)
|
|
|
|
program.BuildConstraintTrees()
|
|
program.PrintContraintTrees()
|
|
fmt.Println("\nReduced gates")
|
|
//PrintTree(froots["mul"])
|
|
gates := program.ReduceCombinedTree()
|
|
for _, g := range gates {
|
|
fmt.Println(g)
|
|
}
|
|
|
|
fmt.Println("generating R1CS")
|
|
a, b, c := program.GenerateReducedR1CS(gates)
|
|
fmt.Println(a)
|
|
fmt.Println(b)
|
|
fmt.Println(c)
|
|
a1 := big.NewInt(int64(6))
|
|
a2 := big.NewInt(int64(5))
|
|
inputs := []*big.Int{a1, a2, a1, a2}
|
|
w := program.CalculateWitness(inputs)
|
|
fmt.Println("witness")
|
|
fmt.Println(w)
|
|
|
|
// R1CS to QAP
|
|
alphas, betas, gammas, zxQAP := Utils.PF.R1CSToQAP(a, b, c)
|
|
fmt.Println("qap")
|
|
fmt.Println("alphas", len(alphas))
|
|
fmt.Println("alphas", alphas)
|
|
fmt.Println("betas", len(betas))
|
|
fmt.Println("gammas", len(gammas))
|
|
fmt.Println("zx length", len(zxQAP))
|
|
|
|
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
|
|
fmt.Println("ax length", len(ax))
|
|
fmt.Println("bx length", len(bx))
|
|
fmt.Println("cx length", len(cx))
|
|
fmt.Println("px length", len(px))
|
|
|
|
hxQAP := Utils.PF.DivisorPolynomial(px, zxQAP)
|
|
fmt.Println("hx length", len(hxQAP))
|
|
|
|
// hx==px/zx so px==hx*zx
|
|
assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP))
|
|
|
|
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
|
|
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx)
|
|
assert.Equal(t, abc, px)
|
|
hzQAP := Utils.PF.Mul(hxQAP, zxQAP)
|
|
assert.Equal(t, abc, hzQAP)
|
|
|
|
//div, rem := Utils.PF.Div(px, zxQAP)
|
|
//assert.Equal(t, hxQAP, div)
|
|
//assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4))
|
|
|
|
// calculate trusted setup
|
|
//setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas)
|
|
//assert.Nil(t, err)
|
|
//fmt.Println("\nt:", setup.Toxic.T)
|
|
//
|
|
//// zx and setup.Pk.Z should be the same (currently not, the correct one is the calculation used inside GenerateTrustedSetup function), the calculation is repeated. TODO avoid repeating calculation
|
|
//// assert.Equal(t, zxQAP, setup.Pk.Z)
|
|
//
|
|
//fmt.Println("hx pk.z", hxQAP)
|
|
//hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z)
|
|
//fmt.Println("hx pk.z", hx)
|
|
//// assert.Equal(t, hxQAP, hx)
|
|
//assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP))
|
|
//assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z))
|
|
//
|
|
//assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1)
|
|
//assert.Equal(t, len(hxQAP), len(px)-len(zxQAP)+1)
|
|
//// fmt.Println("pk.Z", len(setup.Pk.Z))
|
|
//// fmt.Println("zxQAP", len(zxQAP))
|
|
//
|
|
//// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
|
|
//proof, err := GenerateProofs(*circuit, setup, w, px)
|
|
//assert.Nil(t, err)
|
|
//
|
|
//// fmt.Println("\n proofs:")
|
|
//// fmt.Println(proof)
|
|
//
|
|
//// fmt.Println("public signals:", proof.PublicSignals)
|
|
//fmt.Println("\nwitness", w)
|
|
//// b1 := big.NewInt(int64(1))
|
|
//b35 := big.NewInt(int64(35))
|
|
//// publicSignals := []*big.Int{b1, b35}
|
|
//publicSignals := []*big.Int{b35}
|
|
//before := time.Now()
|
|
//assert.True(t, VerifyProof(*circuit, setup, proof, publicSignals, true))
|
|
//fmt.Println("verify proof time elapsed:", time.Since(before))
|
|
}
|