You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

485 lines
17 KiB

  1. // Package common contains all the common data structures used at the
  2. // hermez-node, zk.go contains the zkSnark inputs used to generate the proof
  3. package common
  4. import (
  5. "crypto/sha256"
  6. "encoding/binary"
  7. "encoding/json"
  8. "fmt"
  9. "math/big"
  10. "github.com/hermeznetwork/hermez-node/log"
  11. cryptoConstants "github.com/iden3/go-iden3-crypto/constants"
  12. "github.com/iden3/go-merkletree"
  13. "github.com/mitchellh/mapstructure"
  14. )
  15. // ZKMetadata contains ZKInputs metadata that is not used directly in the
  16. // ZKInputs result, but to calculate values for Hash check
  17. type ZKMetadata struct {
  18. // Circuit parameters
  19. // absolute maximum of L1 or L2 transactions allowed
  20. NTx uint32
  21. // merkle tree depth
  22. NLevels uint32
  23. MaxLevels uint32
  24. // absolute maximum of L1 transaction allowed
  25. MaxL1Tx uint32
  26. // total txs allowed
  27. MaxTx uint32
  28. // Maximum number of Idxs where Fees can be send in a batch (currently
  29. // is constant for all circuits: 64)
  30. MaxFeeIdxs uint32
  31. L1TxsData [][]byte
  32. L2TxsData [][]byte
  33. ChainID uint16
  34. NewLastIdxRaw Idx
  35. NewStateRootRaw *merkletree.Hash
  36. NewExitRootRaw *merkletree.Hash
  37. }
  38. // ZKInputs represents the inputs that will be used to generate the zkSNARK proof
  39. type ZKInputs struct {
  40. Metadata ZKMetadata
  41. //
  42. // General
  43. //
  44. // inputs for final `hashGlobalInputs`
  45. // OldLastIdx is the last index assigned to an account
  46. OldLastIdx *big.Int `json:"oldLastIdx"` // uint64 (max nLevels bits)
  47. // OldStateRoot is the current state merkle tree root
  48. OldStateRoot *big.Int `json:"oldStateRoot"` // Hash
  49. // GlobalChainID is the blockchain ID (0 for Ethereum mainnet). This value can be get from the smart contract.
  50. GlobalChainID *big.Int `json:"globalChainID"` // uint16
  51. // FeeIdxs is an array of merkle tree indexes where the coordinator will receive the accumulated fees
  52. FeeIdxs []*big.Int `json:"feeIdxs"` // uint64 (max nLevels bits), len: [maxFeeIdxs]
  53. // accumulate fees
  54. // FeePlanTokens contains all the tokenIDs for which the fees are being accumulated
  55. FeePlanTokens []*big.Int `json:"feePlanTokens"` // uint32 (max 32 bits), len: [maxFeeIdxs]
  56. //
  57. // Txs (L1&L2)
  58. //
  59. // transaction L1-L2
  60. // TxCompressedData
  61. TxCompressedData []*big.Int `json:"txCompressedData"` // big.Int (max 251 bits), len: [nTx]
  62. // TxCompressedDataV2, only used in L2Txs, in L1Txs is set to 0
  63. TxCompressedDataV2 []*big.Int `json:"txCompressedDataV2"` // big.Int (max 193 bits), len: [nTx]
  64. // FromIdx
  65. FromIdx []*big.Int `json:"fromIdx"` // uint64 (max nLevels bits), len: [nTx]
  66. // AuxFromIdx is the Idx of the new created account which is consequence of a L1CreateAccountTx
  67. AuxFromIdx []*big.Int `json:"auxFromIdx"` // uint64 (max nLevels bits), len: [nTx]
  68. // ToIdx
  69. ToIdx []*big.Int `json:"toIdx"` // uint64 (max nLevels bits), len: [nTx]
  70. // AuxToIdx is the Idx of the Tx that has 'toIdx==0', is the coordinator who will find which Idx corresponds to the 'toBJJAy' or 'toEthAddr'
  71. AuxToIdx []*big.Int `json:"auxToIdx"` // uint64 (max nLevels bits), len: [nTx]
  72. // ToBJJAy
  73. ToBJJAy []*big.Int `json:"toBjjAy"` // big.Int, len: [nTx]
  74. // ToEthAddr
  75. ToEthAddr []*big.Int `json:"toEthAddr"` // ethCommon.Address, len: [nTx]
  76. // OnChain determines if is L1 (1/true) or L2 (0/false)
  77. OnChain []*big.Int `json:"onChain"` // bool, len: [nTx]
  78. //
  79. // Txs/L1Txs
  80. //
  81. // NewAccount boolean (0/1) flag set 'true' when L1 tx creates a new account (fromIdx==0)
  82. NewAccount []*big.Int `json:"newAccount"` // bool, len: [nTx]
  83. // LoadAmountF encoded as float16
  84. LoadAmountF []*big.Int `json:"loadAmountF"` // uint16, len: [nTx]
  85. // FromEthAddr
  86. FromEthAddr []*big.Int `json:"fromEthAddr"` // ethCommon.Address, len: [nTx]
  87. // FromBJJCompressed boolean encoded where each value is a *big.Int
  88. FromBJJCompressed [][256]*big.Int `json:"fromBjjCompressed"` // bool array, len: [nTx][256]
  89. //
  90. // Txs/L2Txs
  91. //
  92. // RqOffset relative transaction position to be linked. Used to perform atomic transactions.
  93. RqOffset []*big.Int `json:"rqOffset"` // uint8 (max 3 bits), len: [nTx]
  94. // transaction L2 request data
  95. // RqTxCompressedDataV2
  96. RqTxCompressedDataV2 []*big.Int `json:"rqTxCompressedDataV2"` // big.Int (max 251 bits), len: [nTx]
  97. // RqToEthAddr
  98. RqToEthAddr []*big.Int `json:"rqToEthAddr"` // ethCommon.Address, len: [nTx]
  99. // RqToBJJAy
  100. RqToBJJAy []*big.Int `json:"rqToBjjAy"` // big.Int, len: [nTx]
  101. // transaction L2 signature
  102. // S
  103. S []*big.Int `json:"s"` // big.Int, len: [nTx]
  104. // R8x
  105. R8x []*big.Int `json:"r8x"` // big.Int, len: [nTx]
  106. // R8y
  107. R8y []*big.Int `json:"r8y"` // big.Int, len: [nTx]
  108. //
  109. // State MerkleTree Leafs transitions
  110. //
  111. // state 1, value of the sender (from) account leaf
  112. TokenID1 []*big.Int `json:"tokenID1"` // uint32, len: [nTx]
  113. Nonce1 []*big.Int `json:"nonce1"` // uint64 (max 40 bits), len: [nTx]
  114. Sign1 []*big.Int `json:"sign1"` // bool, len: [nTx]
  115. Ay1 []*big.Int `json:"ay1"` // big.Int, len: [nTx]
  116. Balance1 []*big.Int `json:"balance1"` // big.Int (max 192 bits), len: [nTx]
  117. EthAddr1 []*big.Int `json:"ethAddr1"` // ethCommon.Address, len: [nTx]
  118. Siblings1 [][]*big.Int `json:"siblings1"` // big.Int, len: [nTx][nLevels + 1]
  119. // Required for inserts and deletes, values of the CircomProcessorProof (smt insert proof)
  120. IsOld0_1 []*big.Int `json:"isOld0_1"` // bool, len: [nTx]
  121. OldKey1 []*big.Int `json:"oldKey1"` // uint64 (max 40 bits), len: [nTx]
  122. OldValue1 []*big.Int `json:"oldValue1"` // Hash, len: [nTx]
  123. // state 2, value of the receiver (to) account leaf
  124. // if Tx is an Exit, state 2 is used for the Exit Merkle Proof
  125. TokenID2 []*big.Int `json:"tokenID2"` // uint32, len: [nTx]
  126. Nonce2 []*big.Int `json:"nonce2"` // uint64 (max 40 bits), len: [nTx]
  127. Sign2 []*big.Int `json:"sign2"` // bool, len: [nTx]
  128. Ay2 []*big.Int `json:"ay2"` // big.Int, len: [nTx]
  129. Balance2 []*big.Int `json:"balance2"` // big.Int (max 192 bits), len: [nTx]
  130. EthAddr2 []*big.Int `json:"ethAddr2"` // ethCommon.Address, len: [nTx]
  131. Siblings2 [][]*big.Int `json:"siblings2"` // big.Int, len: [nTx][nLevels + 1]
  132. // newExit determines if an exit transaction has to create a new leaf in the exit tree
  133. NewExit []*big.Int `json:"newExit"` // bool, len: [nTx]
  134. // Required for inserts and deletes, values of the CircomProcessorProof (smt insert proof)
  135. IsOld0_2 []*big.Int `json:"isOld0_2"` // bool, len: [nTx]
  136. OldKey2 []*big.Int `json:"oldKey2"` // uint64 (max 40 bits), len: [nTx]
  137. OldValue2 []*big.Int `json:"oldValue2"` // Hash, len: [nTx]
  138. // state 3, value of the account leaf receiver of the Fees
  139. // fee tx
  140. // State fees
  141. TokenID3 []*big.Int `json:"tokenID3"` // uint32, len: [maxFeeIdxs]
  142. Nonce3 []*big.Int `json:"nonce3"` // uint64 (max 40 bits), len: [maxFeeIdxs]
  143. Sign3 []*big.Int `json:"sign3"` // bool, len: [maxFeeIdxs]
  144. Ay3 []*big.Int `json:"ay3"` // big.Int, len: [maxFeeIdxs]
  145. Balance3 []*big.Int `json:"balance3"` // big.Int (max 192 bits), len: [maxFeeIdxs]
  146. EthAddr3 []*big.Int `json:"ethAddr3"` // ethCommon.Address, len: [maxFeeIdxs]
  147. Siblings3 [][]*big.Int `json:"siblings3"` // Hash, len: [maxFeeIdxs][nLevels + 1]
  148. //
  149. // Intermediate States
  150. //
  151. // Intermediate States to parallelize witness computation
  152. // Note: the Intermediate States (IS) of the last transaction does not
  153. // exist. Meaning that transaction 3 (4th) will fill the parameters
  154. // FromIdx[3] and ISOnChain[3], but last transaction (nTx-1) will fill
  155. // FromIdx[nTx-1] but will not fill ISOnChain. That's why IS have
  156. // length of nTx-1, while the other parameters have length of nTx.
  157. // Last transaction does not need intermediate state since its output
  158. // will not be used.
  159. // decode-tx
  160. // ISOnChain indicates if tx is L1 (true) or L2 (false)
  161. ISOnChain []*big.Int `json:"imOnChain"` // bool, len: [nTx - 1]
  162. // ISOutIdx current index account for each Tx
  163. ISOutIdx []*big.Int `json:"imOutIdx"` // uint64 (max nLevels bits), len: [nTx - 1]
  164. // rollup-tx
  165. // ISStateRoot root at the moment of the Tx, the state root value once the Tx is processed into the state tree
  166. ISStateRoot []*big.Int `json:"imStateRoot"` // Hash, len: [nTx - 1]
  167. // ISExitTree root at the moment of the Tx the value once the Tx is processed into the exit tree
  168. ISExitRoot []*big.Int `json:"imExitRoot"` // Hash, len: [nTx - 1]
  169. // ISAccFeeOut accumulated fees once the Tx is processed
  170. ISAccFeeOut [][]*big.Int `json:"imAccFeeOut"` // big.Int, len: [nTx - 1][maxFeeIdxs]
  171. // fee-tx
  172. // ISStateRootFee root at the moment of the Tx, the state root value once the Tx is processed into the state tree
  173. ISStateRootFee []*big.Int `json:"imStateRootFee"` // Hash, len: [maxFeeIdxs - 1]
  174. // ISInitStateRootFee state root once all L1-L2 tx are processed (before computing the fees-tx)
  175. ISInitStateRootFee *big.Int `json:"imInitStateRootFee"` // Hash
  176. // ISFinalAccFee final accumulated fees (before computing the fees-tx)
  177. ISFinalAccFee []*big.Int `json:"imFinalAccFee"` // big.Int, len: [maxFeeIdxs - 1]
  178. }
  179. func bigIntsToStrings(v interface{}) interface{} {
  180. switch c := v.(type) {
  181. case *big.Int:
  182. return c.String()
  183. case []*big.Int:
  184. r := make([]interface{}, len(c))
  185. for i := range c {
  186. r[i] = bigIntsToStrings(c[i])
  187. }
  188. return r
  189. case [256]*big.Int:
  190. r := make([]interface{}, len(c))
  191. for i := range c {
  192. r[i] = bigIntsToStrings(c[i])
  193. }
  194. return r
  195. case [][]*big.Int:
  196. r := make([]interface{}, len(c))
  197. for i := range c {
  198. r[i] = bigIntsToStrings(c[i])
  199. }
  200. return r
  201. case [][256]*big.Int:
  202. r := make([]interface{}, len(c))
  203. for i := range c {
  204. r[i] = bigIntsToStrings(c[i])
  205. }
  206. return r
  207. case map[string]interface{}:
  208. // avoid printing a warning when there is a struct type
  209. default:
  210. log.Warnf("bigIntsToStrings unexpected type: %T\n", v)
  211. }
  212. return nil
  213. }
  214. // MarshalJSON implements the json marshaler for ZKInputs
  215. func (z ZKInputs) MarshalJSON() ([]byte, error) {
  216. var m map[string]interface{}
  217. dec, err := mapstructure.NewDecoder(&mapstructure.DecoderConfig{
  218. TagName: "json",
  219. Result: &m,
  220. })
  221. if err != nil {
  222. return nil, err
  223. }
  224. err = dec.Decode(z)
  225. if err != nil {
  226. return nil, err
  227. }
  228. for k, v := range m {
  229. m[k] = bigIntsToStrings(v)
  230. }
  231. return json.Marshal(m)
  232. }
  233. // NewZKInputs returns a pointer to an initialized struct of ZKInputs
  234. func NewZKInputs(nTx, maxL1Tx, maxTx, maxFeeIdxs, nLevels uint32) *ZKInputs {
  235. zki := &ZKInputs{}
  236. zki.Metadata.NTx = nTx
  237. zki.Metadata.MaxFeeIdxs = maxFeeIdxs
  238. zki.Metadata.NLevels = nLevels
  239. zki.Metadata.MaxLevels = uint32(48) //nolint:gomnd
  240. zki.Metadata.MaxL1Tx = maxL1Tx
  241. zki.Metadata.MaxTx = maxTx
  242. // General
  243. zki.OldLastIdx = big.NewInt(0)
  244. zki.OldStateRoot = big.NewInt(0)
  245. zki.GlobalChainID = big.NewInt(0)
  246. zki.FeeIdxs = newSlice(maxFeeIdxs)
  247. zki.FeePlanTokens = newSlice(maxFeeIdxs)
  248. // Txs
  249. zki.TxCompressedData = newSlice(nTx)
  250. zki.TxCompressedDataV2 = newSlice(nTx)
  251. zki.FromIdx = newSlice(nTx)
  252. zki.AuxFromIdx = newSlice(nTx)
  253. zki.ToIdx = newSlice(nTx)
  254. zki.AuxToIdx = newSlice(nTx)
  255. zki.ToBJJAy = newSlice(nTx)
  256. zki.ToEthAddr = newSlice(nTx)
  257. zki.OnChain = newSlice(nTx)
  258. zki.NewAccount = newSlice(nTx)
  259. // L1
  260. zki.LoadAmountF = newSlice(nTx)
  261. zki.FromEthAddr = newSlice(nTx)
  262. zki.FromBJJCompressed = make([][256]*big.Int, nTx)
  263. for i := 0; i < len(zki.FromBJJCompressed); i++ {
  264. // zki.FromBJJCompressed[i] = newSlice(256)
  265. for j := 0; j < 256; j++ {
  266. zki.FromBJJCompressed[i][j] = big.NewInt(0)
  267. }
  268. }
  269. // L2
  270. zki.RqOffset = newSlice(nTx)
  271. zki.RqTxCompressedDataV2 = newSlice(nTx)
  272. zki.RqToEthAddr = newSlice(nTx)
  273. zki.RqToBJJAy = newSlice(nTx)
  274. zki.S = newSlice(nTx)
  275. zki.R8x = newSlice(nTx)
  276. zki.R8y = newSlice(nTx)
  277. // State MerkleTree Leafs transitions
  278. zki.TokenID1 = newSlice(nTx)
  279. zki.Nonce1 = newSlice(nTx)
  280. zki.Sign1 = newSlice(nTx)
  281. zki.Ay1 = newSlice(nTx)
  282. zki.Balance1 = newSlice(nTx)
  283. zki.EthAddr1 = newSlice(nTx)
  284. zki.Siblings1 = make([][]*big.Int, nTx)
  285. for i := 0; i < len(zki.Siblings1); i++ {
  286. zki.Siblings1[i] = newSlice(nLevels + 1)
  287. }
  288. zki.IsOld0_1 = newSlice(nTx)
  289. zki.OldKey1 = newSlice(nTx)
  290. zki.OldValue1 = newSlice(nTx)
  291. zki.TokenID2 = newSlice(nTx)
  292. zki.Nonce2 = newSlice(nTx)
  293. zki.Sign2 = newSlice(nTx)
  294. zki.Ay2 = newSlice(nTx)
  295. zki.Balance2 = newSlice(nTx)
  296. zki.EthAddr2 = newSlice(nTx)
  297. zki.Siblings2 = make([][]*big.Int, nTx)
  298. for i := 0; i < len(zki.Siblings2); i++ {
  299. zki.Siblings2[i] = newSlice(nLevels + 1)
  300. }
  301. zki.NewExit = newSlice(nTx)
  302. zki.IsOld0_2 = newSlice(nTx)
  303. zki.OldKey2 = newSlice(nTx)
  304. zki.OldValue2 = newSlice(nTx)
  305. zki.TokenID3 = newSlice(maxFeeIdxs)
  306. zki.Nonce3 = newSlice(maxFeeIdxs)
  307. zki.Sign3 = newSlice(maxFeeIdxs)
  308. zki.Ay3 = newSlice(maxFeeIdxs)
  309. zki.Balance3 = newSlice(maxFeeIdxs)
  310. zki.EthAddr3 = newSlice(maxFeeIdxs)
  311. zki.Siblings3 = make([][]*big.Int, maxFeeIdxs)
  312. for i := 0; i < len(zki.Siblings3); i++ {
  313. zki.Siblings3[i] = newSlice(nLevels + 1)
  314. }
  315. // Intermediate States
  316. zki.ISOnChain = newSlice(nTx - 1)
  317. zki.ISOutIdx = newSlice(nTx - 1)
  318. zki.ISStateRoot = newSlice(nTx - 1)
  319. zki.ISExitRoot = newSlice(nTx - 1)
  320. zki.ISAccFeeOut = make([][]*big.Int, nTx-1)
  321. for i := 0; i < len(zki.ISAccFeeOut); i++ {
  322. zki.ISAccFeeOut[i] = newSlice(maxFeeIdxs)
  323. }
  324. zki.ISStateRootFee = newSlice(maxFeeIdxs - 1)
  325. zki.ISInitStateRootFee = big.NewInt(0)
  326. zki.ISFinalAccFee = newSlice(maxFeeIdxs - 1)
  327. return zki
  328. }
  329. // newSlice returns a []*big.Int slice of length n with values initialized at
  330. // 0.
  331. // Is used to initialize all *big.Ints of the ZKInputs data structure, so when
  332. // the transactions are processed and the ZKInputs filled, there is no need to
  333. // set all the elements, and if a transaction does not use a parameter, can be
  334. // leaved as it is in the ZKInputs, as will be 0, so later when using the
  335. // ZKInputs to generate the zkSnark proof there is no 'nil'/'null' values.
  336. func newSlice(n uint32) []*big.Int {
  337. s := make([]*big.Int, n)
  338. for i := 0; i < len(s); i++ {
  339. s[i] = big.NewInt(0)
  340. }
  341. return s
  342. }
  343. // HashGlobalData returns the HashGlobalData
  344. func (z ZKInputs) HashGlobalData() (*big.Int, error) {
  345. b, err := z.ToHashGlobalData()
  346. if err != nil {
  347. return nil, err
  348. }
  349. h := sha256.New()
  350. _, err = h.Write(b)
  351. if err != nil {
  352. return nil, err
  353. }
  354. r := new(big.Int).SetBytes(h.Sum(nil))
  355. v := r.Mod(r, cryptoConstants.Q)
  356. return v, nil
  357. }
  358. // ToHashGlobalData returns the data to be hashed in the method HashGlobalData
  359. func (z ZKInputs) ToHashGlobalData() ([]byte, error) {
  360. var b []byte
  361. bytesMaxLevels := int(z.Metadata.MaxLevels / 8) //nolint:gomnd
  362. // [MAX_NLEVELS bits] oldLastIdx
  363. oldLastIdx := make([]byte, bytesMaxLevels)
  364. copy(oldLastIdx, z.OldLastIdx.Bytes())
  365. b = append(b, SwapEndianness(oldLastIdx)...)
  366. // [MAX_NLEVELS bits] newLastIdx
  367. newLastIdx := make([]byte, bytesMaxLevels)
  368. newLastIdxBytes, err := z.Metadata.NewLastIdxRaw.Bytes()
  369. if err != nil {
  370. return nil, err
  371. }
  372. copy(newLastIdx, newLastIdxBytes[len(newLastIdxBytes)-bytesMaxLevels:])
  373. b = append(b, newLastIdx...)
  374. // [256 bits] oldStRoot
  375. oldStateRoot := make([]byte, 32)
  376. copy(oldStateRoot, z.OldStateRoot.Bytes())
  377. b = append(b, oldStateRoot...)
  378. // [256 bits] newStateRoot
  379. newStateRoot := make([]byte, 32)
  380. copy(newStateRoot, z.Metadata.NewStateRootRaw.Bytes())
  381. b = append(b, newStateRoot...)
  382. // [256 bits] newExitRoot
  383. newExitRoot := make([]byte, 32)
  384. copy(newExitRoot, z.Metadata.NewExitRootRaw.Bytes())
  385. b = append(b, newExitRoot...)
  386. // [MAX_L1_TX * (2 * MAX_NLEVELS + 480) bits] L1TxsData
  387. l1TxDataLen := (2*z.Metadata.MaxLevels + 480)
  388. l1TxsDataLen := (z.Metadata.MaxL1Tx * l1TxDataLen)
  389. l1TxsData := make([]byte, l1TxsDataLen/8) //nolint:gomnd
  390. for i := 0; i < len(z.Metadata.L1TxsData); i++ {
  391. dataLen := int(l1TxDataLen) / 8 //nolint:gomnd
  392. pos0 := i * dataLen
  393. pos1 := i*dataLen + dataLen
  394. copy(l1TxsData[pos0:pos1], z.Metadata.L1TxsData[i])
  395. }
  396. b = append(b, l1TxsData...)
  397. // [MAX_TX*(2*NLevels + 24) bits] L2TxsData
  398. var l2TxsData []byte
  399. l2TxDataLen := 2*z.Metadata.NLevels + 24 //nolint:gomnd
  400. l2TxsDataLen := (z.Metadata.MaxTx * l2TxDataLen)
  401. expectedL2TxsDataLen := l2TxsDataLen / 8 //nolint:gomnd
  402. for i := 0; i < len(z.Metadata.L2TxsData); i++ {
  403. l2TxsData = append(l2TxsData, z.Metadata.L2TxsData[i]...)
  404. }
  405. if len(l2TxsData) > int(expectedL2TxsDataLen) {
  406. return nil, fmt.Errorf("len(l2TxsData): %d, expected: %d", len(l2TxsData), expectedL2TxsDataLen)
  407. }
  408. l2TxsPadding := make([]byte, (int(z.Metadata.MaxTx)-len(z.Metadata.L2TxsData))*int(l2TxDataLen)/8) //nolint:gomnd
  409. b = append(b, l2TxsPadding...)
  410. b = append(b, l2TxsData...)
  411. // [NLevels * MAX_TOKENS_FEE bits] feeTxsData
  412. for i := 0; i < len(z.FeeIdxs); i++ {
  413. var r []byte
  414. padding := make([]byte, bytesMaxLevels/4) //nolint:gomnd
  415. r = append(r, padding...)
  416. feeIdx := make([]byte, bytesMaxLevels/2) //nolint:gomnd
  417. feeIdxBytes := z.FeeIdxs[i].Bytes()
  418. copy(feeIdx[len(feeIdx)-len(feeIdxBytes):], feeIdxBytes[:])
  419. r = append(r, feeIdx...)
  420. b = append(b, r...)
  421. }
  422. // [16 bits] chainID
  423. var chainID [2]byte
  424. binary.BigEndian.PutUint16(chainID[:], z.Metadata.ChainID)
  425. b = append(b, chainID[:]...)
  426. return b, nil
  427. }