|
|
package common
import ( "bytes" "encoding/binary" "fmt" "math/big" "strconv"
ethCommon "github.com/ethereum/go-ethereum/common" "github.com/hermeznetwork/tracerr" "github.com/iden3/go-iden3-crypto/babyjub" "github.com/iden3/go-iden3-crypto/poseidon" cryptoUtils "github.com/iden3/go-iden3-crypto/utils" )
const ( // NLeafElems is the number of elements for a leaf
NLeafElems = 4 // maxNonceValue is the maximum value that the Account.Nonce can have
// (40 bits: maxNonceValue=2**40-1)
maxNonceValue = 0xffffffffff // maxBalanceBytes is the maximum bytes that can use the
// Account.Balance *big.Int
maxBalanceBytes = 24
// IdxBytesLen idx bytes
IdxBytesLen = 6 // maxIdxValue is the maximum value that Idx can have (48 bits:
// maxIdxValue=2**48-1)
maxIdxValue = 0xffffffffffff
// UserThreshold determines the threshold from the User Idxs can be
UserThreshold = 256 // IdxUserThreshold is a Idx type value that determines the threshold
// from the User Idxs can be
IdxUserThreshold = Idx(UserThreshold) )
var ( // FFAddr is used to check if an ethereum address is 0xff..ff
FFAddr = ethCommon.HexToAddress("0xffffffffffffffffffffffffffffffffffffffff") // EmptyAddr is used to check if an ethereum address is 0
EmptyAddr = ethCommon.HexToAddress("0x0000000000000000000000000000000000000000") )
// Idx represents the account Index in the MerkleTree
type Idx uint64
// String returns a string representation of the Idx
func (idx Idx) String() string { return strconv.Itoa(int(idx)) }
// Bytes returns a byte array representing the Idx
func (idx Idx) Bytes() ([6]byte, error) { if idx > maxIdxValue { return [6]byte{}, tracerr.Wrap(ErrIdxOverflow) } var idxBytes [8]byte binary.BigEndian.PutUint64(idxBytes[:], uint64(idx)) var b [6]byte copy(b[:], idxBytes[2:]) return b, nil }
// BigInt returns a *big.Int representing the Idx
func (idx Idx) BigInt() *big.Int { return big.NewInt(int64(idx)) }
// IdxFromBytes returns Idx from a byte array
func IdxFromBytes(b []byte) (Idx, error) { if len(b) != IdxBytesLen { return 0, tracerr.Wrap(fmt.Errorf("can not parse Idx, bytes len %d, expected %d", len(b), IdxBytesLen)) } var idxBytes [8]byte copy(idxBytes[2:], b[:]) idx := binary.BigEndian.Uint64(idxBytes[:]) return Idx(idx), nil }
// IdxFromBigInt converts a *big.Int to Idx type
func IdxFromBigInt(b *big.Int) (Idx, error) { if b.Int64() > maxIdxValue { return 0, tracerr.Wrap(ErrNumOverflow) } return Idx(uint64(b.Int64())), nil }
// Nonce represents the nonce value in a uint64, which has the method Bytes
// that returns a byte array of length 5 (40 bits).
type Nonce uint64
// Bytes returns a byte array of length 5 representing the Nonce
func (n Nonce) Bytes() ([5]byte, error) { if n > maxNonceValue { return [5]byte{}, tracerr.Wrap(ErrNonceOverflow) } var nonceBytes [8]byte binary.BigEndian.PutUint64(nonceBytes[:], uint64(n)) var b [5]byte copy(b[:], nonceBytes[3:]) return b, nil }
// BigInt returns the *big.Int representation of the Nonce value
func (n Nonce) BigInt() *big.Int { return big.NewInt(int64(n)) }
// NonceFromBytes returns Nonce from a [5]byte
func NonceFromBytes(b [5]byte) Nonce { var nonceBytes [8]byte copy(nonceBytes[3:], b[:]) nonce := binary.BigEndian.Uint64(nonceBytes[:]) return Nonce(nonce) }
// Account is a struct that gives information of the holdings of an address and
// a specific token. Is the data structure that generates the Value stored in
// the leaf of the MerkleTree
type Account struct { Idx Idx `meddler:"idx"` TokenID TokenID `meddler:"token_id"` BatchNum BatchNum `meddler:"batch_num"` BJJ babyjub.PublicKeyComp `meddler:"bjj"` EthAddr ethCommon.Address `meddler:"eth_addr"` Nonce Nonce `meddler:"-"` // max of 40 bits used
Balance *big.Int `meddler:"-"` // max of 192 bits used
}
func (a *Account) String() string { buf := bytes.NewBufferString("") fmt.Fprintf(buf, "Idx: %v, ", a.Idx) fmt.Fprintf(buf, "BJJ: %s..., ", a.BJJ.String()[:10]) fmt.Fprintf(buf, "EthAddr: %s..., ", a.EthAddr.String()[:10]) fmt.Fprintf(buf, "TokenID: %v, ", a.TokenID) fmt.Fprintf(buf, "Nonce: %d, ", a.Nonce) fmt.Fprintf(buf, "Balance: %s, ", a.Balance.String()) fmt.Fprintf(buf, "BatchNum: %v, ", a.BatchNum) return buf.String() }
// Bytes returns the bytes representing the Account, in a way that each BigInt
// is represented by 32 bytes, in spite of the BigInt could be represented in
// less bytes (due a small big.Int), so in this way each BigInt is always 32
// bytes and can be automatically parsed from a byte array.
func (a *Account) Bytes() ([32 * NLeafElems]byte, error) { var b [32 * NLeafElems]byte
if a.Nonce > maxNonceValue { return b, tracerr.Wrap(fmt.Errorf("%s Nonce", ErrNumOverflow)) } if len(a.Balance.Bytes()) > maxBalanceBytes { return b, tracerr.Wrap(fmt.Errorf("%s Balance", ErrNumOverflow)) }
nonceBytes, err := a.Nonce.Bytes() if err != nil { return b, tracerr.Wrap(err) }
copy(b[28:32], a.TokenID.Bytes()) copy(b[23:28], nonceBytes[:])
pkSign, pkY := babyjub.UnpackSignY(a.BJJ) if pkSign { b[22] = 1 } balanceBytes := a.Balance.Bytes() copy(b[64-len(balanceBytes):64], balanceBytes) ayBytes := pkY.Bytes() copy(b[96-len(ayBytes):96], ayBytes) copy(b[108:128], a.EthAddr.Bytes())
return b, nil }
// BigInts returns the [5]*big.Int, where each *big.Int is inside the Finite Field
func (a *Account) BigInts() ([NLeafElems]*big.Int, error) { e := [NLeafElems]*big.Int{}
b, err := a.Bytes() if err != nil { return e, tracerr.Wrap(err) }
e[0] = new(big.Int).SetBytes(b[0:32]) e[1] = new(big.Int).SetBytes(b[32:64]) e[2] = new(big.Int).SetBytes(b[64:96]) e[3] = new(big.Int).SetBytes(b[96:128])
return e, nil }
// HashValue returns the value of the Account, which is the Poseidon hash of its
// *big.Int representation
func (a *Account) HashValue() (*big.Int, error) { bi, err := a.BigInts() if err != nil { return nil, tracerr.Wrap(err) } return poseidon.Hash(bi[:]) }
// AccountFromBigInts returns a Account from a [5]*big.Int
func AccountFromBigInts(e [NLeafElems]*big.Int) (*Account, error) { if !cryptoUtils.CheckBigIntArrayInField(e[:]) { return nil, tracerr.Wrap(ErrNotInFF) } e0B := e[0].Bytes() e1B := e[1].Bytes() e2B := e[2].Bytes() e3B := e[3].Bytes() var b [32 * NLeafElems]byte copy(b[32-len(e0B):32], e0B) copy(b[64-len(e1B):64], e1B) copy(b[96-len(e2B):96], e2B) copy(b[128-len(e3B):128], e3B)
return AccountFromBytes(b) }
// AccountFromBytes returns a Account from a byte array
func AccountFromBytes(b [32 * NLeafElems]byte) (*Account, error) { tokenID, err := TokenIDFromBytes(b[28:32]) if err != nil { return nil, tracerr.Wrap(err) } var nonceBytes5 [5]byte copy(nonceBytes5[:], b[23:28]) nonce := NonceFromBytes(nonceBytes5) sign := b[22] == 1
balance := new(big.Int).SetBytes(b[40:64]) // Balance is max of 192 bits (24 bytes)
if !bytes.Equal(b[32:40], []byte{0, 0, 0, 0, 0, 0, 0, 0}) { return nil, tracerr.Wrap(fmt.Errorf("%s Balance", ErrNumOverflow)) } ay := new(big.Int).SetBytes(b[64:96]) publicKeyComp := babyjub.PackSignY(sign, ay) ethAddr := ethCommon.BytesToAddress(b[108:128])
if !cryptoUtils.CheckBigIntInField(balance) { return nil, tracerr.Wrap(ErrNotInFF) } if !cryptoUtils.CheckBigIntInField(ay) { return nil, tracerr.Wrap(ErrNotInFF) }
a := Account{ TokenID: TokenID(tokenID), Nonce: nonce, Balance: balance, BJJ: publicKeyComp, EthAddr: ethAddr, } return &a, nil }
// IdxNonce is a pair of Idx and Nonce representing an account
type IdxNonce struct { Idx Idx `db:"idx"` Nonce Nonce `db:"nonce"` }
// AccountUpdate represents an account balance and/or nonce update after a
// processed batch
type AccountUpdate struct { EthBlockNum int64 `meddler:"eth_block_num"` BatchNum BatchNum `meddler:"batch_num"` Idx Idx `meddler:"idx"` Nonce Nonce `meddler:"nonce"` Balance *big.Int `meddler:"balance,bigint"` }
|