package snark
|
|
|
|
import (
|
|
"encoding/json"
|
|
"fmt"
|
|
"math/big"
|
|
"strings"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/arnaucube/go-snark/circuitcompiler"
|
|
"github.com/arnaucube/go-snark/r1csqap"
|
|
"github.com/stretchr/testify/assert"
|
|
)
|
|
|
|
func TestZkFromFlatCircuitCode(t *testing.T) {
|
|
|
|
// compile circuit and get the R1CS
|
|
flatCode := `
|
|
func test(x):
|
|
aux = x*x
|
|
y = aux*x
|
|
z = x + y
|
|
out = z + 5
|
|
`
|
|
fmt.Print("\nflat code of the circuit:")
|
|
fmt.Println(flatCode)
|
|
|
|
// parse the code
|
|
parser := circuitcompiler.NewParser(strings.NewReader(flatCode))
|
|
circuit, err := parser.Parse()
|
|
assert.Nil(t, err)
|
|
fmt.Println("\ncircuit data:", circuit)
|
|
circuitJson, _ := json.Marshal(circuit)
|
|
fmt.Println("circuit:", string(circuitJson))
|
|
|
|
b3 := big.NewInt(int64(3))
|
|
privateInputs := []*big.Int{b3}
|
|
// wittness
|
|
w, err := circuit.CalculateWitness(privateInputs)
|
|
assert.Nil(t, err)
|
|
fmt.Println("\nwitness", w)
|
|
|
|
// flat code to R1CS
|
|
fmt.Println("\ngenerating R1CS from flat code")
|
|
a, b, c := circuit.GenerateR1CS()
|
|
fmt.Println("\nR1CS:")
|
|
fmt.Println("a:", a)
|
|
fmt.Println("b:", b)
|
|
fmt.Println("c:", c)
|
|
|
|
// R1CS to QAP
|
|
// TODO zxQAP is not used and is an old impl, bad calculated. TODO remove
|
|
alphas, betas, gammas, zxQAP := Utils.PF.R1CSToQAP(a, b, c)
|
|
fmt.Println("qap")
|
|
fmt.Println("alphas", len(alphas))
|
|
fmt.Println("alphas[1]", alphas[1])
|
|
fmt.Println("betas", len(betas))
|
|
fmt.Println("gammas", len(gammas))
|
|
fmt.Println("zx length", len(zxQAP))
|
|
|
|
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
|
|
fmt.Println("ax length", len(ax))
|
|
fmt.Println("bx length", len(bx))
|
|
fmt.Println("cx length", len(cx))
|
|
fmt.Println("px length", len(px))
|
|
fmt.Println("px[last]", px[0])
|
|
px0 := Utils.PF.F.Add(px[0], big.NewInt(int64(88)))
|
|
fmt.Println(px0)
|
|
assert.Equal(t, px0.Bytes(), Utils.PF.F.Zero().Bytes())
|
|
|
|
hxQAP := Utils.PF.DivisorPolynomial(px, zxQAP)
|
|
fmt.Println("hx length", len(hxQAP))
|
|
|
|
// hx==px/zx so px==hx*zx
|
|
assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP))
|
|
|
|
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
|
|
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx)
|
|
assert.Equal(t, abc, px)
|
|
hzQAP := Utils.PF.Mul(hxQAP, zxQAP)
|
|
assert.Equal(t, abc, hzQAP)
|
|
|
|
div, rem := Utils.PF.Div(px, zxQAP)
|
|
assert.Equal(t, hxQAP, div)
|
|
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4))
|
|
|
|
// calculate trusted setup
|
|
setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas)
|
|
assert.Nil(t, err)
|
|
fmt.Println("\nt:", setup.Toxic.T)
|
|
|
|
// zx and setup.Pk.Z should be the same (currently not, the correct one is the calculation used inside GenerateTrustedSetup function), the calculation is repeated. TODO avoid repeating calculation
|
|
// assert.Equal(t, zxQAP, setup.Pk.Z)
|
|
|
|
fmt.Println("hx pk.z", hxQAP)
|
|
hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z)
|
|
fmt.Println("hx pk.z", hx)
|
|
// assert.Equal(t, hxQAP, hx)
|
|
|
|
assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP))
|
|
// hx==px/zx so px==hx*zx
|
|
assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z))
|
|
|
|
// check length of polynomials H(x) and Z(x)
|
|
assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1)
|
|
assert.Equal(t, len(hxQAP), len(px)-len(zxQAP)+1)
|
|
|
|
// fmt.Println("pk.Z", len(setup.Pk.Z))
|
|
// fmt.Println("zxQAP", len(zxQAP))
|
|
|
|
proof, err := GenerateProofs(*circuit, setup, w, px)
|
|
assert.Nil(t, err)
|
|
|
|
// fmt.Println("\n proofs:")
|
|
// fmt.Println(proof)
|
|
|
|
// fmt.Println("public signals:", proof.PublicSignals)
|
|
fmt.Println("\nwitness", w)
|
|
// b1 := big.NewInt(int64(1))
|
|
b35 := big.NewInt(int64(35))
|
|
// publicSignals := []*big.Int{b1, b35}
|
|
publicSignals := []*big.Int{b35}
|
|
before := time.Now()
|
|
assert.True(t, VerifyProof(*circuit, setup, proof, publicSignals, true))
|
|
fmt.Println("verify proof time elapsed:", time.Since(before))
|
|
}
|
|
|
|
/*
|
|
func TestZkMultiplication(t *testing.T) {
|
|
|
|
// compile circuit and get the R1CS
|
|
flatCode := `
|
|
func test(a, b):
|
|
out = a * b
|
|
`
|
|
|
|
// parse the code
|
|
parser := circuitcompiler.NewParser(strings.NewReader(flatCode))
|
|
circuit, err := parser.Parse()
|
|
assert.Nil(t, err)
|
|
|
|
b3 := big.NewInt(int64(3))
|
|
b4 := big.NewInt(int64(4))
|
|
inputs := []*big.Int{b3, b4}
|
|
// wittness
|
|
w, err := circuit.CalculateWitness(inputs)
|
|
assert.Nil(t, err)
|
|
|
|
fmt.Println("circuit")
|
|
fmt.Println(circuit.NPublic)
|
|
|
|
// flat code to R1CS
|
|
a, b, c := circuit.GenerateR1CS()
|
|
fmt.Println("\nR1CS:")
|
|
fmt.Println("a:", a)
|
|
fmt.Println("b:", b)
|
|
fmt.Println("c:", c)
|
|
|
|
// R1CS to QAP
|
|
alphas, betas, gammas, zx := Utils.PF.R1CSToQAP(a, b, c)
|
|
fmt.Println("qap")
|
|
fmt.Println("alphas", alphas)
|
|
fmt.Println("betas", betas)
|
|
fmt.Println("gammas", gammas)
|
|
|
|
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
|
|
|
|
hx := Utils.PF.DivisorPolynomial(px, zx)
|
|
|
|
// hx==px/zx so px==hx*zx
|
|
assert.Equal(t, px, Utils.PF.Mul(hx, zx))
|
|
|
|
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
|
|
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx)
|
|
assert.Equal(t, abc, px)
|
|
hz := Utils.PF.Mul(hx, zx)
|
|
assert.Equal(t, abc, hz)
|
|
|
|
div, rem := Utils.PF.Div(px, zx)
|
|
assert.Equal(t, hx, div)
|
|
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(1))
|
|
|
|
// calculate trusted setup
|
|
setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas, zx)
|
|
assert.Nil(t, err)
|
|
|
|
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
|
|
proof, err := GenerateProofs(*circuit, setup, hx, w)
|
|
assert.Nil(t, err)
|
|
|
|
// assert.True(t, VerifyProof(*circuit, setup, proof, false))
|
|
b35 := big.NewInt(int64(35))
|
|
publicSignals := []*big.Int{b35}
|
|
assert.True(t, VerifyProof(*circuit, setup, proof, publicSignals, true))
|
|
}
|
|
*/
|
|
/*
|
|
func TestZkFromHardcodedR1CS(t *testing.T) {
|
|
b0 := big.NewInt(int64(0))
|
|
b1 := big.NewInt(int64(1))
|
|
b3 := big.NewInt(int64(3))
|
|
b5 := big.NewInt(int64(5))
|
|
b9 := big.NewInt(int64(9))
|
|
b27 := big.NewInt(int64(27))
|
|
b30 := big.NewInt(int64(30))
|
|
b35 := big.NewInt(int64(35))
|
|
a := [][]*big.Int{
|
|
[]*big.Int{b0, b0, b1, b0, b0, b0},
|
|
[]*big.Int{b0, b0, b0, b1, b0, b0},
|
|
[]*big.Int{b0, b0, b1, b0, b1, b0},
|
|
[]*big.Int{b5, b0, b0, b0, b0, b1},
|
|
}
|
|
b := [][]*big.Int{
|
|
[]*big.Int{b0, b0, b1, b0, b0, b0},
|
|
[]*big.Int{b0, b0, b1, b0, b0, b0},
|
|
[]*big.Int{b1, b0, b0, b0, b0, b0},
|
|
[]*big.Int{b1, b0, b0, b0, b0, b0},
|
|
}
|
|
c := [][]*big.Int{
|
|
[]*big.Int{b0, b0, b0, b1, b0, b0},
|
|
[]*big.Int{b0, b0, b0, b0, b1, b0},
|
|
[]*big.Int{b0, b0, b0, b0, b0, b1},
|
|
[]*big.Int{b0, b1, b0, b0, b0, b0},
|
|
}
|
|
alphas, betas, gammas, zx := Utils.PF.R1CSToQAP(a, b, c)
|
|
|
|
// wittness = 1, 35, 3, 9, 27, 30
|
|
w := []*big.Int{b1, b35, b3, b9, b27, b30}
|
|
circuit := circuitcompiler.Circuit{
|
|
NVars: 6,
|
|
NPublic: 1,
|
|
NSignals: len(w),
|
|
}
|
|
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
|
|
|
|
hx := Utils.PF.DivisorPolynomial(px, zx)
|
|
|
|
// hx==px/zx so px==hx*zx
|
|
assert.Equal(t, px, Utils.PF.Mul(hx, zx))
|
|
|
|
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
|
|
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx)
|
|
assert.Equal(t, abc, px)
|
|
hz := Utils.PF.Mul(hx, zx)
|
|
assert.Equal(t, abc, hz)
|
|
|
|
div, rem := Utils.PF.Div(px, zx)
|
|
assert.Equal(t, hx, div)
|
|
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4))
|
|
|
|
// calculate trusted setup
|
|
setup, err := GenerateTrustedSetup(len(w), circuit, alphas, betas, gammas, zx)
|
|
assert.Nil(t, err)
|
|
|
|
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
|
|
proof, err := GenerateProofs(circuit, setup, hx, w)
|
|
assert.Nil(t, err)
|
|
|
|
// assert.True(t, VerifyProof(circuit, setup, proof, true))
|
|
publicSignals := []*big.Int{b35}
|
|
assert.True(t, VerifyProof(circuit, setup, proof, publicSignals, true))
|
|
}
|
|
|
|
func TestZkMultiplication(t *testing.T) {
|
|
|
|
// compile circuit and get the R1CS
|
|
flatCode := `
|
|
func test(a, b):
|
|
out = a * b
|
|
`
|
|
|
|
// parse the code
|
|
parser := circuitcompiler.NewParser(strings.NewReader(flatCode))
|
|
circuit, err := parser.Parse()
|
|
assert.Nil(t, err)
|
|
|
|
b3 := big.NewInt(int64(3))
|
|
b4 := big.NewInt(int64(4))
|
|
inputs := []*big.Int{b3, b4}
|
|
// wittness
|
|
w, err := circuit.CalculateWitness(inputs)
|
|
assert.Nil(t, err)
|
|
|
|
// flat code to R1CS
|
|
a, b, c := circuit.GenerateR1CS()
|
|
|
|
// R1CS to QAP
|
|
alphas, betas, gammas, zx := Utils.PF.R1CSToQAP(a, b, c)
|
|
|
|
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
|
|
|
|
hx := Utils.PF.DivisorPolynomial(px, zx)
|
|
|
|
// hx==px/zx so px==hx*zx
|
|
assert.Equal(t, px, Utils.PF.Mul(hx, zx))
|
|
|
|
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
|
|
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx)
|
|
assert.Equal(t, abc, px)
|
|
hz := Utils.PF.Mul(hx, zx)
|
|
assert.Equal(t, abc, hz)
|
|
|
|
div, rem := Utils.PF.Div(px, zx)
|
|
assert.Equal(t, hx, div)
|
|
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(1))
|
|
|
|
// calculate trusted setup
|
|
setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas, zx)
|
|
assert.Nil(t, err)
|
|
|
|
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
|
|
proof, err := GenerateProofs(*circuit, setup, hx, w)
|
|
assert.Nil(t, err)
|
|
|
|
// assert.True(t, VerifyProof(*circuit, setup, proof, false))
|
|
b35 := big.NewInt(int64(35))
|
|
publicSignals := []*big.Int{b35}
|
|
assert.True(t, VerifyProof(*circuit, setup, proof, publicSignals, true))
|
|
}
|
|
*/
|