///
|
|
/// This example performs the full flow:
|
|
/// - define the circuit to be folded
|
|
/// - fold the circuit with Nova+CycleFold's IVC
|
|
/// - generate a DeciderEthCircuit final proof
|
|
/// - generate the Solidity contract that verifies the proof
|
|
/// - verify the proof in the EVM
|
|
///
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as G1};
|
|
use ark_grumpkin::{constraints::GVar as GVar2, Projective as G2};
|
|
|
|
use ark_groth16::Groth16;
|
|
|
|
use ark_ff::PrimeField;
|
|
|
|
use std::time::Instant;
|
|
|
|
use ark_crypto_primitives::crh::sha256::{constraints::Sha256Gadget, digest::Digest, Sha256};
|
|
use ark_r1cs_std::fields::fp::FpVar;
|
|
use ark_r1cs_std::{bits::uint8::UInt8, boolean::Boolean, ToBitsGadget, ToBytesGadget};
|
|
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
|
|
use std::marker::PhantomData;
|
|
|
|
use folding_schemes::{
|
|
commitment::{kzg::KZG, pedersen::Pedersen},
|
|
folding::nova::{
|
|
decider_eth::{prepare_calldata, Decider as DeciderEth},
|
|
Nova, PreprocessorParam,
|
|
},
|
|
frontend::FCircuit,
|
|
transcript::poseidon::poseidon_canonical_config,
|
|
Decider, Error, FoldingScheme,
|
|
};
|
|
use solidity_verifiers::{
|
|
utils::get_function_selector_for_nova_cyclefold_verifier,
|
|
verifiers::nova_cyclefold::get_decider_template_for_cyclefold_decider,
|
|
NovaCycleFoldVerifierKey,
|
|
};
|
|
|
|
use crate::utils::tests::*;
|
|
|
|
/// Test circuit to be folded
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct SHA256FoldStepCircuit<F: PrimeField> {
|
|
_f: PhantomData<F>,
|
|
}
|
|
impl<F: PrimeField> FCircuit<F> for SHA256FoldStepCircuit<F> {
|
|
type Params = ();
|
|
fn new(_params: Self::Params) -> Result<Self, Error> {
|
|
Ok(Self { _f: PhantomData })
|
|
}
|
|
fn state_len(&self) -> usize {
|
|
32
|
|
}
|
|
fn external_inputs_len(&self) -> usize {
|
|
0
|
|
}
|
|
// function to compute the next state of the folding via rust-native code (not Circom). Used to
|
|
// check the Circom values.
|
|
fn step_native(
|
|
&self,
|
|
_i: usize,
|
|
z_i: Vec<F>,
|
|
_external_inputs: Vec<F>,
|
|
) -> Result<Vec<F>, Error> {
|
|
let b = f_vec_to_bytes(z_i.to_vec());
|
|
let mut sha256 = Sha256::default();
|
|
sha256.update(b);
|
|
let z_i1 = sha256.finalize().to_vec();
|
|
|
|
bytes_to_f_vec(z_i1.to_vec())
|
|
}
|
|
fn generate_step_constraints(
|
|
&self,
|
|
_cs: ConstraintSystemRef<F>,
|
|
_i: usize,
|
|
z_i: Vec<FpVar<F>>,
|
|
_external_inputs: Vec<FpVar<F>>,
|
|
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
|
let mut sha256_var = Sha256Gadget::default();
|
|
let z_i_u8: Vec<UInt8<F>> = z_i
|
|
.iter()
|
|
.map(|f| UInt8::<F>::from_bits_le(&f.to_bits_le().unwrap()[..8]))
|
|
.collect::<Vec<_>>();
|
|
sha256_var.update(&z_i_u8).unwrap();
|
|
let z_i1_u8 = sha256_var.finalize()?.to_bytes()?;
|
|
let z_i1: Vec<FpVar<F>> = z_i1_u8
|
|
.iter()
|
|
.map(|e| {
|
|
let bits = e.to_bits_le().unwrap();
|
|
Boolean::<F>::le_bits_to_fp_var(&bits).unwrap()
|
|
})
|
|
.collect();
|
|
|
|
Ok(z_i1)
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn full_flow() {
|
|
// set how many steps of folding we want to compute
|
|
let n_steps = 100;
|
|
|
|
// set the initial state
|
|
// let z_0_aux: Vec<u32> = vec![0_u32; 32 * 8];
|
|
let z_0_aux: Vec<u8> = vec![0_u8; 32];
|
|
let z_0: Vec<Fr> = z_0_aux.iter().map(|v| Fr::from(*v)).collect::<Vec<Fr>>();
|
|
|
|
let f_circuit = SHA256FoldStepCircuit::<Fr>::new(()).unwrap();
|
|
|
|
// ----------------
|
|
// Sanity check
|
|
// check that the f_circuit produces valid R1CS constraints
|
|
use ark_r1cs_std::alloc::AllocVar;
|
|
use ark_r1cs_std::fields::fp::FpVar;
|
|
use ark_r1cs_std::R1CSVar;
|
|
use ark_relations::r1cs::ConstraintSystem;
|
|
let cs = ConstraintSystem::<Fr>::new_ref();
|
|
let z_0_var = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_0.clone())).unwrap();
|
|
let z_1_var = f_circuit
|
|
.generate_step_constraints(cs.clone(), 1, z_0_var, vec![])
|
|
.unwrap();
|
|
// check z_1_var against the native z_1
|
|
let z_1_native = f_circuit.step_native(1, z_0.clone(), vec![]).unwrap();
|
|
assert_eq!(z_1_var.value().unwrap(), z_1_native);
|
|
// check that the constraint system is satisfied
|
|
assert!(cs.is_satisfied().unwrap());
|
|
// ----------------
|
|
|
|
// define type aliases to avoid writting the whole type each time
|
|
pub type N = Nova<
|
|
G1,
|
|
GVar,
|
|
G2,
|
|
GVar2,
|
|
SHA256FoldStepCircuit<Fr>,
|
|
KZG<'static, Bn254>,
|
|
Pedersen<G2>,
|
|
false,
|
|
>;
|
|
pub type D = DeciderEth<
|
|
G1,
|
|
GVar,
|
|
G2,
|
|
GVar2,
|
|
SHA256FoldStepCircuit<Fr>,
|
|
KZG<'static, Bn254>,
|
|
Pedersen<G2>,
|
|
Groth16<Bn254>,
|
|
N,
|
|
>;
|
|
|
|
let poseidon_config = poseidon_canonical_config::<Fr>();
|
|
let mut rng = rand::rngs::OsRng;
|
|
|
|
// prepare the Nova prover & verifier params
|
|
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, f_circuit);
|
|
let start = Instant::now();
|
|
let nova_params = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
|
|
println!("Nova params generated: {:?}", start.elapsed());
|
|
|
|
// initialize the folding scheme engine, in our case we use Nova
|
|
let mut nova = N::init(&nova_params, f_circuit, z_0.clone()).unwrap();
|
|
|
|
// prepare the Decider prover & verifier params
|
|
let start = Instant::now();
|
|
let (decider_pp, decider_vp) = D::preprocess(&mut rng, &nova_params, nova.clone()).unwrap();
|
|
println!("Decider params generated: {:?}", start.elapsed());
|
|
|
|
// run n steps of the folding iteration
|
|
let start_full = Instant::now();
|
|
for _ in 0..n_steps {
|
|
let start = Instant::now();
|
|
nova.prove_step(rng, vec![], None).unwrap();
|
|
println!(
|
|
"Nova::prove_step (sha256) {}: {:?}",
|
|
nova.i,
|
|
start.elapsed()
|
|
);
|
|
}
|
|
println!("Nova's all steps time: {:?}", start_full.elapsed());
|
|
|
|
// ----------------
|
|
// Sanity check
|
|
// The following lines contain a sanity check that checks the IVC proof (before going into
|
|
// the zkSNARK proof)
|
|
let (running_instance, incoming_instance, cyclefold_instance) = nova.instances();
|
|
N::verify(
|
|
nova_params.1, // Nova's verifier params
|
|
z_0,
|
|
nova.z_i.clone(),
|
|
nova.i,
|
|
running_instance,
|
|
incoming_instance,
|
|
cyclefold_instance,
|
|
)
|
|
.unwrap();
|
|
// ----------------
|
|
|
|
let rng = rand::rngs::OsRng;
|
|
let start = Instant::now();
|
|
let proof = D::prove(rng, decider_pp, nova.clone()).unwrap();
|
|
println!("generated Decider proof: {:?}", start.elapsed());
|
|
|
|
let verified = D::verify(
|
|
decider_vp.clone(),
|
|
nova.i,
|
|
nova.z_0.clone(),
|
|
nova.z_i.clone(),
|
|
&nova.U_i,
|
|
&nova.u_i,
|
|
&proof,
|
|
)
|
|
.unwrap();
|
|
assert!(verified);
|
|
println!("Decider proof verification: {}", verified);
|
|
|
|
// generate the Solidity code that verifies this Decider final proof
|
|
let function_selector =
|
|
get_function_selector_for_nova_cyclefold_verifier(nova.z_0.len() * 2 + 1);
|
|
|
|
let calldata: Vec<u8> = prepare_calldata(
|
|
function_selector,
|
|
nova.i,
|
|
nova.z_0,
|
|
nova.z_i,
|
|
&nova.U_i,
|
|
&nova.u_i,
|
|
proof,
|
|
)
|
|
.unwrap();
|
|
|
|
// prepare the setup params for the solidity verifier
|
|
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from((decider_vp, f_circuit.state_len()));
|
|
|
|
// generate the solidity code
|
|
let decider_solidity_code = get_decider_template_for_cyclefold_decider(nova_cyclefold_vk);
|
|
|
|
/*
|
|
* Note: since we're proving the SHA256 (ie. 32 byte size, 256 bits), the number of inputs
|
|
* is too big for the contract. In a real world use case we would convert the binary
|
|
* representation into a couple of field elements which would be inputs of the Decider
|
|
* circuit, and in-circuit we would obtain the binary representation to be used for the
|
|
* final proof check.
|
|
*
|
|
* The following code is commented out for that reason.
|
|
// verify the proof against the solidity code in the EVM
|
|
use solidity_verifiers::evm::{compile_solidity, Evm};
|
|
let nova_cyclefold_verifier_bytecode =
|
|
compile_solidity(&decider_solidity_code, "NovaDecider");
|
|
let mut evm = Evm::default();
|
|
let verifier_address = evm.create(nova_cyclefold_verifier_bytecode);
|
|
let (_, output) = evm.call(verifier_address, calldata.clone());
|
|
assert_eq!(*output.last().unwrap(), 1);
|
|
*/
|
|
|
|
// save smart contract and the calldata
|
|
println!("storing nova-verifier.sol and the calldata into files");
|
|
use std::fs;
|
|
fs::create_dir_all("./solidity").unwrap();
|
|
fs::write(
|
|
"./solidity/nova-verifier.sol",
|
|
decider_solidity_code.clone(),
|
|
)
|
|
.unwrap();
|
|
fs::write("./solidity/solidity-calldata.calldata", calldata.clone()).unwrap();
|
|
let s = solidity_verifiers::utils::get_formatted_calldata(calldata.clone());
|
|
fs::write("./solidity/solidity-calldata.inputs", s.join(",\n")).expect("");
|
|
}
|
|
}
|