|
|
package statedb
import ( "errors" "io/ioutil" "math/big" "os"
"github.com/hermeznetwork/hermez-node/common" "github.com/hermeznetwork/hermez-node/log" "github.com/iden3/go-iden3-crypto/babyjub" "github.com/iden3/go-merkletree" "github.com/iden3/go-merkletree/db" "github.com/iden3/go-merkletree/db/pebble" )
var ( // keyidx is used as key in the db to store the current Idx
keyidx = []byte("idx") )
func (s *StateDB) resetZKInputs() { s.zki = nil s.i = 0 }
type processedExit struct { exit bool newExit bool idx common.Idx acc common.Account }
// ProcessTxs process the given L1Txs & L2Txs applying the needed updates to
// the StateDB depending on the transaction Type. If StateDB
// type==TypeBatchBuilder, returns the common.ZKInputs to generate the
// SnarkProof later used by the BatchBuilder. If StateDB
// type==TypeSynchronizer, assumes that the call is done from the Synchronizer,
// returns common.ExitTreeLeaf that is later used by the Synchronizer to update
// the HistoryDB, and adds Nonce & TokenID to the L2Txs.
func (s *StateDB) ProcessTxs(l1usertxs, l1coordinatortxs []common.L1Tx, l2txs []common.PoolL2Tx) (*common.ZKInputs, []common.ExitInfo, error) { var err error var exitTree *merkletree.MerkleTree
if s.zki != nil { return nil, nil, errors.New("Expected StateDB.zki==nil, something went wrong and it's not empty") } defer s.resetZKInputs()
nTx := len(l1usertxs) + len(l1coordinatortxs) + len(l2txs) if nTx == 0 { // TODO return ZKInputs of batch without txs
return nil, nil, nil } exits := make([]processedExit, nTx)
if s.typ == TypeBatchBuilder { s.zki = common.NewZKInputs(nTx, 24, 32) // TODO this values will be parameters of the function, taken from config file/coordinator call
s.zki.OldLastIdx = (s.idx - 1).BigInt() s.zki.OldStateRoot = s.mt.Root().BigInt() }
// TBD if ExitTree is only in memory or stored in disk, for the moment
// only needed in memory
if s.typ == TypeSynchronizer || s.typ == TypeBatchBuilder { tmpDir, err := ioutil.TempDir("", "hermez-statedb-exittree") if err != nil { return nil, nil, err } defer func() { if err := os.RemoveAll(tmpDir); err != nil { log.Errorw("Dleting statedb temp exit tree", "err", err) } }() sto, err := pebble.NewPebbleStorage(tmpDir, false) if err != nil { return nil, nil, err } exitTree, err = merkletree.NewMerkleTree(sto, s.mt.MaxLevels()) if err != nil { return nil, nil, err } }
// assumption: l1usertx are sorted by L1Tx.Position
for i := 0; i < len(l1usertxs); i++ { exitIdx, exitAccount, newExit, err := s.processL1Tx(exitTree, &l1usertxs[i]) if err != nil { return nil, nil, err } if s.typ == TypeSynchronizer || s.typ == TypeBatchBuilder { if exitIdx != nil && exitTree != nil { exits[s.i] = processedExit{ exit: true, newExit: newExit, idx: *exitIdx, acc: *exitAccount, } } s.i++ } } for i := 0; i < len(l1coordinatortxs); i++ { exitIdx, exitAccount, newExit, err := s.processL1Tx(exitTree, &l1coordinatortxs[i]) if err != nil { return nil, nil, err } if exitIdx != nil { log.Error("Unexpected Exit in L1CoordinatorTx") } if s.typ == TypeSynchronizer || s.typ == TypeBatchBuilder { if exitIdx != nil && exitTree != nil { exits[s.i] = processedExit{ exit: true, newExit: newExit, idx: *exitIdx, acc: *exitAccount, } } s.i++ } } for i := 0; i < len(l2txs); i++ { exitIdx, exitAccount, newExit, err := s.processL2Tx(exitTree, &l2txs[i]) if err != nil { return nil, nil, err } if s.typ == TypeSynchronizer || s.typ == TypeBatchBuilder { if exitIdx != nil && exitTree != nil { exits[s.i] = processedExit{ exit: true, newExit: newExit, idx: *exitIdx, acc: *exitAccount, } } s.i++ } }
if s.typ == TypeTxSelector { return nil, nil, nil }
// once all txs processed (exitTree root frozen), for each Exit,
// generate common.ExitInfo data
var exitInfos []common.ExitInfo for i := 0; i < nTx; i++ { if !exits[i].exit { continue } exitIdx := exits[i].idx exitAccount := exits[i].acc
// 0. generate MerkleProof
p, err := exitTree.GenerateCircomVerifierProof(exitIdx.BigInt(), nil) if err != nil { return nil, nil, err } // 1. generate common.ExitInfo
ei := common.ExitInfo{ AccountIdx: exitIdx, MerkleProof: p, Balance: exitAccount.Balance, } exitInfos = append(exitInfos, ei)
if s.zki != nil { s.zki.TokenID2[i] = exitAccount.TokenID.BigInt() s.zki.Nonce2[i] = exitAccount.Nonce.BigInt() if babyjub.PointCoordSign(exitAccount.PublicKey.X) { s.zki.Sign2[i] = big.NewInt(1) } s.zki.Ay2[i] = exitAccount.PublicKey.Y s.zki.Balance2[i] = exitAccount.Balance s.zki.EthAddr2[i] = common.EthAddrToBigInt(exitAccount.EthAddr) s.zki.Siblings2[i] = p.Siblings if exits[i].newExit { s.zki.NewExit[i] = big.NewInt(1) } if p.IsOld0 { s.zki.IsOld0_2[i] = big.NewInt(1) } s.zki.OldKey2[i] = p.OldKey.BigInt() s.zki.OldValue2[i] = p.OldValue.BigInt() } } if s.typ == TypeSynchronizer { return nil, exitInfos, nil }
// compute last ZKInputs parameters
s.zki.GlobalChainID = big.NewInt(0) // TODO, 0: ethereum, this will be get from config file
// zki.FeeIdxs = ? // TODO, this will be get from the config file
tokenIDs, err := s.getTokenIDsBigInt(l1usertxs, l1coordinatortxs, l2txs) if err != nil { return nil, nil, err } s.zki.FeePlanTokens = tokenIDs
// s.zki.ISInitStateRootFee = s.mt.Root().BigInt()
// TODO once the Node Config sets the Accounts where to send the Fees
// compute fees & update ZKInputs
// return exitInfos, so Synchronizer will be able to store it into
// HistoryDB for the concrete BatchNum
return s.zki, exitInfos, nil }
// getTokenIDsBigInt returns the list of TokenIDs in *big.Int format
func (s *StateDB) getTokenIDsBigInt(l1usertxs, l1coordinatortxs []common.L1Tx, l2txs []common.PoolL2Tx) ([]*big.Int, error) { tokenIDs := make(map[common.TokenID]bool) for i := 0; i < len(l1usertxs); i++ { tokenIDs[l1usertxs[i].TokenID] = true } for i := 0; i < len(l1coordinatortxs); i++ { tokenIDs[l1coordinatortxs[i].TokenID] = true } for i := 0; i < len(l2txs); i++ { // as L2Tx does not have parameter TokenID, get it from the
// AccountsDB (in the StateDB)
acc, err := s.GetAccount(l2txs[i].ToIdx) if err != nil { return nil, err } tokenIDs[acc.TokenID] = true } var tBI []*big.Int for t := range tokenIDs { tBI = append(tBI, t.BigInt()) } return tBI, nil }
// processL1Tx process the given L1Tx applying the needed updates to the
// StateDB depending on the transaction Type. It returns the 3 parameters
// related to the Exit (in case of): Idx, ExitAccount, boolean determining if
// the Exit created a new Leaf in the ExitTree.
func (s *StateDB) processL1Tx(exitTree *merkletree.MerkleTree, tx *common.L1Tx) (*common.Idx, *common.Account, bool, error) { // ZKInputs
if s.zki != nil { // Txs
// s.zki.TxCompressedData[s.i] = tx.TxCompressedData() // uncomment once L1Tx.TxCompressedData is ready
s.zki.FromIdx[s.i] = tx.FromIdx.BigInt() s.zki.ToIdx[s.i] = tx.ToIdx.BigInt() s.zki.OnChain[s.i] = big.NewInt(1)
// L1Txs
s.zki.LoadAmountF[s.i] = tx.LoadAmount s.zki.FromEthAddr[s.i] = common.EthAddrToBigInt(tx.FromEthAddr) if tx.FromBJJ != nil { s.zki.FromBJJCompressed[s.i] = BJJCompressedTo256BigInts(tx.FromBJJ.Compress()) }
// Intermediate States
s.zki.ISOnChain[s.i] = big.NewInt(1) }
switch tx.Type { case common.TxTypeForceTransfer, common.TxTypeTransfer: // go to the MT account of sender and receiver, and update balance
// & nonce
err := s.applyTransfer(tx.Tx(), 0) // 0 for the parameter toIdx, as at L1Tx ToIdx can only be 0 in the Deposit type case.
if err != nil { log.Error(err) return nil, nil, false, err } case common.TxTypeCreateAccountDeposit: // add new account to the MT, update balance of the MT account
err := s.applyCreateAccount(tx) if err != nil { log.Error(err) return nil, nil, false, err } // TODO applyCreateAccount will return the created account,
// which in the case type==TypeSynchronizer will be added to an
// array of created accounts that will be returned
if s.zki != nil { s.zki.AuxFromIdx[s.i] = s.idx.BigInt() // last s.idx is the one used for creating the new account
s.zki.NewAccount[s.i] = big.NewInt(1) } case common.TxTypeDeposit: // update balance of the MT account
err := s.applyDeposit(tx, false) if err != nil { log.Error(err) return nil, nil, false, err } case common.TxTypeDepositTransfer: // update balance in MT account, update balance & nonce of sender
// & receiver
err := s.applyDeposit(tx, true) if err != nil { log.Error(err) return nil, nil, false, err } case common.TxTypeCreateAccountDepositTransfer: // add new account to the merkletree, update balance in MT account,
// update balance & nonce of sender & receiver
err := s.applyCreateAccountDepositTransfer(tx) if err != nil { log.Error(err) return nil, nil, false, err }
if s.zki != nil { s.zki.AuxFromIdx[s.i] = s.idx.BigInt() // last s.idx is the one used for creating the new account
s.zki.NewAccount[s.i] = big.NewInt(1) } case common.TxTypeExit: // execute exit flow
exitAccount, newExit, err := s.applyExit(exitTree, tx.Tx()) if err != nil { log.Error(err) return nil, nil, false, err } return &tx.FromIdx, exitAccount, newExit, nil default: }
return nil, nil, false, nil }
// processL2Tx process the given L2Tx applying the needed updates to the
// StateDB depending on the transaction Type. It returns the 3 parameters
// related to the Exit (in case of): Idx, ExitAccount, boolean determining if
// the Exit created a new Leaf in the ExitTree.
func (s *StateDB) processL2Tx(exitTree *merkletree.MerkleTree, tx *common.PoolL2Tx) (*common.Idx, *common.Account, bool, error) { var err error // if tx.ToIdx==0, get toIdx by ToEthAddr or ToBJJ
if tx.ToIdx == common.Idx(0) && tx.AuxToIdx == common.Idx(0) { tx.AuxToIdx, err = s.GetIdxByEthAddrBJJ(tx.ToEthAddr, tx.ToBJJ) if err != nil { log.Error(err) return nil, nil, false, err } }
// ZKInputs
if s.zki != nil { // Txs
// s.zki.TxCompressedData[s.i] = tx.TxCompressedData() // uncomment once L1Tx.TxCompressedData is ready
// s.zki.TxCompressedDataV2[s.i] = tx.TxCompressedDataV2() // uncomment once L2Tx.TxCompressedDataV2 is ready
s.zki.FromIdx[s.i] = tx.FromIdx.BigInt() s.zki.ToIdx[s.i] = tx.ToIdx.BigInt()
// fill AuxToIdx if needed
if tx.ToIdx == 0 { // use toIdx that can have been filled by tx.ToIdx or
// if tx.Idx==0 (this case), toIdx is filled by the Idx
// from db by ToEthAddr&ToBJJ
s.zki.AuxToIdx[s.i] = tx.AuxToIdx.BigInt() }
if tx.ToBJJ != nil { s.zki.ToBJJAy[s.i] = tx.ToBJJ.Y } s.zki.ToEthAddr[s.i] = common.EthAddrToBigInt(tx.ToEthAddr)
s.zki.OnChain[s.i] = big.NewInt(0) s.zki.NewAccount[s.i] = big.NewInt(0)
// L2Txs
// s.zki.RqOffset[s.i] = // TODO Rq once TxSelector is ready
// s.zki.RqTxCompressedDataV2[s.i] = // TODO
// s.zki.RqToEthAddr[s.i] = common.EthAddrToBigInt(tx.RqToEthAddr) // TODO
// s.zki.RqToBJJAy[s.i] = tx.ToBJJ.Y // TODO
s.zki.S[s.i] = tx.Signature.S s.zki.R8x[s.i] = tx.Signature.R8.X s.zki.R8y[s.i] = tx.Signature.R8.Y }
// if StateDB type==TypeSynchronizer, will need to add Nonce
if s.typ == TypeSynchronizer { // as type==TypeSynchronizer, always tx.ToIdx!=0
acc, err := s.GetAccount(tx.FromIdx) if err != nil { log.Error(err) return nil, nil, false, err } tx.Nonce = acc.Nonce tx.TokenID = acc.TokenID }
switch tx.Type { case common.TxTypeTransfer: // go to the MT account of sender and receiver, and update
// balance & nonce
err = s.applyTransfer(tx.Tx(), tx.AuxToIdx) if err != nil { log.Error(err) return nil, nil, false, err } case common.TxTypeExit: // execute exit flow
exitAccount, newExit, err := s.applyExit(exitTree, tx.Tx()) if err != nil { log.Error(err) return nil, nil, false, err } return &tx.FromIdx, exitAccount, newExit, nil default: } return nil, nil, false, nil }
// applyCreateAccount creates a new account in the account of the depositer, it
// stores the deposit value
func (s *StateDB) applyCreateAccount(tx *common.L1Tx) error { account := &common.Account{ TokenID: tx.TokenID, Nonce: 0, Balance: tx.LoadAmount, PublicKey: tx.FromBJJ, EthAddr: tx.FromEthAddr, }
p, err := s.CreateAccount(common.Idx(s.idx+1), account) if err != nil { return err } if s.zki != nil { s.zki.TokenID1[s.i] = tx.TokenID.BigInt() s.zki.Nonce1[s.i] = big.NewInt(0) if babyjub.PointCoordSign(tx.FromBJJ.X) { s.zki.Sign1[s.i] = big.NewInt(1) } s.zki.Ay1[s.i] = tx.FromBJJ.Y s.zki.Balance1[s.i] = tx.LoadAmount s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(tx.FromEthAddr) s.zki.Siblings1[s.i] = siblingsToZKInputFormat(p.Siblings) if p.IsOld0 { s.zki.IsOld0_1[s.i] = big.NewInt(1) } s.zki.OldKey1[s.i] = p.OldKey.BigInt() s.zki.OldValue1[s.i] = p.OldValue.BigInt() }
s.idx = s.idx + 1 return s.setIdx(s.idx) }
// applyDeposit updates the balance in the account of the depositer, if
// andTransfer parameter is set to true, the method will also apply the
// Transfer of the L1Tx/DepositTransfer
func (s *StateDB) applyDeposit(tx *common.L1Tx, transfer bool) error { // deposit the tx.LoadAmount into the sender account
accSender, err := s.GetAccount(tx.FromIdx) if err != nil { return err } accSender.Balance = new(big.Int).Add(accSender.Balance, tx.LoadAmount)
// in case that the tx is a L1Tx>DepositTransfer
var accReceiver *common.Account if transfer { accReceiver, err = s.GetAccount(tx.ToIdx) if err != nil { return err } // subtract amount to the sender
accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.Amount) // add amount to the receiver
accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.Amount) } // update sender account in localStateDB
p, err := s.UpdateAccount(tx.FromIdx, accSender) if err != nil { return err } if s.zki != nil { s.zki.TokenID1[s.i] = accSender.TokenID.BigInt() s.zki.Nonce1[s.i] = accSender.Nonce.BigInt() if babyjub.PointCoordSign(accSender.PublicKey.X) { s.zki.Sign1[s.i] = big.NewInt(1) } s.zki.Ay1[s.i] = accSender.PublicKey.Y s.zki.Balance1[s.i] = accSender.Balance s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(accSender.EthAddr) s.zki.Siblings1[s.i] = siblingsToZKInputFormat(p.Siblings) // IsOld0_1, OldKey1, OldValue1 not needed as this is not an insert
}
// this is done after updating Sender Account (depositer)
if transfer { // update receiver account in localStateDB
p, err := s.UpdateAccount(tx.ToIdx, accReceiver) if err != nil { return err } if s.zki != nil { s.zki.TokenID2[s.i] = accReceiver.TokenID.BigInt() s.zki.Nonce2[s.i] = accReceiver.Nonce.BigInt() if babyjub.PointCoordSign(accReceiver.PublicKey.X) { s.zki.Sign2[s.i] = big.NewInt(1) } s.zki.Ay2[s.i] = accReceiver.PublicKey.Y s.zki.Balance2[s.i] = accReceiver.Balance s.zki.EthAddr2[s.i] = common.EthAddrToBigInt(accReceiver.EthAddr) s.zki.Siblings2[s.i] = siblingsToZKInputFormat(p.Siblings) // IsOld0_2, OldKey2, OldValue2 not needed as this is not an insert
} }
return nil }
// applyTransfer updates the balance & nonce in the account of the sender, and
// the balance in the account of the receiver.
// Parameter 'toIdx' should be at 0 if the tx already has tx.ToIdx!=0, if
// tx.ToIdx==0, then toIdx!=0, and will be used the toIdx parameter as Idx of
// the receiver. This parameter is used when the tx.ToIdx is not specified and
// the real ToIdx is found trhrough the ToEthAddr or ToBJJ.
func (s *StateDB) applyTransfer(tx common.Tx, auxToIdx common.Idx) error { if auxToIdx == common.Idx(0) { auxToIdx = tx.ToIdx } // get sender and receiver accounts from localStateDB
accSender, err := s.GetAccount(tx.FromIdx) if err != nil { log.Error(err) return err } accReceiver, err := s.GetAccount(auxToIdx) if err != nil { log.Error(err) return err }
// increment nonce
accSender.Nonce++
// subtract amount to the sender
accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.Amount) // add amount to the receiver
accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.Amount)
// update sender account in localStateDB
pSender, err := s.UpdateAccount(tx.FromIdx, accSender) if err != nil { log.Error(err) return err } if s.zki != nil { s.zki.TokenID1[s.i] = accSender.TokenID.BigInt() s.zki.Nonce1[s.i] = accSender.Nonce.BigInt() if babyjub.PointCoordSign(accSender.PublicKey.X) { s.zki.Sign1[s.i] = big.NewInt(1) } s.zki.Ay1[s.i] = accSender.PublicKey.Y s.zki.Balance1[s.i] = accSender.Balance s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(accSender.EthAddr) s.zki.Siblings1[s.i] = siblingsToZKInputFormat(pSender.Siblings) }
// update receiver account in localStateDB
pReceiver, err := s.UpdateAccount(auxToIdx, accReceiver) if err != nil { return err } if s.zki != nil { s.zki.TokenID2[s.i] = accReceiver.TokenID.BigInt() s.zki.Nonce2[s.i] = accReceiver.Nonce.BigInt() if babyjub.PointCoordSign(accReceiver.PublicKey.X) { s.zki.Sign2[s.i] = big.NewInt(1) } s.zki.Ay2[s.i] = accReceiver.PublicKey.Y s.zki.Balance2[s.i] = accReceiver.Balance s.zki.EthAddr2[s.i] = common.EthAddrToBigInt(accReceiver.EthAddr) s.zki.Siblings2[s.i] = siblingsToZKInputFormat(pReceiver.Siblings) }
return nil }
// applyCreateAccountDepositTransfer, in a single tx, creates a new account,
// makes a deposit, and performs a transfer to another account
func (s *StateDB) applyCreateAccountDepositTransfer(tx *common.L1Tx) error { accSender := &common.Account{ TokenID: tx.TokenID, Nonce: 0, Balance: tx.LoadAmount, PublicKey: tx.FromBJJ, EthAddr: tx.FromEthAddr, } accSender.Balance = new(big.Int).Add(accSender.Balance, tx.LoadAmount) accReceiver, err := s.GetAccount(tx.ToIdx) if err != nil { return err } // subtract amount to the sender
accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.Amount) // add amount to the receiver
accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.Amount)
// create Account of the Sender
p, err := s.CreateAccount(common.Idx(s.idx+1), accSender) if err != nil { return err } if s.zki != nil { s.zki.TokenID1[s.i] = tx.TokenID.BigInt() s.zki.Nonce1[s.i] = big.NewInt(0) if babyjub.PointCoordSign(tx.FromBJJ.X) { s.zki.Sign1[s.i] = big.NewInt(1) } s.zki.Ay1[s.i] = tx.FromBJJ.Y s.zki.Balance1[s.i] = tx.LoadAmount s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(tx.FromEthAddr) s.zki.Siblings1[s.i] = siblingsToZKInputFormat(p.Siblings) if p.IsOld0 { s.zki.IsOld0_1[s.i] = big.NewInt(1) } s.zki.OldKey1[s.i] = p.OldKey.BigInt() s.zki.OldValue1[s.i] = p.OldValue.BigInt() }
// update receiver account in localStateDB
p, err = s.UpdateAccount(tx.ToIdx, accReceiver) if err != nil { return err } if s.zki != nil { s.zki.TokenID2[s.i] = accReceiver.TokenID.BigInt() s.zki.Nonce2[s.i] = accReceiver.Nonce.BigInt() if babyjub.PointCoordSign(accReceiver.PublicKey.X) { s.zki.Sign2[s.i] = big.NewInt(1) } s.zki.Ay2[s.i] = accReceiver.PublicKey.Y s.zki.Balance2[s.i] = accReceiver.Balance s.zki.EthAddr2[s.i] = common.EthAddrToBigInt(accReceiver.EthAddr) s.zki.Siblings2[s.i] = siblingsToZKInputFormat(p.Siblings) }
s.idx = s.idx + 1 return s.setIdx(s.idx) }
// It returns the ExitAccount and a boolean determining if the Exit created a
// new Leaf in the ExitTree.
func (s *StateDB) applyExit(exitTree *merkletree.MerkleTree, tx common.Tx) (*common.Account, bool, error) { // 0. subtract tx.Amount from current Account in StateMT
// add the tx.Amount into the Account (tx.FromIdx) in the ExitMT
acc, err := s.GetAccount(tx.FromIdx) if err != nil { return nil, false, err } acc.Balance = new(big.Int).Sub(acc.Balance, tx.Amount) p, err := s.UpdateAccount(tx.FromIdx, acc) if err != nil { return nil, false, err } if s.zki != nil { s.zki.TokenID1[s.i] = acc.TokenID.BigInt() s.zki.Nonce1[s.i] = acc.Nonce.BigInt() if babyjub.PointCoordSign(acc.PublicKey.X) { s.zki.Sign1[s.i] = big.NewInt(1) } s.zki.Ay1[s.i] = acc.PublicKey.Y s.zki.Balance1[s.i] = acc.Balance s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(acc.EthAddr) s.zki.Siblings1[s.i] = siblingsToZKInputFormat(p.Siblings) }
if exitTree == nil { return nil, false, nil } exitAccount, err := getAccountInTreeDB(exitTree.DB(), tx.FromIdx) if err == db.ErrNotFound { // 1a. if idx does not exist in exitTree:
// add new leaf 'ExitTreeLeaf', where ExitTreeLeaf.Balance = exitAmount (exitAmount=tx.Amount)
exitAccount := &common.Account{ TokenID: acc.TokenID, Nonce: common.Nonce(1), Balance: tx.Amount, PublicKey: acc.PublicKey, EthAddr: acc.EthAddr, } _, err = createAccountInTreeDB(exitTree.DB(), exitTree, tx.FromIdx, exitAccount) return exitAccount, true, err } else if err != nil { return exitAccount, false, err }
// 1b. if idx already exist in exitTree:
// update account, where account.Balance += exitAmount
exitAccount.Balance = new(big.Int).Add(exitAccount.Balance, tx.Amount) _, err = updateAccountInTreeDB(exitTree.DB(), exitTree, tx.FromIdx, exitAccount) return exitAccount, false, err }
// getIdx returns the stored Idx from the localStateDB, which is the last Idx
// used for an Account in the localStateDB.
func (s *StateDB) getIdx() (common.Idx, error) { idxBytes, err := s.DB().Get(keyidx) if err == db.ErrNotFound { return 0, nil } if err != nil { return 0, err } return common.IdxFromBytes(idxBytes[:4]) }
// setIdx stores Idx in the localStateDB
func (s *StateDB) setIdx(idx common.Idx) error { tx, err := s.DB().NewTx() if err != nil { return err } idxBytes, err := idx.Bytes() if err != nil { return err } err = tx.Put(keyidx, idxBytes[:]) if err != nil { return err } if err := tx.Commit(); err != nil { return err } return nil }
|