You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

884 lines
26 KiB

Update coordinator to work better under real net - cli / node - Update handler of SIGINT so that after 3 SIGINTs, the process terminates unconditionally - coordinator - Store stats without pointer - In all functions that send a variable via channel, check for context done to avoid deadlock (due to no process reading from the channel, which has no queue) when the node is stopped. - Abstract `canForge` so that it can be used outside of the `Coordinator` - In `canForge` check the blockNumber in current and next slot. - Update tests due to smart contract changes in slot handling, and minimum bid defaults - TxManager - Add consts, vars and stats to allow evaluating `canForge` - Add `canForge` method (not used yet) - Store batch and nonces status (last success and last pending) - Track nonces internally instead of relying on the ethereum node (this is required to work with ganache when there are pending txs) - Handle the (common) case of the receipt not being found after the tx is sent. - Don't start the main loop until we get an initial messae fo the stats and vars (so that in the loop the stats and vars are set to synchronizer values) - When a tx fails, check and discard all the failed transactions before sending the message to stop the pipeline. This will avoid sending consecutive messages of stop the pipeline when multiple txs are detected to be failed consecutively. Also, future txs of the same pipeline after a discarded txs are discarded, and their nonces reused. - Robust handling of nonces: - If geth returns nonce is too low, increase it - If geth returns nonce too hight, decrease it - If geth returns underpriced, increase gas price - If geth returns replace underpriced, increase gas price - Add support for resending transactions after a timeout - Store `BatchInfos` in a queue - Pipeline - When an error is found, stop forging batches and send a message to the coordinator to stop the pipeline with information of the failed batch number so that in a restart, non-failed batches are not repated. - When doing a reset of the stateDB, if possible reset from the local checkpoint instead of resetting from the synchronizer. This allows resetting from a batch that is valid but not yet sent / synced. - Every time a pipeline is started, assign it a number from a counter. This allows the TxManager to ignore batches from stopped pipelines, via a message sent by the coordinator. - Avoid forging when we haven't reached the rollup genesis block number. - Add config parameter `StartSlotBlocksDelay`: StartSlotBlocksDelay is the number of blocks of delay to wait before starting the pipeline when we reach a slot in which we can forge. - When detecting a reorg, only reset the pipeline if the batch from which the pipeline started changed and wasn't sent by us. - Add config parameter `ScheduleBatchBlocksAheadCheck`: ScheduleBatchBlocksAheadCheck is the number of blocks ahead in which the forger address is checked to be allowed to forge (apart from checking the next block), used to decide when to stop scheduling new batches (by stopping the pipeline). For example, if we are at block 10 and ScheduleBatchBlocksAheadCheck is 5, eventhough at block 11 we canForge, the pipeline will be stopped if we can't forge at block 15. This value should be the expected number of blocks it takes between scheduling a batch and having it mined. - Add config parameter `SendBatchBlocksMarginCheck`: SendBatchBlocksMarginCheck is the number of margin blocks ahead in which the coordinator is also checked to be allowed to forge, apart from the next block; used to decide when to stop sending batches to the smart contract. For example, if we are at block 10 and SendBatchBlocksMarginCheck is 5, eventhough at block 11 we canForge, the batch will be discarded if we can't forge at block 15. - Add config parameter `TxResendTimeout`: TxResendTimeout is the timeout after which a non-mined ethereum transaction will be resent (reusing the nonce) with a newly calculated gas price - Add config parameter `MaxGasPrice`: MaxGasPrice is the maximum gas price allowed for ethereum transactions - Add config parameter `NoReuseNonce`: NoReuseNonce disables reusing nonces of pending transactions for new replacement transactions. This is useful for testing with Ganache. - Extend BatchInfo with more useful information for debugging - eth / ethereum client - Add necessary methods to create the auth object for transactions manually so that we can set the nonce, gas price, gas limit, etc manually - Update `RollupForgeBatch` to take an auth object as input (so that the coordinator can set parameters manually) - synchronizer - In stats, add `NextSlot` - In stats, store full last batch instead of just last batch number - Instead of calculating a nextSlot from scratch every time, update the current struct (only updating the forger info if we are Synced) - Afer every processed batch, check that the calculated StateDB MTRoot matches the StateRoot found in the forgeBatch event.
3 years ago
Update coordinator, call all api update functions - Common: - Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition - API: - Add UpdateNetworkInfoBlock to update just block information, to be used when the node is not yet synchronized - Node: - Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with configurable time intervals - Synchronizer: - When mapping events by TxHash, use an array to support the possibility of multiple calls of the same function happening in the same transaction (for example, a smart contract in a single transaction could call withdraw with delay twice, which would generate 2 withdraw events, and 2 deposit events). - In Stats, keep entire LastBlock instead of just the blockNum - In Stats, add lastL1BatchBlock - Test Stats and SCVars - Coordinator: - Enable writing the BatchInfo in every step of the pipeline to disk (with JSON text files) for debugging purposes. - Move the Pipeline functionality from the Coordinator to its own struct (Pipeline) - Implement shouldL1lL2Batch - In TxManager, implement logic to perform several attempts when doing ethereum node RPC calls before considering the error. (Both for calls to forgeBatch and transaction receipt) - In TxManager, reorganize the flow and note the specific points in which actions are made when err != nil - HistoryDB: - Implement GetLastL1BatchBlockNum: returns the blockNum of the latest forged l1Batch, to help the coordinator decide when to forge an L1Batch. - EthereumClient and test.Client: - Update EthBlockByNumber to return the last block when the passed number is -1.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Update missing parts, improve til, and more - Node - Updated configuration to initialize the interface to all the smart contracts - Common - Moved BlockData and BatchData types to common so that they can be shared among: historydb, til and synchronizer - Remove hash.go (it was never used) - Remove slot.go (it was never used) - Remove smartcontractparams.go (it was never used, and appropriate structs are defined in `eth/`) - Comment state / status method until requirements of this method are properly defined, and move it to Synchronizer - Synchronizer - Simplify `Sync` routine to only sync one block per call, and return useful information. - Use BlockData and BatchData from common - Check that events belong to the expected block hash - In L1Batch, query L1UserTxs from HistoryDB - Fill ERC20 token information - Test AddTokens with test.Client - HistryDB - Use BlockData and BatchData from common - Add `GetAllTokens` method - Uncomment and update GetL1UserTxs (with corresponding tests) - Til - Rename all instances of RegisterToken to AddToken (to follow the smart contract implementation naming) - Use BlockData and BatchData from common - Move testL1CoordinatorTxs and testL2Txs to a separate struct from BatchData in Context - Start Context with BatchNum = 1 (which the protocol defines to be the first batchNum) - In every Batch, set StateRoot and ExitRoot to a non-nil big.Int (zero). - In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not used, set it to 0; so that no *big.Int is nil. - In L1UserTx, don't set BatchNum, because when L1UserTxs are created and obtained by the synchronizer, the BatchNum is not known yet (it's a synchronizer job to set it) - In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Update missing parts, improve til, and more - Node - Updated configuration to initialize the interface to all the smart contracts - Common - Moved BlockData and BatchData types to common so that they can be shared among: historydb, til and synchronizer - Remove hash.go (it was never used) - Remove slot.go (it was never used) - Remove smartcontractparams.go (it was never used, and appropriate structs are defined in `eth/`) - Comment state / status method until requirements of this method are properly defined, and move it to Synchronizer - Synchronizer - Simplify `Sync` routine to only sync one block per call, and return useful information. - Use BlockData and BatchData from common - Check that events belong to the expected block hash - In L1Batch, query L1UserTxs from HistoryDB - Fill ERC20 token information - Test AddTokens with test.Client - HistryDB - Use BlockData and BatchData from common - Add `GetAllTokens` method - Uncomment and update GetL1UserTxs (with corresponding tests) - Til - Rename all instances of RegisterToken to AddToken (to follow the smart contract implementation naming) - Use BlockData and BatchData from common - Move testL1CoordinatorTxs and testL2Txs to a separate struct from BatchData in Context - Start Context with BatchNum = 1 (which the protocol defines to be the first batchNum) - In every Batch, set StateRoot and ExitRoot to a non-nil big.Int (zero). - In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not used, set it to 0; so that no *big.Int is nil. - In L1UserTx, don't set BatchNum, because when L1UserTxs are created and obtained by the synchronizer, the BatchNum is not known yet (it's a synchronizer job to set it) - In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago
Update missing parts, improve til, and more - Node - Updated configuration to initialize the interface to all the smart contracts - Common - Moved BlockData and BatchData types to common so that they can be shared among: historydb, til and synchronizer - Remove hash.go (it was never used) - Remove slot.go (it was never used) - Remove smartcontractparams.go (it was never used, and appropriate structs are defined in `eth/`) - Comment state / status method until requirements of this method are properly defined, and move it to Synchronizer - Synchronizer - Simplify `Sync` routine to only sync one block per call, and return useful information. - Use BlockData and BatchData from common - Check that events belong to the expected block hash - In L1Batch, query L1UserTxs from HistoryDB - Fill ERC20 token information - Test AddTokens with test.Client - HistryDB - Use BlockData and BatchData from common - Add `GetAllTokens` method - Uncomment and update GetL1UserTxs (with corresponding tests) - Til - Rename all instances of RegisterToken to AddToken (to follow the smart contract implementation naming) - Use BlockData and BatchData from common - Move testL1CoordinatorTxs and testL2Txs to a separate struct from BatchData in Context - Start Context with BatchNum = 1 (which the protocol defines to be the first batchNum) - In every Batch, set StateRoot and ExitRoot to a non-nil big.Int (zero). - In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not used, set it to 0; so that no *big.Int is nil. - In L1UserTx, don't set BatchNum, because when L1UserTxs are created and obtained by the synchronizer, the BatchNum is not known yet (it's a synchronizer job to set it) - In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago
Update missing parts, improve til, and more - Node - Updated configuration to initialize the interface to all the smart contracts - Common - Moved BlockData and BatchData types to common so that they can be shared among: historydb, til and synchronizer - Remove hash.go (it was never used) - Remove slot.go (it was never used) - Remove smartcontractparams.go (it was never used, and appropriate structs are defined in `eth/`) - Comment state / status method until requirements of this method are properly defined, and move it to Synchronizer - Synchronizer - Simplify `Sync` routine to only sync one block per call, and return useful information. - Use BlockData and BatchData from common - Check that events belong to the expected block hash - In L1Batch, query L1UserTxs from HistoryDB - Fill ERC20 token information - Test AddTokens with test.Client - HistryDB - Use BlockData and BatchData from common - Add `GetAllTokens` method - Uncomment and update GetL1UserTxs (with corresponding tests) - Til - Rename all instances of RegisterToken to AddToken (to follow the smart contract implementation naming) - Use BlockData and BatchData from common - Move testL1CoordinatorTxs and testL2Txs to a separate struct from BatchData in Context - Start Context with BatchNum = 1 (which the protocol defines to be the first batchNum) - In every Batch, set StateRoot and ExitRoot to a non-nil big.Int (zero). - In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not used, set it to 0; so that no *big.Int is nil. - In L1UserTx, don't set BatchNum, because when L1UserTxs are created and obtained by the synchronizer, the BatchNum is not known yet (it's a synchronizer job to set it) - In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Update coordinator, call all api update functions - Common: - Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition - API: - Add UpdateNetworkInfoBlock to update just block information, to be used when the node is not yet synchronized - Node: - Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with configurable time intervals - Synchronizer: - When mapping events by TxHash, use an array to support the possibility of multiple calls of the same function happening in the same transaction (for example, a smart contract in a single transaction could call withdraw with delay twice, which would generate 2 withdraw events, and 2 deposit events). - In Stats, keep entire LastBlock instead of just the blockNum - In Stats, add lastL1BatchBlock - Test Stats and SCVars - Coordinator: - Enable writing the BatchInfo in every step of the pipeline to disk (with JSON text files) for debugging purposes. - Move the Pipeline functionality from the Coordinator to its own struct (Pipeline) - Implement shouldL1lL2Batch - In TxManager, implement logic to perform several attempts when doing ethereum node RPC calls before considering the error. (Both for calls to forgeBatch and transaction receipt) - In TxManager, reorganize the flow and note the specific points in which actions are made when err != nil - HistoryDB: - Implement GetLastL1BatchBlockNum: returns the blockNum of the latest forged l1Batch, to help the coordinator decide when to forge an L1Batch. - EthereumClient and test.Client: - Update EthBlockByNumber to return the last block when the passed number is -1.
4 years ago
Update coordinator to work better under real net - cli / node - Update handler of SIGINT so that after 3 SIGINTs, the process terminates unconditionally - coordinator - Store stats without pointer - In all functions that send a variable via channel, check for context done to avoid deadlock (due to no process reading from the channel, which has no queue) when the node is stopped. - Abstract `canForge` so that it can be used outside of the `Coordinator` - In `canForge` check the blockNumber in current and next slot. - Update tests due to smart contract changes in slot handling, and minimum bid defaults - TxManager - Add consts, vars and stats to allow evaluating `canForge` - Add `canForge` method (not used yet) - Store batch and nonces status (last success and last pending) - Track nonces internally instead of relying on the ethereum node (this is required to work with ganache when there are pending txs) - Handle the (common) case of the receipt not being found after the tx is sent. - Don't start the main loop until we get an initial messae fo the stats and vars (so that in the loop the stats and vars are set to synchronizer values) - When a tx fails, check and discard all the failed transactions before sending the message to stop the pipeline. This will avoid sending consecutive messages of stop the pipeline when multiple txs are detected to be failed consecutively. Also, future txs of the same pipeline after a discarded txs are discarded, and their nonces reused. - Robust handling of nonces: - If geth returns nonce is too low, increase it - If geth returns nonce too hight, decrease it - If geth returns underpriced, increase gas price - If geth returns replace underpriced, increase gas price - Add support for resending transactions after a timeout - Store `BatchInfos` in a queue - Pipeline - When an error is found, stop forging batches and send a message to the coordinator to stop the pipeline with information of the failed batch number so that in a restart, non-failed batches are not repated. - When doing a reset of the stateDB, if possible reset from the local checkpoint instead of resetting from the synchronizer. This allows resetting from a batch that is valid but not yet sent / synced. - Every time a pipeline is started, assign it a number from a counter. This allows the TxManager to ignore batches from stopped pipelines, via a message sent by the coordinator. - Avoid forging when we haven't reached the rollup genesis block number. - Add config parameter `StartSlotBlocksDelay`: StartSlotBlocksDelay is the number of blocks of delay to wait before starting the pipeline when we reach a slot in which we can forge. - When detecting a reorg, only reset the pipeline if the batch from which the pipeline started changed and wasn't sent by us. - Add config parameter `ScheduleBatchBlocksAheadCheck`: ScheduleBatchBlocksAheadCheck is the number of blocks ahead in which the forger address is checked to be allowed to forge (apart from checking the next block), used to decide when to stop scheduling new batches (by stopping the pipeline). For example, if we are at block 10 and ScheduleBatchBlocksAheadCheck is 5, eventhough at block 11 we canForge, the pipeline will be stopped if we can't forge at block 15. This value should be the expected number of blocks it takes between scheduling a batch and having it mined. - Add config parameter `SendBatchBlocksMarginCheck`: SendBatchBlocksMarginCheck is the number of margin blocks ahead in which the coordinator is also checked to be allowed to forge, apart from the next block; used to decide when to stop sending batches to the smart contract. For example, if we are at block 10 and SendBatchBlocksMarginCheck is 5, eventhough at block 11 we canForge, the batch will be discarded if we can't forge at block 15. - Add config parameter `TxResendTimeout`: TxResendTimeout is the timeout after which a non-mined ethereum transaction will be resent (reusing the nonce) with a newly calculated gas price - Add config parameter `MaxGasPrice`: MaxGasPrice is the maximum gas price allowed for ethereum transactions - Add config parameter `NoReuseNonce`: NoReuseNonce disables reusing nonces of pending transactions for new replacement transactions. This is useful for testing with Ganache. - Extend BatchInfo with more useful information for debugging - eth / ethereum client - Add necessary methods to create the auth object for transactions manually so that we can set the nonce, gas price, gas limit, etc manually - Update `RollupForgeBatch` to take an auth object as input (so that the coordinator can set parameters manually) - synchronizer - In stats, add `NextSlot` - In stats, store full last batch instead of just last batch number - Instead of calculating a nextSlot from scratch every time, update the current struct (only updating the forger info if we are Synced) - Afer every processed batch, check that the calculated StateDB MTRoot matches the StateRoot found in the forgeBatch event.
3 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Update coordinator, call all api update functions - Common: - Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition - API: - Add UpdateNetworkInfoBlock to update just block information, to be used when the node is not yet synchronized - Node: - Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with configurable time intervals - Synchronizer: - When mapping events by TxHash, use an array to support the possibility of multiple calls of the same function happening in the same transaction (for example, a smart contract in a single transaction could call withdraw with delay twice, which would generate 2 withdraw events, and 2 deposit events). - In Stats, keep entire LastBlock instead of just the blockNum - In Stats, add lastL1BatchBlock - Test Stats and SCVars - Coordinator: - Enable writing the BatchInfo in every step of the pipeline to disk (with JSON text files) for debugging purposes. - Move the Pipeline functionality from the Coordinator to its own struct (Pipeline) - Implement shouldL1lL2Batch - In TxManager, implement logic to perform several attempts when doing ethereum node RPC calls before considering the error. (Both for calls to forgeBatch and transaction receipt) - In TxManager, reorganize the flow and note the specific points in which actions are made when err != nil - HistoryDB: - Implement GetLastL1BatchBlockNum: returns the blockNum of the latest forged l1Batch, to help the coordinator decide when to forge an L1Batch. - EthereumClient and test.Client: - Update EthBlockByNumber to return the last block when the passed number is -1.
4 years ago
Update coordinator, call all api update functions - Common: - Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition - API: - Add UpdateNetworkInfoBlock to update just block information, to be used when the node is not yet synchronized - Node: - Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with configurable time intervals - Synchronizer: - When mapping events by TxHash, use an array to support the possibility of multiple calls of the same function happening in the same transaction (for example, a smart contract in a single transaction could call withdraw with delay twice, which would generate 2 withdraw events, and 2 deposit events). - In Stats, keep entire LastBlock instead of just the blockNum - In Stats, add lastL1BatchBlock - Test Stats and SCVars - Coordinator: - Enable writing the BatchInfo in every step of the pipeline to disk (with JSON text files) for debugging purposes. - Move the Pipeline functionality from the Coordinator to its own struct (Pipeline) - Implement shouldL1lL2Batch - In TxManager, implement logic to perform several attempts when doing ethereum node RPC calls before considering the error. (Both for calls to forgeBatch and transaction receipt) - In TxManager, reorganize the flow and note the specific points in which actions are made when err != nil - HistoryDB: - Implement GetLastL1BatchBlockNum: returns the blockNum of the latest forged l1Batch, to help the coordinator decide when to forge an L1Batch. - EthereumClient and test.Client: - Update EthBlockByNumber to return the last block when the passed number is -1.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Update coordinator, call all api update functions - Common: - Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition - API: - Add UpdateNetworkInfoBlock to update just block information, to be used when the node is not yet synchronized - Node: - Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with configurable time intervals - Synchronizer: - When mapping events by TxHash, use an array to support the possibility of multiple calls of the same function happening in the same transaction (for example, a smart contract in a single transaction could call withdraw with delay twice, which would generate 2 withdraw events, and 2 deposit events). - In Stats, keep entire LastBlock instead of just the blockNum - In Stats, add lastL1BatchBlock - Test Stats and SCVars - Coordinator: - Enable writing the BatchInfo in every step of the pipeline to disk (with JSON text files) for debugging purposes. - Move the Pipeline functionality from the Coordinator to its own struct (Pipeline) - Implement shouldL1lL2Batch - In TxManager, implement logic to perform several attempts when doing ethereum node RPC calls before considering the error. (Both for calls to forgeBatch and transaction receipt) - In TxManager, reorganize the flow and note the specific points in which actions are made when err != nil - HistoryDB: - Implement GetLastL1BatchBlockNum: returns the blockNum of the latest forged l1Batch, to help the coordinator decide when to forge an L1Batch. - EthereumClient and test.Client: - Update EthBlockByNumber to return the last block when the passed number is -1.
4 years ago
Update coordinator, call all api update functions - Common: - Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition - API: - Add UpdateNetworkInfoBlock to update just block information, to be used when the node is not yet synchronized - Node: - Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with configurable time intervals - Synchronizer: - When mapping events by TxHash, use an array to support the possibility of multiple calls of the same function happening in the same transaction (for example, a smart contract in a single transaction could call withdraw with delay twice, which would generate 2 withdraw events, and 2 deposit events). - In Stats, keep entire LastBlock instead of just the blockNum - In Stats, add lastL1BatchBlock - Test Stats and SCVars - Coordinator: - Enable writing the BatchInfo in every step of the pipeline to disk (with JSON text files) for debugging purposes. - Move the Pipeline functionality from the Coordinator to its own struct (Pipeline) - Implement shouldL1lL2Batch - In TxManager, implement logic to perform several attempts when doing ethereum node RPC calls before considering the error. (Both for calls to forgeBatch and transaction receipt) - In TxManager, reorganize the flow and note the specific points in which actions are made when err != nil - HistoryDB: - Implement GetLastL1BatchBlockNum: returns the blockNum of the latest forged l1Batch, to help the coordinator decide when to forge an L1Batch. - EthereumClient and test.Client: - Update EthBlockByNumber to return the last block when the passed number is -1.
4 years ago
Update coordinator, call all api update functions - Common: - Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition - API: - Add UpdateNetworkInfoBlock to update just block information, to be used when the node is not yet synchronized - Node: - Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with configurable time intervals - Synchronizer: - When mapping events by TxHash, use an array to support the possibility of multiple calls of the same function happening in the same transaction (for example, a smart contract in a single transaction could call withdraw with delay twice, which would generate 2 withdraw events, and 2 deposit events). - In Stats, keep entire LastBlock instead of just the blockNum - In Stats, add lastL1BatchBlock - Test Stats and SCVars - Coordinator: - Enable writing the BatchInfo in every step of the pipeline to disk (with JSON text files) for debugging purposes. - Move the Pipeline functionality from the Coordinator to its own struct (Pipeline) - Implement shouldL1lL2Batch - In TxManager, implement logic to perform several attempts when doing ethereum node RPC calls before considering the error. (Both for calls to forgeBatch and transaction receipt) - In TxManager, reorganize the flow and note the specific points in which actions are made when err != nil - HistoryDB: - Implement GetLastL1BatchBlockNum: returns the blockNum of the latest forged l1Batch, to help the coordinator decide when to forge an L1Batch. - EthereumClient and test.Client: - Update EthBlockByNumber to return the last block when the passed number is -1.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Update missing parts, improve til, and more - Node - Updated configuration to initialize the interface to all the smart contracts - Common - Moved BlockData and BatchData types to common so that they can be shared among: historydb, til and synchronizer - Remove hash.go (it was never used) - Remove slot.go (it was never used) - Remove smartcontractparams.go (it was never used, and appropriate structs are defined in `eth/`) - Comment state / status method until requirements of this method are properly defined, and move it to Synchronizer - Synchronizer - Simplify `Sync` routine to only sync one block per call, and return useful information. - Use BlockData and BatchData from common - Check that events belong to the expected block hash - In L1Batch, query L1UserTxs from HistoryDB - Fill ERC20 token information - Test AddTokens with test.Client - HistryDB - Use BlockData and BatchData from common - Add `GetAllTokens` method - Uncomment and update GetL1UserTxs (with corresponding tests) - Til - Rename all instances of RegisterToken to AddToken (to follow the smart contract implementation naming) - Use BlockData and BatchData from common - Move testL1CoordinatorTxs and testL2Txs to a separate struct from BatchData in Context - Start Context with BatchNum = 1 (which the protocol defines to be the first batchNum) - In every Batch, set StateRoot and ExitRoot to a non-nil big.Int (zero). - In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not used, set it to 0; so that no *big.Int is nil. - In L1UserTx, don't set BatchNum, because when L1UserTxs are created and obtained by the synchronizer, the BatchNum is not known yet (it's a synchronizer job to set it) - In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago
3 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Update coordinator to work better under real net - cli / node - Update handler of SIGINT so that after 3 SIGINTs, the process terminates unconditionally - coordinator - Store stats without pointer - In all functions that send a variable via channel, check for context done to avoid deadlock (due to no process reading from the channel, which has no queue) when the node is stopped. - Abstract `canForge` so that it can be used outside of the `Coordinator` - In `canForge` check the blockNumber in current and next slot. - Update tests due to smart contract changes in slot handling, and minimum bid defaults - TxManager - Add consts, vars and stats to allow evaluating `canForge` - Add `canForge` method (not used yet) - Store batch and nonces status (last success and last pending) - Track nonces internally instead of relying on the ethereum node (this is required to work with ganache when there are pending txs) - Handle the (common) case of the receipt not being found after the tx is sent. - Don't start the main loop until we get an initial messae fo the stats and vars (so that in the loop the stats and vars are set to synchronizer values) - When a tx fails, check and discard all the failed transactions before sending the message to stop the pipeline. This will avoid sending consecutive messages of stop the pipeline when multiple txs are detected to be failed consecutively. Also, future txs of the same pipeline after a discarded txs are discarded, and their nonces reused. - Robust handling of nonces: - If geth returns nonce is too low, increase it - If geth returns nonce too hight, decrease it - If geth returns underpriced, increase gas price - If geth returns replace underpriced, increase gas price - Add support for resending transactions after a timeout - Store `BatchInfos` in a queue - Pipeline - When an error is found, stop forging batches and send a message to the coordinator to stop the pipeline with information of the failed batch number so that in a restart, non-failed batches are not repated. - When doing a reset of the stateDB, if possible reset from the local checkpoint instead of resetting from the synchronizer. This allows resetting from a batch that is valid but not yet sent / synced. - Every time a pipeline is started, assign it a number from a counter. This allows the TxManager to ignore batches from stopped pipelines, via a message sent by the coordinator. - Avoid forging when we haven't reached the rollup genesis block number. - Add config parameter `StartSlotBlocksDelay`: StartSlotBlocksDelay is the number of blocks of delay to wait before starting the pipeline when we reach a slot in which we can forge. - When detecting a reorg, only reset the pipeline if the batch from which the pipeline started changed and wasn't sent by us. - Add config parameter `ScheduleBatchBlocksAheadCheck`: ScheduleBatchBlocksAheadCheck is the number of blocks ahead in which the forger address is checked to be allowed to forge (apart from checking the next block), used to decide when to stop scheduling new batches (by stopping the pipeline). For example, if we are at block 10 and ScheduleBatchBlocksAheadCheck is 5, eventhough at block 11 we canForge, the pipeline will be stopped if we can't forge at block 15. This value should be the expected number of blocks it takes between scheduling a batch and having it mined. - Add config parameter `SendBatchBlocksMarginCheck`: SendBatchBlocksMarginCheck is the number of margin blocks ahead in which the coordinator is also checked to be allowed to forge, apart from the next block; used to decide when to stop sending batches to the smart contract. For example, if we are at block 10 and SendBatchBlocksMarginCheck is 5, eventhough at block 11 we canForge, the batch will be discarded if we can't forge at block 15. - Add config parameter `TxResendTimeout`: TxResendTimeout is the timeout after which a non-mined ethereum transaction will be resent (reusing the nonce) with a newly calculated gas price - Add config parameter `MaxGasPrice`: MaxGasPrice is the maximum gas price allowed for ethereum transactions - Add config parameter `NoReuseNonce`: NoReuseNonce disables reusing nonces of pending transactions for new replacement transactions. This is useful for testing with Ganache. - Extend BatchInfo with more useful information for debugging - eth / ethereum client - Add necessary methods to create the auth object for transactions manually so that we can set the nonce, gas price, gas limit, etc manually - Update `RollupForgeBatch` to take an auth object as input (so that the coordinator can set parameters manually) - synchronizer - In stats, add `NextSlot` - In stats, store full last batch instead of just last batch number - Instead of calculating a nextSlot from scratch every time, update the current struct (only updating the forger info if we are Synced) - Afer every processed batch, check that the calculated StateDB MTRoot matches the StateRoot found in the forgeBatch event.
3 years ago
Update coordinator to work better under real net - cli / node - Update handler of SIGINT so that after 3 SIGINTs, the process terminates unconditionally - coordinator - Store stats without pointer - In all functions that send a variable via channel, check for context done to avoid deadlock (due to no process reading from the channel, which has no queue) when the node is stopped. - Abstract `canForge` so that it can be used outside of the `Coordinator` - In `canForge` check the blockNumber in current and next slot. - Update tests due to smart contract changes in slot handling, and minimum bid defaults - TxManager - Add consts, vars and stats to allow evaluating `canForge` - Add `canForge` method (not used yet) - Store batch and nonces status (last success and last pending) - Track nonces internally instead of relying on the ethereum node (this is required to work with ganache when there are pending txs) - Handle the (common) case of the receipt not being found after the tx is sent. - Don't start the main loop until we get an initial messae fo the stats and vars (so that in the loop the stats and vars are set to synchronizer values) - When a tx fails, check and discard all the failed transactions before sending the message to stop the pipeline. This will avoid sending consecutive messages of stop the pipeline when multiple txs are detected to be failed consecutively. Also, future txs of the same pipeline after a discarded txs are discarded, and their nonces reused. - Robust handling of nonces: - If geth returns nonce is too low, increase it - If geth returns nonce too hight, decrease it - If geth returns underpriced, increase gas price - If geth returns replace underpriced, increase gas price - Add support for resending transactions after a timeout - Store `BatchInfos` in a queue - Pipeline - When an error is found, stop forging batches and send a message to the coordinator to stop the pipeline with information of the failed batch number so that in a restart, non-failed batches are not repated. - When doing a reset of the stateDB, if possible reset from the local checkpoint instead of resetting from the synchronizer. This allows resetting from a batch that is valid but not yet sent / synced. - Every time a pipeline is started, assign it a number from a counter. This allows the TxManager to ignore batches from stopped pipelines, via a message sent by the coordinator. - Avoid forging when we haven't reached the rollup genesis block number. - Add config parameter `StartSlotBlocksDelay`: StartSlotBlocksDelay is the number of blocks of delay to wait before starting the pipeline when we reach a slot in which we can forge. - When detecting a reorg, only reset the pipeline if the batch from which the pipeline started changed and wasn't sent by us. - Add config parameter `ScheduleBatchBlocksAheadCheck`: ScheduleBatchBlocksAheadCheck is the number of blocks ahead in which the forger address is checked to be allowed to forge (apart from checking the next block), used to decide when to stop scheduling new batches (by stopping the pipeline). For example, if we are at block 10 and ScheduleBatchBlocksAheadCheck is 5, eventhough at block 11 we canForge, the pipeline will be stopped if we can't forge at block 15. This value should be the expected number of blocks it takes between scheduling a batch and having it mined. - Add config parameter `SendBatchBlocksMarginCheck`: SendBatchBlocksMarginCheck is the number of margin blocks ahead in which the coordinator is also checked to be allowed to forge, apart from the next block; used to decide when to stop sending batches to the smart contract. For example, if we are at block 10 and SendBatchBlocksMarginCheck is 5, eventhough at block 11 we canForge, the batch will be discarded if we can't forge at block 15. - Add config parameter `TxResendTimeout`: TxResendTimeout is the timeout after which a non-mined ethereum transaction will be resent (reusing the nonce) with a newly calculated gas price - Add config parameter `MaxGasPrice`: MaxGasPrice is the maximum gas price allowed for ethereum transactions - Add config parameter `NoReuseNonce`: NoReuseNonce disables reusing nonces of pending transactions for new replacement transactions. This is useful for testing with Ganache. - Extend BatchInfo with more useful information for debugging - eth / ethereum client - Add necessary methods to create the auth object for transactions manually so that we can set the nonce, gas price, gas limit, etc manually - Update `RollupForgeBatch` to take an auth object as input (so that the coordinator can set parameters manually) - synchronizer - In stats, add `NextSlot` - In stats, store full last batch instead of just last batch number - Instead of calculating a nextSlot from scratch every time, update the current struct (only updating the forger info if we are Synced) - Afer every processed batch, check that the calculated StateDB MTRoot matches the StateRoot found in the forgeBatch event.
3 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Update coordinator, call all api update functions - Common: - Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition - API: - Add UpdateNetworkInfoBlock to update just block information, to be used when the node is not yet synchronized - Node: - Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with configurable time intervals - Synchronizer: - When mapping events by TxHash, use an array to support the possibility of multiple calls of the same function happening in the same transaction (for example, a smart contract in a single transaction could call withdraw with delay twice, which would generate 2 withdraw events, and 2 deposit events). - In Stats, keep entire LastBlock instead of just the blockNum - In Stats, add lastL1BatchBlock - Test Stats and SCVars - Coordinator: - Enable writing the BatchInfo in every step of the pipeline to disk (with JSON text files) for debugging purposes. - Move the Pipeline functionality from the Coordinator to its own struct (Pipeline) - Implement shouldL1lL2Batch - In TxManager, implement logic to perform several attempts when doing ethereum node RPC calls before considering the error. (Both for calls to forgeBatch and transaction receipt) - In TxManager, reorganize the flow and note the specific points in which actions are made when err != nil - HistoryDB: - Implement GetLastL1BatchBlockNum: returns the blockNum of the latest forged l1Batch, to help the coordinator decide when to forge an L1Batch. - EthereumClient and test.Client: - Update EthBlockByNumber to return the last block when the passed number is -1.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Update missing parts, improve til, and more - Node - Updated configuration to initialize the interface to all the smart contracts - Common - Moved BlockData and BatchData types to common so that they can be shared among: historydb, til and synchronizer - Remove hash.go (it was never used) - Remove slot.go (it was never used) - Remove smartcontractparams.go (it was never used, and appropriate structs are defined in `eth/`) - Comment state / status method until requirements of this method are properly defined, and move it to Synchronizer - Synchronizer - Simplify `Sync` routine to only sync one block per call, and return useful information. - Use BlockData and BatchData from common - Check that events belong to the expected block hash - In L1Batch, query L1UserTxs from HistoryDB - Fill ERC20 token information - Test AddTokens with test.Client - HistryDB - Use BlockData and BatchData from common - Add `GetAllTokens` method - Uncomment and update GetL1UserTxs (with corresponding tests) - Til - Rename all instances of RegisterToken to AddToken (to follow the smart contract implementation naming) - Use BlockData and BatchData from common - Move testL1CoordinatorTxs and testL2Txs to a separate struct from BatchData in Context - Start Context with BatchNum = 1 (which the protocol defines to be the first batchNum) - In every Batch, set StateRoot and ExitRoot to a non-nil big.Int (zero). - In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not used, set it to 0; so that no *big.Int is nil. - In L1UserTx, don't set BatchNum, because when L1UserTxs are created and obtained by the synchronizer, the BatchNum is not known yet (it's a synchronizer job to set it) - In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Update missing parts, improve til, and more - Node - Updated configuration to initialize the interface to all the smart contracts - Common - Moved BlockData and BatchData types to common so that they can be shared among: historydb, til and synchronizer - Remove hash.go (it was never used) - Remove slot.go (it was never used) - Remove smartcontractparams.go (it was never used, and appropriate structs are defined in `eth/`) - Comment state / status method until requirements of this method are properly defined, and move it to Synchronizer - Synchronizer - Simplify `Sync` routine to only sync one block per call, and return useful information. - Use BlockData and BatchData from common - Check that events belong to the expected block hash - In L1Batch, query L1UserTxs from HistoryDB - Fill ERC20 token information - Test AddTokens with test.Client - HistryDB - Use BlockData and BatchData from common - Add `GetAllTokens` method - Uncomment and update GetL1UserTxs (with corresponding tests) - Til - Rename all instances of RegisterToken to AddToken (to follow the smart contract implementation naming) - Use BlockData and BatchData from common - Move testL1CoordinatorTxs and testL2Txs to a separate struct from BatchData in Context - Start Context with BatchNum = 1 (which the protocol defines to be the first batchNum) - In every Batch, set StateRoot and ExitRoot to a non-nil big.Int (zero). - In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not used, set it to 0; so that no *big.Int is nil. - In L1UserTx, don't set BatchNum, because when L1UserTxs are created and obtained by the synchronizer, the BatchNum is not known yet (it's a synchronizer job to set it) - In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Update coordinator to work better under real net - cli / node - Update handler of SIGINT so that after 3 SIGINTs, the process terminates unconditionally - coordinator - Store stats without pointer - In all functions that send a variable via channel, check for context done to avoid deadlock (due to no process reading from the channel, which has no queue) when the node is stopped. - Abstract `canForge` so that it can be used outside of the `Coordinator` - In `canForge` check the blockNumber in current and next slot. - Update tests due to smart contract changes in slot handling, and minimum bid defaults - TxManager - Add consts, vars and stats to allow evaluating `canForge` - Add `canForge` method (not used yet) - Store batch and nonces status (last success and last pending) - Track nonces internally instead of relying on the ethereum node (this is required to work with ganache when there are pending txs) - Handle the (common) case of the receipt not being found after the tx is sent. - Don't start the main loop until we get an initial messae fo the stats and vars (so that in the loop the stats and vars are set to synchronizer values) - When a tx fails, check and discard all the failed transactions before sending the message to stop the pipeline. This will avoid sending consecutive messages of stop the pipeline when multiple txs are detected to be failed consecutively. Also, future txs of the same pipeline after a discarded txs are discarded, and their nonces reused. - Robust handling of nonces: - If geth returns nonce is too low, increase it - If geth returns nonce too hight, decrease it - If geth returns underpriced, increase gas price - If geth returns replace underpriced, increase gas price - Add support for resending transactions after a timeout - Store `BatchInfos` in a queue - Pipeline - When an error is found, stop forging batches and send a message to the coordinator to stop the pipeline with information of the failed batch number so that in a restart, non-failed batches are not repated. - When doing a reset of the stateDB, if possible reset from the local checkpoint instead of resetting from the synchronizer. This allows resetting from a batch that is valid but not yet sent / synced. - Every time a pipeline is started, assign it a number from a counter. This allows the TxManager to ignore batches from stopped pipelines, via a message sent by the coordinator. - Avoid forging when we haven't reached the rollup genesis block number. - Add config parameter `StartSlotBlocksDelay`: StartSlotBlocksDelay is the number of blocks of delay to wait before starting the pipeline when we reach a slot in which we can forge. - When detecting a reorg, only reset the pipeline if the batch from which the pipeline started changed and wasn't sent by us. - Add config parameter `ScheduleBatchBlocksAheadCheck`: ScheduleBatchBlocksAheadCheck is the number of blocks ahead in which the forger address is checked to be allowed to forge (apart from checking the next block), used to decide when to stop scheduling new batches (by stopping the pipeline). For example, if we are at block 10 and ScheduleBatchBlocksAheadCheck is 5, eventhough at block 11 we canForge, the pipeline will be stopped if we can't forge at block 15. This value should be the expected number of blocks it takes between scheduling a batch and having it mined. - Add config parameter `SendBatchBlocksMarginCheck`: SendBatchBlocksMarginCheck is the number of margin blocks ahead in which the coordinator is also checked to be allowed to forge, apart from the next block; used to decide when to stop sending batches to the smart contract. For example, if we are at block 10 and SendBatchBlocksMarginCheck is 5, eventhough at block 11 we canForge, the batch will be discarded if we can't forge at block 15. - Add config parameter `TxResendTimeout`: TxResendTimeout is the timeout after which a non-mined ethereum transaction will be resent (reusing the nonce) with a newly calculated gas price - Add config parameter `MaxGasPrice`: MaxGasPrice is the maximum gas price allowed for ethereum transactions - Add config parameter `NoReuseNonce`: NoReuseNonce disables reusing nonces of pending transactions for new replacement transactions. This is useful for testing with Ganache. - Extend BatchInfo with more useful information for debugging - eth / ethereum client - Add necessary methods to create the auth object for transactions manually so that we can set the nonce, gas price, gas limit, etc manually - Update `RollupForgeBatch` to take an auth object as input (so that the coordinator can set parameters manually) - synchronizer - In stats, add `NextSlot` - In stats, store full last batch instead of just last batch number - Instead of calculating a nextSlot from scratch every time, update the current struct (only updating the forger info if we are Synced) - Afer every processed batch, check that the calculated StateDB MTRoot matches the StateRoot found in the forgeBatch event.
3 years ago
Update coordinator to work better under real net - cli / node - Update handler of SIGINT so that after 3 SIGINTs, the process terminates unconditionally - coordinator - Store stats without pointer - In all functions that send a variable via channel, check for context done to avoid deadlock (due to no process reading from the channel, which has no queue) when the node is stopped. - Abstract `canForge` so that it can be used outside of the `Coordinator` - In `canForge` check the blockNumber in current and next slot. - Update tests due to smart contract changes in slot handling, and minimum bid defaults - TxManager - Add consts, vars and stats to allow evaluating `canForge` - Add `canForge` method (not used yet) - Store batch and nonces status (last success and last pending) - Track nonces internally instead of relying on the ethereum node (this is required to work with ganache when there are pending txs) - Handle the (common) case of the receipt not being found after the tx is sent. - Don't start the main loop until we get an initial messae fo the stats and vars (so that in the loop the stats and vars are set to synchronizer values) - When a tx fails, check and discard all the failed transactions before sending the message to stop the pipeline. This will avoid sending consecutive messages of stop the pipeline when multiple txs are detected to be failed consecutively. Also, future txs of the same pipeline after a discarded txs are discarded, and their nonces reused. - Robust handling of nonces: - If geth returns nonce is too low, increase it - If geth returns nonce too hight, decrease it - If geth returns underpriced, increase gas price - If geth returns replace underpriced, increase gas price - Add support for resending transactions after a timeout - Store `BatchInfos` in a queue - Pipeline - When an error is found, stop forging batches and send a message to the coordinator to stop the pipeline with information of the failed batch number so that in a restart, non-failed batches are not repated. - When doing a reset of the stateDB, if possible reset from the local checkpoint instead of resetting from the synchronizer. This allows resetting from a batch that is valid but not yet sent / synced. - Every time a pipeline is started, assign it a number from a counter. This allows the TxManager to ignore batches from stopped pipelines, via a message sent by the coordinator. - Avoid forging when we haven't reached the rollup genesis block number. - Add config parameter `StartSlotBlocksDelay`: StartSlotBlocksDelay is the number of blocks of delay to wait before starting the pipeline when we reach a slot in which we can forge. - When detecting a reorg, only reset the pipeline if the batch from which the pipeline started changed and wasn't sent by us. - Add config parameter `ScheduleBatchBlocksAheadCheck`: ScheduleBatchBlocksAheadCheck is the number of blocks ahead in which the forger address is checked to be allowed to forge (apart from checking the next block), used to decide when to stop scheduling new batches (by stopping the pipeline). For example, if we are at block 10 and ScheduleBatchBlocksAheadCheck is 5, eventhough at block 11 we canForge, the pipeline will be stopped if we can't forge at block 15. This value should be the expected number of blocks it takes between scheduling a batch and having it mined. - Add config parameter `SendBatchBlocksMarginCheck`: SendBatchBlocksMarginCheck is the number of margin blocks ahead in which the coordinator is also checked to be allowed to forge, apart from the next block; used to decide when to stop sending batches to the smart contract. For example, if we are at block 10 and SendBatchBlocksMarginCheck is 5, eventhough at block 11 we canForge, the batch will be discarded if we can't forge at block 15. - Add config parameter `TxResendTimeout`: TxResendTimeout is the timeout after which a non-mined ethereum transaction will be resent (reusing the nonce) with a newly calculated gas price - Add config parameter `MaxGasPrice`: MaxGasPrice is the maximum gas price allowed for ethereum transactions - Add config parameter `NoReuseNonce`: NoReuseNonce disables reusing nonces of pending transactions for new replacement transactions. This is useful for testing with Ganache. - Extend BatchInfo with more useful information for debugging - eth / ethereum client - Add necessary methods to create the auth object for transactions manually so that we can set the nonce, gas price, gas limit, etc manually - Update `RollupForgeBatch` to take an auth object as input (so that the coordinator can set parameters manually) - synchronizer - In stats, add `NextSlot` - In stats, store full last batch instead of just last batch number - Instead of calculating a nextSlot from scratch every time, update the current struct (only updating the forger info if we are Synced) - Afer every processed batch, check that the calculated StateDB MTRoot matches the StateRoot found in the forgeBatch event.
3 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Update coordinator, call all api update functions - Common: - Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition - API: - Add UpdateNetworkInfoBlock to update just block information, to be used when the node is not yet synchronized - Node: - Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with configurable time intervals - Synchronizer: - When mapping events by TxHash, use an array to support the possibility of multiple calls of the same function happening in the same transaction (for example, a smart contract in a single transaction could call withdraw with delay twice, which would generate 2 withdraw events, and 2 deposit events). - In Stats, keep entire LastBlock instead of just the blockNum - In Stats, add lastL1BatchBlock - Test Stats and SCVars - Coordinator: - Enable writing the BatchInfo in every step of the pipeline to disk (with JSON text files) for debugging purposes. - Move the Pipeline functionality from the Coordinator to its own struct (Pipeline) - Implement shouldL1lL2Batch - In TxManager, implement logic to perform several attempts when doing ethereum node RPC calls before considering the error. (Both for calls to forgeBatch and transaction receipt) - In TxManager, reorganize the flow and note the specific points in which actions are made when err != nil - HistoryDB: - Implement GetLastL1BatchBlockNum: returns the blockNum of the latest forged l1Batch, to help the coordinator decide when to forge an L1Batch. - EthereumClient and test.Client: - Update EthBlockByNumber to return the last block when the passed number is -1.
4 years ago
Update coordinator, call all api update functions - Common: - Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition - API: - Add UpdateNetworkInfoBlock to update just block information, to be used when the node is not yet synchronized - Node: - Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with configurable time intervals - Synchronizer: - When mapping events by TxHash, use an array to support the possibility of multiple calls of the same function happening in the same transaction (for example, a smart contract in a single transaction could call withdraw with delay twice, which would generate 2 withdraw events, and 2 deposit events). - In Stats, keep entire LastBlock instead of just the blockNum - In Stats, add lastL1BatchBlock - Test Stats and SCVars - Coordinator: - Enable writing the BatchInfo in every step of the pipeline to disk (with JSON text files) for debugging purposes. - Move the Pipeline functionality from the Coordinator to its own struct (Pipeline) - Implement shouldL1lL2Batch - In TxManager, implement logic to perform several attempts when doing ethereum node RPC calls before considering the error. (Both for calls to forgeBatch and transaction receipt) - In TxManager, reorganize the flow and note the specific points in which actions are made when err != nil - HistoryDB: - Implement GetLastL1BatchBlockNum: returns the blockNum of the latest forged l1Batch, to help the coordinator decide when to forge an L1Batch. - EthereumClient and test.Client: - Update EthBlockByNumber to return the last block when the passed number is -1.
4 years ago
Update coordinator, call all api update functions - Common: - Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition - API: - Add UpdateNetworkInfoBlock to update just block information, to be used when the node is not yet synchronized - Node: - Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with configurable time intervals - Synchronizer: - When mapping events by TxHash, use an array to support the possibility of multiple calls of the same function happening in the same transaction (for example, a smart contract in a single transaction could call withdraw with delay twice, which would generate 2 withdraw events, and 2 deposit events). - In Stats, keep entire LastBlock instead of just the blockNum - In Stats, add lastL1BatchBlock - Test Stats and SCVars - Coordinator: - Enable writing the BatchInfo in every step of the pipeline to disk (with JSON text files) for debugging purposes. - Move the Pipeline functionality from the Coordinator to its own struct (Pipeline) - Implement shouldL1lL2Batch - In TxManager, implement logic to perform several attempts when doing ethereum node RPC calls before considering the error. (Both for calls to forgeBatch and transaction receipt) - In TxManager, reorganize the flow and note the specific points in which actions are made when err != nil - HistoryDB: - Implement GetLastL1BatchBlockNum: returns the blockNum of the latest forged l1Batch, to help the coordinator decide when to forge an L1Batch. - EthereumClient and test.Client: - Update EthBlockByNumber to return the last block when the passed number is -1.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
Update missing parts, improve til, and more - Node - Updated configuration to initialize the interface to all the smart contracts - Common - Moved BlockData and BatchData types to common so that they can be shared among: historydb, til and synchronizer - Remove hash.go (it was never used) - Remove slot.go (it was never used) - Remove smartcontractparams.go (it was never used, and appropriate structs are defined in `eth/`) - Comment state / status method until requirements of this method are properly defined, and move it to Synchronizer - Synchronizer - Simplify `Sync` routine to only sync one block per call, and return useful information. - Use BlockData and BatchData from common - Check that events belong to the expected block hash - In L1Batch, query L1UserTxs from HistoryDB - Fill ERC20 token information - Test AddTokens with test.Client - HistryDB - Use BlockData and BatchData from common - Add `GetAllTokens` method - Uncomment and update GetL1UserTxs (with corresponding tests) - Til - Rename all instances of RegisterToken to AddToken (to follow the smart contract implementation naming) - Use BlockData and BatchData from common - Move testL1CoordinatorTxs and testL2Txs to a separate struct from BatchData in Context - Start Context with BatchNum = 1 (which the protocol defines to be the first batchNum) - In every Batch, set StateRoot and ExitRoot to a non-nil big.Int (zero). - In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not used, set it to 0; so that no *big.Int is nil. - In L1UserTx, don't set BatchNum, because when L1UserTxs are created and obtained by the synchronizer, the BatchNum is not known yet (it's a synchronizer job to set it) - In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago
Redo coordinator structure, connect API to node - API: - Modify the constructor so that hardcoded rollup constants don't need to be passed (introduce a `Config` and use `configAPI` internally) - Common: - Update rollup constants with proper *big.Int when required - Add BidCoordinator and Slot structs used by the HistoryDB and Synchronizer. - Add helper methods to AuctionConstants - AuctionVariables: Add column `DefaultSlotSetBidSlotNum` (in the SQL table: `default_slot_set_bid_slot_num`), which indicates at which slotNum does the `DefaultSlotSetBid` specified starts applying. - Config: - Move coordinator exclusive configuration from the node config to the coordinator config - Coordinator: - Reorganize the code towards having the goroutines started and stopped from the coordinator itself instead of the node. - Remove all stop and stopped channels, and use context.Context and sync.WaitGroup instead. - Remove BatchInfo setters and assing variables directly - In ServerProof and ServerProofPool use context instead stop channel. - Use message passing to notify the coordinator about sync updates and reorgs - Introduce the Pipeline, which can be started and stopped by the Coordinator - Introduce the TxManager, which manages ethereum transactions (the TxManager is also in charge of making the forge call to the rollup smart contract). The TxManager keeps ethereum transactions and: 1. Waits for the transaction to be accepted 2. Waits for the transaction to be confirmed for N blocks - In forge logic, first prepare a batch and then wait for an available server proof to have all work ready once the proof server is ready. - Remove the `isForgeSequence` method which was querying the smart contract, and instead use notifications sent by the Synchronizer to figure out if it's forging time. - Update test (which is a minimal test to manually see if the coordinator starts) - HistoryDB: - Add method to get the number of batches in a slot (used to detect when a slot has passed the bid winner forging deadline) - Add method to get the best bid and associated coordinator of a slot (used to detect the forgerAddress that can forge the slot) - General: - Rename some instances of `currentBlock` to `lastBlock` to be more clear. - Node: - Connect the API to the node and call the methods to update cached state when the sync advances blocks. - Call methods to update Coordinator state when the sync advances blocks and finds reorgs. - Synchronizer: - Add Auction field in the Stats, which contain the current slot with info about highest bidder and other related info required to know who can forge in the current block. - Better organization of cached state: - On Sync, update the internal cached state - On Init or Reorg, load the state from HistoryDB into the internal cached state.
4 years ago
  1. package node
  2. import (
  3. "context"
  4. "errors"
  5. "fmt"
  6. "net"
  7. "net/http"
  8. "sync"
  9. "time"
  10. "github.com/ethereum/go-ethereum/accounts"
  11. ethKeystore "github.com/ethereum/go-ethereum/accounts/keystore"
  12. "github.com/ethereum/go-ethereum/ethclient"
  13. "github.com/gin-contrib/cors"
  14. "github.com/gin-gonic/gin"
  15. "github.com/hermeznetwork/hermez-node/api"
  16. "github.com/hermeznetwork/hermez-node/batchbuilder"
  17. "github.com/hermeznetwork/hermez-node/common"
  18. "github.com/hermeznetwork/hermez-node/config"
  19. "github.com/hermeznetwork/hermez-node/coordinator"
  20. dbUtils "github.com/hermeznetwork/hermez-node/db"
  21. "github.com/hermeznetwork/hermez-node/db/historydb"
  22. "github.com/hermeznetwork/hermez-node/db/l2db"
  23. "github.com/hermeznetwork/hermez-node/db/statedb"
  24. "github.com/hermeznetwork/hermez-node/eth"
  25. "github.com/hermeznetwork/hermez-node/log"
  26. "github.com/hermeznetwork/hermez-node/priceupdater"
  27. "github.com/hermeznetwork/hermez-node/prover"
  28. "github.com/hermeznetwork/hermez-node/synchronizer"
  29. "github.com/hermeznetwork/hermez-node/test/debugapi"
  30. "github.com/hermeznetwork/hermez-node/txprocessor"
  31. "github.com/hermeznetwork/hermez-node/txselector"
  32. "github.com/hermeznetwork/tracerr"
  33. "github.com/jmoiron/sqlx"
  34. "github.com/russross/meddler"
  35. )
  36. // Mode sets the working mode of the node (synchronizer or coordinator)
  37. type Mode string
  38. const (
  39. // ModeCoordinator defines the mode of the HermezNode as Coordinator, which
  40. // means that the node is set to forge (which also will be synchronizing with
  41. // the L1 blockchain state)
  42. ModeCoordinator Mode = "coordinator"
  43. // ModeSynchronizer defines the mode of the HermezNode as Synchronizer, which
  44. // means that the node is set to only synchronize with the L1 blockchain state
  45. // and will not forge
  46. ModeSynchronizer Mode = "synchronizer"
  47. )
  48. // Node is the Hermez Node
  49. type Node struct {
  50. nodeAPI *NodeAPI
  51. debugAPI *debugapi.DebugAPI
  52. priceUpdater *priceupdater.PriceUpdater
  53. // Coordinator
  54. coord *coordinator.Coordinator
  55. // Synchronizer
  56. sync *synchronizer.Synchronizer
  57. // General
  58. cfg *config.Node
  59. mode Mode
  60. sqlConnRead *sqlx.DB
  61. sqlConnWrite *sqlx.DB
  62. ctx context.Context
  63. wg sync.WaitGroup
  64. cancel context.CancelFunc
  65. }
  66. // NewNode creates a Node
  67. func NewNode(mode Mode, cfg *config.Node) (*Node, error) {
  68. meddler.Debug = cfg.Debug.MeddlerLogs
  69. // Stablish DB connection
  70. dbWrite, err := dbUtils.InitSQLDB(
  71. cfg.PostgreSQL.PortWrite,
  72. cfg.PostgreSQL.HostWrite,
  73. cfg.PostgreSQL.UserWrite,
  74. cfg.PostgreSQL.PasswordWrite,
  75. cfg.PostgreSQL.NameWrite,
  76. )
  77. if err != nil {
  78. return nil, tracerr.Wrap(fmt.Errorf("dbUtils.InitSQLDB: %w", err))
  79. }
  80. var dbRead *sqlx.DB
  81. if cfg.PostgreSQL.HostRead == "" {
  82. dbRead = dbWrite
  83. } else if cfg.PostgreSQL.HostRead == cfg.PostgreSQL.HostWrite {
  84. return nil, tracerr.Wrap(fmt.Errorf(
  85. "PostgreSQL.HostRead and PostgreSQL.HostWrite must be different",
  86. ))
  87. } else {
  88. dbRead, err = dbUtils.InitSQLDB(
  89. cfg.PostgreSQL.PortRead,
  90. cfg.PostgreSQL.HostRead,
  91. cfg.PostgreSQL.UserRead,
  92. cfg.PostgreSQL.PasswordRead,
  93. cfg.PostgreSQL.NameRead,
  94. )
  95. if err != nil {
  96. return nil, tracerr.Wrap(fmt.Errorf("dbUtils.InitSQLDB: %w", err))
  97. }
  98. }
  99. var apiConnCon *dbUtils.APIConnectionController
  100. if cfg.API.Explorer || mode == ModeCoordinator {
  101. apiConnCon = dbUtils.NewAPICnnectionController(
  102. cfg.API.MaxSQLConnections,
  103. cfg.API.SQLConnectionTimeout.Duration,
  104. )
  105. }
  106. historyDB := historydb.NewHistoryDB(dbRead, dbWrite, apiConnCon)
  107. ethClient, err := ethclient.Dial(cfg.Web3.URL)
  108. if err != nil {
  109. return nil, tracerr.Wrap(err)
  110. }
  111. var ethCfg eth.EthereumConfig
  112. var account *accounts.Account
  113. var keyStore *ethKeystore.KeyStore
  114. if mode == ModeCoordinator {
  115. ethCfg = eth.EthereumConfig{
  116. CallGasLimit: 0, // cfg.Coordinator.EthClient.CallGasLimit,
  117. GasPriceDiv: 0, // cfg.Coordinator.EthClient.GasPriceDiv,
  118. }
  119. scryptN := ethKeystore.StandardScryptN
  120. scryptP := ethKeystore.StandardScryptP
  121. if cfg.Coordinator.Debug.LightScrypt {
  122. scryptN = ethKeystore.LightScryptN
  123. scryptP = ethKeystore.LightScryptP
  124. }
  125. keyStore = ethKeystore.NewKeyStore(cfg.Coordinator.EthClient.Keystore.Path,
  126. scryptN, scryptP)
  127. balance, err := ethClient.BalanceAt(context.TODO(), cfg.Coordinator.ForgerAddress, nil)
  128. if err != nil {
  129. return nil, tracerr.Wrap(err)
  130. }
  131. minForgeBalance := cfg.Coordinator.MinimumForgeAddressBalance
  132. if minForgeBalance != nil && balance.Cmp(minForgeBalance) == -1 {
  133. return nil, tracerr.Wrap(fmt.Errorf(
  134. "forger account balance is less than cfg.Coordinator.MinimumForgeAddressBalance: %v < %v",
  135. balance.Int64(), minForgeBalance))
  136. }
  137. log.Infow("forger ethereum account balance",
  138. "addr", cfg.Coordinator.ForgerAddress,
  139. "balance", balance.Int64(),
  140. "minForgeBalance", minForgeBalance.Int64(),
  141. )
  142. // Unlock Coordinator ForgerAddr in the keystore to make calls
  143. // to ForgeBatch in the smart contract
  144. if !keyStore.HasAddress(cfg.Coordinator.ForgerAddress) {
  145. return nil, tracerr.Wrap(fmt.Errorf(
  146. "ethereum keystore doesn't have the key for address %v",
  147. cfg.Coordinator.ForgerAddress))
  148. }
  149. account = &accounts.Account{
  150. Address: cfg.Coordinator.ForgerAddress,
  151. }
  152. if err := keyStore.Unlock(*account,
  153. cfg.Coordinator.EthClient.Keystore.Password); err != nil {
  154. return nil, tracerr.Wrap(err)
  155. }
  156. log.Infow("Forger ethereum account unlocked in the keystore",
  157. "addr", cfg.Coordinator.ForgerAddress)
  158. }
  159. client, err := eth.NewClient(ethClient, account, keyStore, &eth.ClientConfig{
  160. Ethereum: ethCfg,
  161. Rollup: eth.RollupConfig{
  162. Address: cfg.SmartContracts.Rollup,
  163. },
  164. Auction: eth.AuctionConfig{
  165. Address: cfg.SmartContracts.Auction,
  166. TokenHEZ: eth.TokenConfig{
  167. Address: cfg.SmartContracts.TokenHEZ,
  168. Name: cfg.SmartContracts.TokenHEZName,
  169. },
  170. },
  171. WDelayer: eth.WDelayerConfig{
  172. Address: cfg.SmartContracts.WDelayer,
  173. },
  174. })
  175. if err != nil {
  176. return nil, tracerr.Wrap(err)
  177. }
  178. chainID, err := client.EthChainID()
  179. if err != nil {
  180. return nil, tracerr.Wrap(err)
  181. }
  182. if !chainID.IsUint64() {
  183. return nil, tracerr.Wrap(fmt.Errorf("chainID cannot be represented as uint64"))
  184. }
  185. chainIDU64 := chainID.Uint64()
  186. const maxUint16 uint64 = 0xffff
  187. if chainIDU64 > maxUint16 {
  188. return nil, tracerr.Wrap(fmt.Errorf("chainID overflows uint16"))
  189. }
  190. chainIDU16 := uint16(chainIDU64)
  191. const safeStateDBKeep = 128
  192. if cfg.StateDB.Keep < safeStateDBKeep {
  193. return nil, tracerr.Wrap(fmt.Errorf("cfg.StateDB.Keep = %v < %v, which is unsafe",
  194. cfg.StateDB.Keep, safeStateDBKeep))
  195. }
  196. stateDB, err := statedb.NewStateDB(statedb.Config{
  197. Path: cfg.StateDB.Path,
  198. Keep: cfg.StateDB.Keep,
  199. Type: statedb.TypeSynchronizer,
  200. NLevels: statedb.MaxNLevels,
  201. })
  202. if err != nil {
  203. return nil, tracerr.Wrap(err)
  204. }
  205. sync, err := synchronizer.NewSynchronizer(client, historyDB, stateDB, synchronizer.Config{
  206. StatsRefreshPeriod: cfg.Synchronizer.StatsRefreshPeriod.Duration,
  207. ChainID: chainIDU16,
  208. })
  209. if err != nil {
  210. return nil, tracerr.Wrap(err)
  211. }
  212. initSCVars := sync.SCVars()
  213. scConsts := synchronizer.SCConsts{
  214. Rollup: *sync.RollupConstants(),
  215. Auction: *sync.AuctionConstants(),
  216. WDelayer: *sync.WDelayerConstants(),
  217. }
  218. var coord *coordinator.Coordinator
  219. var l2DB *l2db.L2DB
  220. if mode == ModeCoordinator {
  221. l2DB = l2db.NewL2DB(
  222. dbRead, dbWrite,
  223. cfg.Coordinator.L2DB.SafetyPeriod,
  224. cfg.Coordinator.L2DB.MaxTxs,
  225. cfg.Coordinator.L2DB.MinFeeUSD,
  226. cfg.Coordinator.L2DB.TTL.Duration,
  227. apiConnCon,
  228. )
  229. // Unlock FeeAccount EthAddr in the keystore to generate the
  230. // account creation authorization
  231. if !keyStore.HasAddress(cfg.Coordinator.FeeAccount.Address) {
  232. return nil, tracerr.Wrap(fmt.Errorf(
  233. "ethereum keystore doesn't have the key for address %v",
  234. cfg.Coordinator.FeeAccount.Address))
  235. }
  236. feeAccount := accounts.Account{
  237. Address: cfg.Coordinator.FeeAccount.Address,
  238. }
  239. if err := keyStore.Unlock(feeAccount,
  240. cfg.Coordinator.EthClient.Keystore.Password); err != nil {
  241. return nil, tracerr.Wrap(err)
  242. }
  243. auth := &common.AccountCreationAuth{
  244. EthAddr: cfg.Coordinator.FeeAccount.Address,
  245. BJJ: cfg.Coordinator.FeeAccount.BJJ,
  246. }
  247. if err := auth.Sign(func(msg []byte) ([]byte, error) {
  248. return keyStore.SignHash(feeAccount, msg)
  249. }, chainIDU16, cfg.SmartContracts.Rollup); err != nil {
  250. return nil, err
  251. }
  252. coordAccount := &txselector.CoordAccount{
  253. Addr: cfg.Coordinator.FeeAccount.Address,
  254. BJJ: cfg.Coordinator.FeeAccount.BJJ,
  255. AccountCreationAuth: auth.Signature,
  256. }
  257. txSelector, err := txselector.NewTxSelector(coordAccount, cfg.Coordinator.TxSelector.Path, stateDB, l2DB)
  258. if err != nil {
  259. return nil, tracerr.Wrap(err)
  260. }
  261. batchBuilder, err := batchbuilder.NewBatchBuilder(cfg.Coordinator.BatchBuilder.Path,
  262. stateDB, 0, uint64(cfg.Coordinator.Circuit.NLevels))
  263. if err != nil {
  264. return nil, tracerr.Wrap(err)
  265. }
  266. serverProofs := make([]prover.Client, len(cfg.Coordinator.ServerProofs))
  267. for i, serverProofCfg := range cfg.Coordinator.ServerProofs {
  268. serverProofs[i] = prover.NewProofServerClient(serverProofCfg.URL,
  269. cfg.Coordinator.ProofServerPollInterval.Duration)
  270. }
  271. txProcessorCfg := txprocessor.Config{
  272. NLevels: uint32(cfg.Coordinator.Circuit.NLevels),
  273. MaxTx: uint32(cfg.Coordinator.Circuit.MaxTx),
  274. ChainID: chainIDU16,
  275. MaxFeeTx: common.RollupConstMaxFeeIdxCoordinator,
  276. MaxL1Tx: common.RollupConstMaxL1Tx,
  277. }
  278. var verifierIdx int
  279. if cfg.Coordinator.Debug.RollupVerifierIndex == nil {
  280. verifierIdx, err = scConsts.Rollup.FindVerifierIdx(
  281. cfg.Coordinator.Circuit.MaxTx,
  282. cfg.Coordinator.Circuit.NLevels,
  283. )
  284. if err != nil {
  285. return nil, tracerr.Wrap(err)
  286. }
  287. log.Infow("Found verifier that matches circuit config", "verifierIdx", verifierIdx)
  288. } else {
  289. verifierIdx = *cfg.Coordinator.Debug.RollupVerifierIndex
  290. log.Infow("Using debug verifier index from config", "verifierIdx", verifierIdx)
  291. if verifierIdx >= len(scConsts.Rollup.Verifiers) {
  292. return nil, tracerr.Wrap(
  293. fmt.Errorf("verifierIdx (%v) >= "+
  294. "len(scConsts.Rollup.Verifiers) (%v)",
  295. verifierIdx, len(scConsts.Rollup.Verifiers)))
  296. }
  297. verifier := scConsts.Rollup.Verifiers[verifierIdx]
  298. if verifier.MaxTx != cfg.Coordinator.Circuit.MaxTx ||
  299. verifier.NLevels != cfg.Coordinator.Circuit.NLevels {
  300. return nil, tracerr.Wrap(
  301. fmt.Errorf("Circuit config and verifier params don't match. "+
  302. "circuit.MaxTx = %v, circuit.NLevels = %v, "+
  303. "verifier.MaxTx = %v, verifier.NLevels = %v",
  304. cfg.Coordinator.Circuit.MaxTx, cfg.Coordinator.Circuit.NLevels,
  305. verifier.MaxTx, verifier.NLevels,
  306. ))
  307. }
  308. }
  309. coord, err = coordinator.NewCoordinator(
  310. coordinator.Config{
  311. ForgerAddress: cfg.Coordinator.ForgerAddress,
  312. ConfirmBlocks: cfg.Coordinator.ConfirmBlocks,
  313. L1BatchTimeoutPerc: cfg.Coordinator.L1BatchTimeoutPerc,
  314. ForgeRetryInterval: cfg.Coordinator.ForgeRetryInterval.Duration,
  315. ForgeDelay: cfg.Coordinator.ForgeDelay.Duration,
  316. ForgeNoTxsDelay: cfg.Coordinator.ForgeNoTxsDelay.Duration,
  317. SyncRetryInterval: cfg.Coordinator.SyncRetryInterval.Duration,
  318. PurgeByExtDelInterval: cfg.Coordinator.PurgeByExtDelInterval.Duration,
  319. EthClientAttempts: cfg.Coordinator.EthClient.Attempts,
  320. EthClientAttemptsDelay: cfg.Coordinator.EthClient.AttemptsDelay.Duration,
  321. EthNoReuseNonce: cfg.Coordinator.EthClient.NoReuseNonce,
  322. EthTxResendTimeout: cfg.Coordinator.EthClient.TxResendTimeout.Duration,
  323. MaxGasPrice: cfg.Coordinator.EthClient.MaxGasPrice,
  324. GasPriceIncPerc: cfg.Coordinator.EthClient.GasPriceIncPerc,
  325. TxManagerCheckInterval: cfg.Coordinator.EthClient.CheckLoopInterval.Duration,
  326. DebugBatchPath: cfg.Coordinator.Debug.BatchPath,
  327. Purger: coordinator.PurgerCfg{
  328. PurgeBatchDelay: cfg.Coordinator.L2DB.PurgeBatchDelay,
  329. InvalidateBatchDelay: cfg.Coordinator.L2DB.InvalidateBatchDelay,
  330. PurgeBlockDelay: cfg.Coordinator.L2DB.PurgeBlockDelay,
  331. InvalidateBlockDelay: cfg.Coordinator.L2DB.InvalidateBlockDelay,
  332. },
  333. ForgeBatchGasCost: cfg.Coordinator.EthClient.ForgeBatchGasCost,
  334. VerifierIdx: uint8(verifierIdx),
  335. TxProcessorConfig: txProcessorCfg,
  336. },
  337. historyDB,
  338. l2DB,
  339. txSelector,
  340. batchBuilder,
  341. serverProofs,
  342. client,
  343. &scConsts,
  344. &synchronizer.SCVariables{
  345. Rollup: *initSCVars.Rollup,
  346. Auction: *initSCVars.Auction,
  347. WDelayer: *initSCVars.WDelayer,
  348. },
  349. )
  350. if err != nil {
  351. return nil, tracerr.Wrap(err)
  352. }
  353. }
  354. var nodeAPI *NodeAPI
  355. if cfg.API.Address != "" {
  356. if cfg.Debug.GinDebugMode {
  357. gin.SetMode(gin.DebugMode)
  358. } else {
  359. gin.SetMode(gin.ReleaseMode)
  360. }
  361. if cfg.API.UpdateMetricsInterval.Duration == 0 {
  362. return nil, tracerr.Wrap(fmt.Errorf("invalid cfg.API.UpdateMetricsInterval: %v",
  363. cfg.API.UpdateMetricsInterval.Duration))
  364. }
  365. if cfg.API.UpdateRecommendedFeeInterval.Duration == 0 {
  366. return nil, tracerr.Wrap(fmt.Errorf("invalid cfg.API.UpdateRecommendedFeeInterval: %v",
  367. cfg.API.UpdateRecommendedFeeInterval.Duration))
  368. }
  369. server := gin.Default()
  370. coord := false
  371. if mode == ModeCoordinator {
  372. coord = cfg.Coordinator.API.Coordinator
  373. }
  374. var err error
  375. nodeAPI, err = NewNodeAPI(
  376. cfg.API.Address,
  377. coord, cfg.API.Explorer,
  378. server,
  379. historyDB,
  380. stateDB,
  381. l2DB,
  382. &api.Config{
  383. RollupConstants: scConsts.Rollup,
  384. AuctionConstants: scConsts.Auction,
  385. WDelayerConstants: scConsts.WDelayer,
  386. ChainID: chainIDU16,
  387. HermezAddress: cfg.SmartContracts.Rollup,
  388. },
  389. cfg.Coordinator.ForgeDelay.Duration,
  390. )
  391. if err != nil {
  392. return nil, tracerr.Wrap(err)
  393. }
  394. nodeAPI.api.SetRollupVariables(*initSCVars.Rollup)
  395. nodeAPI.api.SetAuctionVariables(*initSCVars.Auction)
  396. nodeAPI.api.SetWDelayerVariables(*initSCVars.WDelayer)
  397. }
  398. var debugAPI *debugapi.DebugAPI
  399. if cfg.Debug.APIAddress != "" {
  400. debugAPI = debugapi.NewDebugAPI(cfg.Debug.APIAddress, stateDB, sync)
  401. }
  402. priceUpdater, err := priceupdater.NewPriceUpdater(cfg.PriceUpdater.URL,
  403. priceupdater.APIType(cfg.PriceUpdater.Type), historyDB)
  404. if err != nil {
  405. return nil, tracerr.Wrap(err)
  406. }
  407. ctx, cancel := context.WithCancel(context.Background())
  408. return &Node{
  409. nodeAPI: nodeAPI,
  410. debugAPI: debugAPI,
  411. priceUpdater: priceUpdater,
  412. coord: coord,
  413. sync: sync,
  414. cfg: cfg,
  415. mode: mode,
  416. sqlConnRead: dbRead,
  417. sqlConnWrite: dbWrite,
  418. ctx: ctx,
  419. cancel: cancel,
  420. }, nil
  421. }
  422. // APIServer is a server that only runs the API
  423. type APIServer struct {
  424. nodeAPI *NodeAPI
  425. }
  426. func NewAPIServer(mode Mode, cfg *config.APIServer) (*APIServer, error) {
  427. // NOTE: I just copied some parts of NewNode related to starting the
  428. // API, but it still cotains many parameters that are not available
  429. meddler.Debug = cfg.Debug.MeddlerLogs
  430. // Stablish DB connection
  431. dbWrite, err := dbUtils.InitSQLDB(
  432. cfg.PostgreSQL.PortWrite,
  433. cfg.PostgreSQL.HostWrite,
  434. cfg.PostgreSQL.UserWrite,
  435. cfg.PostgreSQL.PasswordWrite,
  436. cfg.PostgreSQL.NameWrite,
  437. )
  438. if err != nil {
  439. return nil, tracerr.Wrap(fmt.Errorf("dbUtils.InitSQLDB: %w", err))
  440. }
  441. var dbRead *sqlx.DB
  442. if cfg.PostgreSQL.HostRead == "" {
  443. dbRead = dbWrite
  444. } else if cfg.PostgreSQL.HostRead == cfg.PostgreSQL.HostWrite {
  445. return nil, tracerr.Wrap(fmt.Errorf(
  446. "PostgreSQL.HostRead and PostgreSQL.HostWrite must be different",
  447. ))
  448. } else {
  449. dbRead, err = dbUtils.InitSQLDB(
  450. cfg.PostgreSQL.PortRead,
  451. cfg.PostgreSQL.HostRead,
  452. cfg.PostgreSQL.UserRead,
  453. cfg.PostgreSQL.PasswordRead,
  454. cfg.PostgreSQL.NameRead,
  455. )
  456. if err != nil {
  457. return nil, tracerr.Wrap(fmt.Errorf("dbUtils.InitSQLDB: %w", err))
  458. }
  459. }
  460. var apiConnCon *dbUtils.APIConnectionController
  461. if cfg.API.Explorer || mode == ModeCoordinator {
  462. apiConnCon = dbUtils.NewAPICnnectionController(
  463. cfg.API.MaxSQLConnections,
  464. cfg.API.SQLConnectionTimeout.Duration,
  465. )
  466. }
  467. historyDB := historydb.NewHistoryDB(dbRead, dbWrite, apiConnCon)
  468. var l2DB *l2db.L2DB
  469. if mode == ModeCoordinator {
  470. l2DB = l2db.NewL2DB(
  471. dbRead, dbWrite,
  472. cfg.Coordinator.L2DB.SafetyPeriod,
  473. cfg.Coordinator.L2DB.MaxTxs,
  474. cfg.Coordinator.L2DB.MinFeeUSD,
  475. cfg.Coordinator.L2DB.TTL.Duration,
  476. apiConnCon,
  477. )
  478. }
  479. var nodeAPI *NodeAPI
  480. if cfg.API.Address != "" {
  481. if cfg.Debug.GinDebugMode {
  482. gin.SetMode(gin.DebugMode)
  483. } else {
  484. gin.SetMode(gin.ReleaseMode)
  485. }
  486. if cfg.API.UpdateMetricsInterval.Duration == 0 {
  487. return nil, tracerr.Wrap(fmt.Errorf("invalid cfg.API.UpdateMetricsInterval: %v",
  488. cfg.API.UpdateMetricsInterval.Duration))
  489. }
  490. if cfg.API.UpdateRecommendedFeeInterval.Duration == 0 {
  491. return nil, tracerr.Wrap(fmt.Errorf("invalid cfg.API.UpdateRecommendedFeeInterval: %v",
  492. cfg.API.UpdateRecommendedFeeInterval.Duration))
  493. }
  494. server := gin.Default()
  495. coord := false
  496. if mode == ModeCoordinator {
  497. coord = cfg.Coordinator.API.Coordinator
  498. }
  499. var err error
  500. nodeAPI, err = NewNodeAPI(
  501. cfg.API.Address,
  502. coord, cfg.API.Explorer,
  503. server,
  504. historyDB,
  505. stateDB,
  506. l2DB,
  507. &api.Config{
  508. RollupConstants: scConsts.Rollup,
  509. AuctionConstants: scConsts.Auction,
  510. WDelayerConstants: scConsts.WDelayer,
  511. ChainID: chainIDU16,
  512. HermezAddress: cfg.SmartContracts.Rollup,
  513. },
  514. cfg.Coordinator.ForgeDelay.Duration,
  515. )
  516. if err != nil {
  517. return nil, tracerr.Wrap(err)
  518. }
  519. nodeAPI.api.SetRollupVariables(*initSCVars.Rollup)
  520. nodeAPI.api.SetAuctionVariables(*initSCVars.Auction)
  521. nodeAPI.api.SetWDelayerVariables(*initSCVars.WDelayer)
  522. }
  523. // ETC...
  524. }
  525. // NodeAPI holds the node http API
  526. type NodeAPI struct { //nolint:golint
  527. api *api.API
  528. engine *gin.Engine
  529. addr string
  530. }
  531. func handleNoRoute(c *gin.Context) {
  532. c.JSON(http.StatusNotFound, gin.H{
  533. "error": "404 page not found",
  534. })
  535. }
  536. // NewNodeAPI creates a new NodeAPI (which internally calls api.NewAPI)
  537. func NewNodeAPI(
  538. addr string,
  539. coordinatorEndpoints, explorerEndpoints bool,
  540. server *gin.Engine,
  541. hdb *historydb.HistoryDB,
  542. sdb *statedb.StateDB,
  543. l2db *l2db.L2DB,
  544. config *api.Config,
  545. forgeDelay time.Duration,
  546. ) (*NodeAPI, error) {
  547. engine := gin.Default()
  548. engine.NoRoute(handleNoRoute)
  549. engine.Use(cors.Default())
  550. _api, err := api.NewAPI(
  551. coordinatorEndpoints, explorerEndpoints,
  552. engine,
  553. hdb,
  554. l2db,
  555. config,
  556. &api.NodeConfig{
  557. ForgeDelay: forgeDelay.Seconds(),
  558. },
  559. )
  560. if err != nil {
  561. return nil, tracerr.Wrap(err)
  562. }
  563. return &NodeAPI{
  564. addr: addr,
  565. api: _api,
  566. engine: engine,
  567. }, nil
  568. }
  569. // Run starts the http server of the NodeAPI. To stop it, pass a context with
  570. // cancelation.
  571. func (a *NodeAPI) Run(ctx context.Context) error {
  572. server := &http.Server{
  573. Handler: a.engine,
  574. // TODO: Figure out best parameters for production
  575. ReadTimeout: 30 * time.Second, //nolint:gomnd
  576. WriteTimeout: 30 * time.Second, //nolint:gomnd
  577. MaxHeaderBytes: 1 << 20, //nolint:gomnd
  578. }
  579. listener, err := net.Listen("tcp", a.addr)
  580. if err != nil {
  581. return tracerr.Wrap(err)
  582. }
  583. log.Infof("NodeAPI is ready at %v", a.addr)
  584. go func() {
  585. if err := server.Serve(listener); err != nil &&
  586. tracerr.Unwrap(err) != http.ErrServerClosed {
  587. log.Fatalf("Listen: %s\n", err)
  588. }
  589. }()
  590. <-ctx.Done()
  591. log.Info("Stopping NodeAPI...")
  592. ctxTimeout, cancel := context.WithTimeout(context.Background(), 10*time.Second) //nolint:gomnd
  593. defer cancel()
  594. if err := server.Shutdown(ctxTimeout); err != nil {
  595. return tracerr.Wrap(err)
  596. }
  597. log.Info("NodeAPI done")
  598. return nil
  599. }
  600. func (n *Node) handleNewBlock(ctx context.Context, stats *synchronizer.Stats, vars synchronizer.SCVariablesPtr,
  601. batches []common.BatchData) {
  602. if n.mode == ModeCoordinator {
  603. n.coord.SendMsg(ctx, coordinator.MsgSyncBlock{
  604. Stats: *stats,
  605. Vars: vars,
  606. Batches: batches,
  607. })
  608. }
  609. if n.nodeAPI != nil {
  610. if vars.Rollup != nil {
  611. n.nodeAPI.api.SetRollupVariables(*vars.Rollup)
  612. }
  613. if vars.Auction != nil {
  614. n.nodeAPI.api.SetAuctionVariables(*vars.Auction)
  615. }
  616. if vars.WDelayer != nil {
  617. n.nodeAPI.api.SetWDelayerVariables(*vars.WDelayer)
  618. }
  619. if stats.Synced() {
  620. if err := n.nodeAPI.api.UpdateNetworkInfo(
  621. stats.Eth.LastBlock, stats.Sync.LastBlock,
  622. common.BatchNum(stats.Eth.LastBatchNum),
  623. stats.Sync.Auction.CurrentSlot.SlotNum,
  624. ); err != nil {
  625. log.Errorw("API.UpdateNetworkInfo", "err", err)
  626. }
  627. } else {
  628. n.nodeAPI.api.UpdateNetworkInfoBlock(
  629. stats.Eth.LastBlock, stats.Sync.LastBlock,
  630. )
  631. }
  632. }
  633. }
  634. func (n *Node) handleReorg(ctx context.Context, stats *synchronizer.Stats, vars synchronizer.SCVariablesPtr) {
  635. if n.mode == ModeCoordinator {
  636. n.coord.SendMsg(ctx, coordinator.MsgSyncReorg{
  637. Stats: *stats,
  638. Vars: vars,
  639. })
  640. }
  641. if n.nodeAPI != nil {
  642. vars := n.sync.SCVars()
  643. n.nodeAPI.api.SetRollupVariables(*vars.Rollup)
  644. n.nodeAPI.api.SetAuctionVariables(*vars.Auction)
  645. n.nodeAPI.api.SetWDelayerVariables(*vars.WDelayer)
  646. n.nodeAPI.api.UpdateNetworkInfoBlock(
  647. stats.Eth.LastBlock, stats.Sync.LastBlock,
  648. )
  649. }
  650. }
  651. // TODO(Edu): Consider keeping the `lastBlock` inside synchronizer so that we
  652. // don't have to pass it around.
  653. func (n *Node) syncLoopFn(ctx context.Context, lastBlock *common.Block) (*common.Block, time.Duration, error) {
  654. blockData, discarded, err := n.sync.Sync(ctx, lastBlock)
  655. stats := n.sync.Stats()
  656. if err != nil {
  657. // case: error
  658. return nil, n.cfg.Synchronizer.SyncLoopInterval.Duration, tracerr.Wrap(err)
  659. } else if discarded != nil {
  660. // case: reorg
  661. log.Infow("Synchronizer.Sync reorg", "discarded", *discarded)
  662. vars := n.sync.SCVars()
  663. n.handleReorg(ctx, stats, vars)
  664. return nil, time.Duration(0), nil
  665. } else if blockData != nil {
  666. // case: new block
  667. vars := synchronizer.SCVariablesPtr{
  668. Rollup: blockData.Rollup.Vars,
  669. Auction: blockData.Auction.Vars,
  670. WDelayer: blockData.WDelayer.Vars,
  671. }
  672. n.handleNewBlock(ctx, stats, vars, blockData.Rollup.Batches)
  673. return &blockData.Block, time.Duration(0), nil
  674. } else {
  675. // case: no block
  676. return lastBlock, n.cfg.Synchronizer.SyncLoopInterval.Duration, nil
  677. }
  678. }
  679. // StartSynchronizer starts the synchronizer
  680. func (n *Node) StartSynchronizer() {
  681. log.Info("Starting Synchronizer...")
  682. // Trigger a manual call to handleNewBlock with the loaded state of the
  683. // synchronizer in order to quickly activate the API and Coordinator
  684. // and avoid waiting for the next block. Without this, the API and
  685. // Coordinator will not react until the following block (starting from
  686. // the last synced one) is synchronized
  687. stats := n.sync.Stats()
  688. vars := n.sync.SCVars()
  689. n.handleNewBlock(n.ctx, stats, vars, []common.BatchData{})
  690. n.wg.Add(1)
  691. go func() {
  692. var err error
  693. var lastBlock *common.Block
  694. waitDuration := time.Duration(0)
  695. for {
  696. select {
  697. case <-n.ctx.Done():
  698. log.Info("Synchronizer done")
  699. n.wg.Done()
  700. return
  701. case <-time.After(waitDuration):
  702. if lastBlock, waitDuration, err = n.syncLoopFn(n.ctx,
  703. lastBlock); err != nil {
  704. if n.ctx.Err() != nil {
  705. continue
  706. }
  707. if errors.Is(err, eth.ErrBlockHashMismatchEvent) {
  708. log.Warnw("Synchronizer.Sync", "err", err)
  709. } else if errors.Is(err, synchronizer.ErrUnknownBlock) {
  710. log.Warnw("Synchronizer.Sync", "err", err)
  711. } else {
  712. log.Errorw("Synchronizer.Sync", "err", err)
  713. }
  714. }
  715. }
  716. }
  717. }()
  718. n.wg.Add(1)
  719. go func() {
  720. for {
  721. select {
  722. case <-n.ctx.Done():
  723. log.Info("PriceUpdater done")
  724. n.wg.Done()
  725. return
  726. case <-time.After(n.cfg.PriceUpdater.Interval.Duration):
  727. if err := n.priceUpdater.UpdateTokenList(); err != nil {
  728. log.Errorw("PriceUpdater.UpdateTokenList()", "err", err)
  729. }
  730. n.priceUpdater.UpdatePrices(n.ctx)
  731. }
  732. }
  733. }()
  734. }
  735. // StartDebugAPI starts the DebugAPI
  736. func (n *Node) StartDebugAPI() {
  737. log.Info("Starting DebugAPI...")
  738. n.wg.Add(1)
  739. go func() {
  740. defer func() {
  741. log.Info("DebugAPI routine stopped")
  742. n.wg.Done()
  743. }()
  744. if err := n.debugAPI.Run(n.ctx); err != nil {
  745. if n.ctx.Err() != nil {
  746. return
  747. }
  748. log.Fatalw("DebugAPI.Run", "err", err)
  749. }
  750. }()
  751. }
  752. // StartNodeAPI starts the NodeAPI
  753. func (n *Node) StartNodeAPI() {
  754. log.Info("Starting NodeAPI...")
  755. n.wg.Add(1)
  756. go func() {
  757. defer func() {
  758. log.Info("NodeAPI routine stopped")
  759. n.wg.Done()
  760. }()
  761. if err := n.nodeAPI.Run(n.ctx); err != nil {
  762. if n.ctx.Err() != nil {
  763. return
  764. }
  765. log.Fatalw("NodeAPI.Run", "err", err)
  766. }
  767. }()
  768. n.wg.Add(1)
  769. go func() {
  770. // Do an initial update on startup
  771. if err := n.nodeAPI.api.UpdateMetrics(); err != nil {
  772. log.Errorw("API.UpdateMetrics", "err", err)
  773. }
  774. for {
  775. select {
  776. case <-n.ctx.Done():
  777. log.Info("API.UpdateMetrics loop done")
  778. n.wg.Done()
  779. return
  780. case <-time.After(n.cfg.API.UpdateMetricsInterval.Duration):
  781. if err := n.nodeAPI.api.UpdateMetrics(); err != nil {
  782. log.Errorw("API.UpdateMetrics", "err", err)
  783. }
  784. }
  785. }
  786. }()
  787. n.wg.Add(1)
  788. go func() {
  789. // Do an initial update on startup
  790. if err := n.nodeAPI.api.UpdateRecommendedFee(); err != nil {
  791. log.Errorw("API.UpdateRecommendedFee", "err", err)
  792. }
  793. for {
  794. select {
  795. case <-n.ctx.Done():
  796. log.Info("API.UpdateRecommendedFee loop done")
  797. n.wg.Done()
  798. return
  799. case <-time.After(n.cfg.API.UpdateRecommendedFeeInterval.Duration):
  800. if err := n.nodeAPI.api.UpdateRecommendedFee(); err != nil {
  801. log.Errorw("API.UpdateRecommendedFee", "err", err)
  802. }
  803. }
  804. }
  805. }()
  806. }
  807. // Start the node
  808. func (n *Node) Start() {
  809. log.Infow("Starting node...", "mode", n.mode)
  810. if n.debugAPI != nil {
  811. n.StartDebugAPI()
  812. }
  813. if n.nodeAPI != nil {
  814. n.StartNodeAPI()
  815. }
  816. if n.mode == ModeCoordinator {
  817. log.Info("Starting Coordinator...")
  818. n.coord.Start()
  819. }
  820. n.StartSynchronizer()
  821. }
  822. // Stop the node
  823. func (n *Node) Stop() {
  824. log.Infow("Stopping node...")
  825. n.cancel()
  826. n.wg.Wait()
  827. if n.mode == ModeCoordinator {
  828. log.Info("Stopping Coordinator...")
  829. n.coord.Stop()
  830. }
  831. // Close kv DBs
  832. n.sync.StateDB().Close()
  833. if n.mode == ModeCoordinator {
  834. n.coord.TxSelector().LocalAccountsDB().Close()
  835. n.coord.BatchBuilder().LocalStateDB().Close()
  836. }
  837. }