/*
|
|
Copyright 2018 0KIMS association.
|
|
|
|
This file is part of circom (Zero Knowledge Circuit Compiler).
|
|
|
|
circom is a free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
circom is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with circom. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
pragma circom 2.0.0;
|
|
|
|
include "constants.circom";
|
|
include "t1.circom";
|
|
include "t2.circom";
|
|
include "../binsum.circom";
|
|
include "sigmaplus.circom";
|
|
include "sha256compression_function.circom";
|
|
|
|
|
|
template Sha256compression() {
|
|
signal input hin[256];
|
|
signal input inp[512];
|
|
signal output out[256];
|
|
signal a[65][32];
|
|
signal b[65][32];
|
|
signal c[65][32];
|
|
signal d[65][32];
|
|
signal e[65][32];
|
|
signal f[65][32];
|
|
signal g[65][32];
|
|
signal h[65][32];
|
|
signal w[64][32];
|
|
|
|
|
|
var outCalc[256] = sha256compression(hin, inp);
|
|
|
|
var i;
|
|
for (i=0; i<256; i++) out[i] <-- outCalc[i];
|
|
|
|
component sigmaPlus[48];
|
|
for (i=0; i<48; i++) sigmaPlus[i] = SigmaPlus();
|
|
|
|
component ct_k[64];
|
|
for (i=0; i<64; i++) ct_k[i] = K(i);
|
|
|
|
component t1[64];
|
|
for (i=0; i<64; i++) t1[i] = T1();
|
|
|
|
component t2[64];
|
|
for (i=0; i<64; i++) t2[i] = T2();
|
|
|
|
component suma[64];
|
|
for (i=0; i<64; i++) suma[i] = BinSum(32, 2);
|
|
|
|
component sume[64];
|
|
for (i=0; i<64; i++) sume[i] = BinSum(32, 2);
|
|
|
|
component fsum[8];
|
|
for (i=0; i<8; i++) fsum[i] = BinSum(32, 2);
|
|
|
|
var k;
|
|
var t;
|
|
|
|
for (t=0; t<64; t++) {
|
|
if (t<16) {
|
|
for (k=0; k<32; k++) {
|
|
w[t][k] <== inp[t*32+31-k];
|
|
}
|
|
} else {
|
|
for (k=0; k<32; k++) {
|
|
sigmaPlus[t-16].in2[k] <== w[t-2][k];
|
|
sigmaPlus[t-16].in7[k] <== w[t-7][k];
|
|
sigmaPlus[t-16].in15[k] <== w[t-15][k];
|
|
sigmaPlus[t-16].in16[k] <== w[t-16][k];
|
|
}
|
|
|
|
for (k=0; k<32; k++) {
|
|
w[t][k] <== sigmaPlus[t-16].out[k];
|
|
}
|
|
}
|
|
}
|
|
|
|
for (k=0; k<32; k++ ) {
|
|
a[0][k] <== hin[k];
|
|
b[0][k] <== hin[32*1 + k];
|
|
c[0][k] <== hin[32*2 + k];
|
|
d[0][k] <== hin[32*3 + k];
|
|
e[0][k] <== hin[32*4 + k];
|
|
f[0][k] <== hin[32*5 + k];
|
|
g[0][k] <== hin[32*6 + k];
|
|
h[0][k] <== hin[32*7 + k];
|
|
}
|
|
|
|
for (t = 0; t<64; t++) {
|
|
for (k=0; k<32; k++) {
|
|
t1[t].h[k] <== h[t][k];
|
|
t1[t].e[k] <== e[t][k];
|
|
t1[t].f[k] <== f[t][k];
|
|
t1[t].g[k] <== g[t][k];
|
|
t1[t].k[k] <== ct_k[t].out[k];
|
|
t1[t].w[k] <== w[t][k];
|
|
|
|
t2[t].a[k] <== a[t][k];
|
|
t2[t].b[k] <== b[t][k];
|
|
t2[t].c[k] <== c[t][k];
|
|
}
|
|
|
|
for (k=0; k<32; k++) {
|
|
sume[t].in[0][k] <== d[t][k];
|
|
sume[t].in[1][k] <== t1[t].out[k];
|
|
|
|
suma[t].in[0][k] <== t1[t].out[k];
|
|
suma[t].in[1][k] <== t2[t].out[k];
|
|
}
|
|
|
|
for (k=0; k<32; k++) {
|
|
h[t+1][k] <== g[t][k];
|
|
g[t+1][k] <== f[t][k];
|
|
f[t+1][k] <== e[t][k];
|
|
e[t+1][k] <== sume[t].out[k];
|
|
d[t+1][k] <== c[t][k];
|
|
c[t+1][k] <== b[t][k];
|
|
b[t+1][k] <== a[t][k];
|
|
a[t+1][k] <== suma[t].out[k];
|
|
}
|
|
}
|
|
|
|
for (k=0; k<32; k++) {
|
|
fsum[0].in[0][k] <== hin[32*0+k];
|
|
fsum[0].in[1][k] <== a[64][k];
|
|
fsum[1].in[0][k] <== hin[32*1+k];
|
|
fsum[1].in[1][k] <== b[64][k];
|
|
fsum[2].in[0][k] <== hin[32*2+k];
|
|
fsum[2].in[1][k] <== c[64][k];
|
|
fsum[3].in[0][k] <== hin[32*3+k];
|
|
fsum[3].in[1][k] <== d[64][k];
|
|
fsum[4].in[0][k] <== hin[32*4+k];
|
|
fsum[4].in[1][k] <== e[64][k];
|
|
fsum[5].in[0][k] <== hin[32*5+k];
|
|
fsum[5].in[1][k] <== f[64][k];
|
|
fsum[6].in[0][k] <== hin[32*6+k];
|
|
fsum[6].in[1][k] <== g[64][k];
|
|
fsum[7].in[0][k] <== hin[32*7+k];
|
|
fsum[7].in[1][k] <== h[64][k];
|
|
}
|
|
|
|
for (k=0; k<32; k++) {
|
|
out[31-k] === fsum[0].out[k];
|
|
out[32+31-k] === fsum[1].out[k];
|
|
out[64+31-k] === fsum[2].out[k];
|
|
out[96+31-k] === fsum[3].out[k];
|
|
out[128+31-k] === fsum[4].out[k];
|
|
out[160+31-k] === fsum[5].out[k];
|
|
out[192+31-k] === fsum[6].out[k];
|
|
out[224+31-k] === fsum[7].out[k];
|
|
}
|
|
}
|