Refactor ZKInputs & add struct initialization

Refactor ZKInputs & add struct initialization & add BJJCompressedTo256BigInts util
This commit is contained in:
arnaucube
2020-09-08 18:41:32 +02:00
parent 230adfeb73
commit a7fe80f150
5 changed files with 319 additions and 100 deletions

View File

@@ -2,6 +2,7 @@ package common
import ( import (
"encoding/binary" "encoding/binary"
"math/big"
"time" "time"
ethCommon "github.com/ethereum/go-ethereum/common" ethCommon "github.com/ethereum/go-ethereum/common"
@@ -34,3 +35,8 @@ func (t TokenID) Bytes() []byte {
binary.LittleEndian.PutUint32(tokenIDBytes[:], uint32(t)) binary.LittleEndian.PutUint32(tokenIDBytes[:], uint32(t))
return tokenIDBytes[:] return tokenIDBytes[:]
} }
// BigInt returns the *big.Int representation of the TokenID
func (t TokenID) BigInt() *big.Int {
return big.NewInt(int64(t))
}

View File

@@ -4,6 +4,7 @@ import (
"math/big" "math/big"
ethCommon "github.com/ethereum/go-ethereum/common" ethCommon "github.com/ethereum/go-ethereum/common"
"github.com/iden3/go-iden3-crypto/babyjub"
) )
// SwapEndianness swaps the order of the bytes in the slice. // SwapEndianness swaps the order of the bytes in the slice.
@@ -19,3 +20,20 @@ func SwapEndianness(b []byte) []byte {
func EthAddrToBigInt(a ethCommon.Address) *big.Int { func EthAddrToBigInt(a ethCommon.Address) *big.Int {
return new(big.Int).SetBytes(a.Bytes()) return new(big.Int).SetBytes(a.Bytes())
} }
// BJJCompressedTo256BigInts returns a [256]*big.Int array with the bit
// representation of the babyjub.PublicKeyComp
func BJJCompressedTo256BigInts(pkComp babyjub.PublicKeyComp) [256]*big.Int {
var r [256]*big.Int
b := pkComp[:]
for i := 0; i < 256; i++ {
if b[i/8]&(1<<(i%8)) == 0 {
r[i] = big.NewInt(0)
} else {
r[i] = big.NewInt(1)
}
}
return r
}

39
common/utils_test.go Normal file
View File

@@ -0,0 +1,39 @@
package common
import (
"math/big"
"testing"
"github.com/iden3/go-iden3-crypto/babyjub"
"github.com/stretchr/testify/assert"
)
func TestBJJCompressedTo256BigInt(t *testing.T) {
var pkComp babyjub.PublicKeyComp
r := BJJCompressedTo256BigInts(pkComp)
zero := big.NewInt(0)
for i := 0; i < 256; i++ {
assert.Equal(t, zero, r[i])
}
pkComp[0] = 3
r = BJJCompressedTo256BigInts(pkComp)
one := big.NewInt(1)
for i := 0; i < 256; i++ {
if i != 0 && i != 1 {
assert.Equal(t, zero, r[i])
} else {
assert.Equal(t, one, r[i])
}
}
pkComp[31] = 4
r = BJJCompressedTo256BigInts(pkComp)
for i := 0; i < 256; i++ {
if i != 0 && i != 1 && i != 250 {
assert.Equal(t, zero, r[i])
} else {
assert.Equal(t, one, r[i])
}
}
}

View File

@@ -1,6 +1,6 @@
// Package common contains all the common data structures used at the // Package common contains all the common data structures used at the
// hermez-node, zk.go contains the zkSnark inputs used to generate the proof // hermez-node, zk.go contains the zkSnark inputs used to generate the proof
//nolint:deadcode,structcheck, unused //nolint:deadcode,structcheck,unused
package common package common
import "math/big" import "math/big"
@@ -20,127 +20,268 @@ type maxFeeTx uint32
// ZKInputs represents the inputs that will be used to generate the zkSNARK proof // ZKInputs represents the inputs that will be used to generate the zkSNARK proof
type ZKInputs struct { type ZKInputs struct {
//
// General
//
// inputs for final `hashGlobalInputs` // inputs for final `hashGlobalInputs`
// oldLastIdx is the last index assigned to an account // OldLastIdx is the last index assigned to an account
oldLastIdx *big.Int // uint64 (max nLevels bits) OldLastIdx *big.Int // uint64 (max nLevels bits)
// oldStateRoot is the current state merkle tree root // OldStateRoot is the current state merkle tree root
oldStateRoot *big.Int // Hash OldStateRoot *big.Int // Hash
// globalChainID is the blockchain ID (0 for Ethereum mainnet). This value can be get from the smart contract. // GlobalChainID is the blockchain ID (0 for Ethereum mainnet). This value can be get from the smart contract.
globalChainID *big.Int // uint16 GlobalChainID *big.Int // uint16
// feeIdxs is an array of merkle tree indexes where the coordinator will receive the accumulated fees // FeeIdxs is an array of merkle tree indexes where the coordinator will receive the accumulated fees
feeIdxs []*big.Int // uint64 (max nLevels bits), len: [maxFeeTx] FeeIdxs []*big.Int // uint64 (max nLevels bits), len: [maxFeeTx]
// accumulate fees // accumulate fees
// feePlanTokens contains all the tokenIDs for which the fees are being accumulated // FeePlanTokens contains all the tokenIDs for which the fees are being accumulated
feePlanTokens []*big.Int // uint32 (max 32 bits), len: [maxFeeTx] FeePlanTokens []*big.Int // uint32 (max 32 bits), len: [maxFeeTx]
// Intermediary States to parallelize witness computation //
// decode-tx // Txs (L1&L2)
// imOnChain indicates if tx is L1 (true) or L2 (false) //
imOnChain []*big.Int // bool, len: [nTx - 1]
// imOutIdx current index account for each Tx
imOutIdx []*big.Int // uint64 (max nLevels bits), len: [nTx - 1]
// rollup-tx
// imStateRoot root at the moment of the Tx, the state root value once the Tx is processed into the state tree
imStateRoot []*big.Int // Hash, len: [nTx - 1]
// imExitTree root at the moment of the Tx the value once the Tx is processed into the exit tree
imExitRoot []*big.Int // Hash, len: [nTx - 1]
// imAccFeeOut accumulated fees once the Tx is processed
imAccFeeOut [][]*big.Int // big.Int, len: [nTx - 1][maxFeeTx]
// fee-tx
// imStateRootFee root at the moment of the Tx, the state root value once the Tx is processed into the state tree
imStateRootFee []*big.Int // Hash, len: [maxFeeTx - 1]
// imInitStateRootFee state root once all L1-L2 tx are processed (before computing the fees-tx)
imInitStateRootFee *big.Int // Hash
// imFinalAccFee final accumulated fees (before computing the fees-tx)
imFinalAccFee []*big.Int // big.Int, len: [maxFeeTx - 1]
// transaction L1-L2 // transaction L1-L2
// txCompressedData // TxCompressedData
txCompressedData []*big.Int // big.Int (max 251 bits), len: [nTx] TxCompressedData []*big.Int // big.Int (max 251 bits), len: [nTx]
// txCompressedDataV2 // TxCompressedDataV2, only used in L2Txs, in L1Txs is set to 0
txCompressedDataV2 []*big.Int // big.Int (max 193 bits), len: [nTx] TxCompressedDataV2 []*big.Int // big.Int (max 193 bits), len: [nTx]
// fromIdx
fromIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
// auxFromIdx is the Idx of the new created account which is consequence of a L1CreateAccountTx
auxFromIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
// toIdx // FromIdx
toIdx []*big.Int // uint64 (max nLevels bits), len: [nTx] FromIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
// auxToIdx is the Idx of the Tx that has 'toIdx==0', is the coordinator who will find which Idx corresponds to the 'toBjjAy' or 'toEthAddr' // AuxFromIdx is the Idx of the new created account which is consequence of a L1CreateAccountTx
auxToIdx []*big.Int // uint64 (max nLevels bits), len: [nTx] AuxFromIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
// toBjjAy
toBjjAy []*big.Int // big.Int, len: [nTx]
// toEthAddr
toEthAddr []*big.Int // ethCommon.Address, len: [nTx]
// onChain determines if is L1 (1/true) or L2 (0/false) // ToIdx
onChain []*big.Int // bool, len: [nTx] ToIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
// newAccount boolean (0/1) flag to set L1 tx creates a new account // AuxToIdx is the Idx of the Tx that has 'toIdx==0', is the coordinator who will find which Idx corresponds to the 'toBJJAy' or 'toEthAddr'
newAccount []*big.Int // bool, len: [nTx] AuxToIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
// rqOffset relative transaction position to be linked. Used to perform atomic transactions. // ToBJJAy
rqOffset []*big.Int // uint8 (max 3 bits), len: [nTx] ToBJJAy []*big.Int // big.Int, len: [nTx]
// ToEthAddr
ToEthAddr []*big.Int // ethCommon.Address, len: [nTx]
// OnChain determines if is L1 (1/true) or L2 (0/false)
OnChain []*big.Int // bool, len: [nTx]
// NewAccount boolean (0/1) flag set 'true' when L1 tx creates a new account (fromIdx==0)
NewAccount []*big.Int // bool, len: [nTx]
//
// Txs/L1Txs
//
// transaction L1
// LoadAmountF encoded as float16
LoadAmountF []*big.Int // uint16, len: [nTx]
// FromEthAddr
FromEthAddr []*big.Int // ethCommon.Address, len: [nTx]
// FromBJJCompressed boolean encoded where each value is a *big.Int
FromBJJCompressed [][256]*big.Int // bool array, len: [nTx][256]
//
// Txs/L2Txs
//
// RqOffset relative transaction position to be linked. Used to perform atomic transactions.
RqOffset []*big.Int // uint8 (max 3 bits), len: [nTx]
// transaction L2 request data // transaction L2 request data
// rqTxCompressedDataV2 // RqTxCompressedDataV2
rqTxCompressedDataV2 []*big.Int // big.Int (max 251 bits), len: [nTx] RqTxCompressedDataV2 []*big.Int // big.Int (max 251 bits), len: [nTx]
// rqToEthAddr // RqToEthAddr
rqToEthAddr []*big.Int // ethCommon.Address, len: [nTx] RqToEthAddr []*big.Int // ethCommon.Address, len: [nTx]
// rqToBjjAy // RqToBJJAy
rqToBjjAy []*big.Int // big.Int, len: [nTx] RqToBJJAy []*big.Int // big.Int, len: [nTx]
// transaction L2 signature // transaction L2 signature
// s // S
s []*big.Int // big.Int, len: [nTx] S []*big.Int // big.Int, len: [nTx]
// r8x // R8x
r8x []*big.Int // big.Int, len: [nTx] R8x []*big.Int // big.Int, len: [nTx]
// r8y // R8y
r8y []*big.Int // big.Int, len: [nTx] R8y []*big.Int // big.Int, len: [nTx]
// transaction L1 //
// loadAmountF encoded as float16 // State MerkleTree Leafs transitions
loadAmountF []*big.Int // uint16, len: [nTx] //
// fromEthAddr
fromEthAddr []*big.Int // ethCommon.Address, len: [nTx]
// fromBjjCompressed boolean encoded where each value is a *big.Int
fromBjjCompressed [][]*big.Int // bool array, len: [nTx][256]
// state 1, value of the sender (from) account leaf // state 1, value of the sender (from) account leaf
tokenID1 []*big.Int // uint32, len: [nTx] TokenID1 []*big.Int // uint32, len: [nTx]
nonce1 []*big.Int // uint64 (max 40 bits), len: [nTx] Nonce1 []*big.Int // uint64 (max 40 bits), len: [nTx]
sign1 []*big.Int // bool, len: [nTx] Sign1 []*big.Int // bool, len: [nTx]
balance1 []*big.Int // big.Int (max 192 bits), len: [nTx] Balance1 []*big.Int // big.Int (max 192 bits), len: [nTx]
ay1 []*big.Int // big.Int, len: [nTx] Ay1 []*big.Int // big.Int, len: [nTx]
ethAddr1 []*big.Int // ethCommon.Address, len: [nTx] EthAddr1 []*big.Int // ethCommon.Address, len: [nTx]
siblings1 [][]*big.Int // big.Int, len: [nTx][nLevels + 1] Siblings1 [][]*big.Int // big.Int, len: [nTx][nLevels + 1]
// Required for inserts and deletes, values of the CircomProcessorProof (smt insert proof) // Required for inserts and deletes, values of the CircomProcessorProof (smt insert proof)
isOld0_1 []*big.Int // bool, len: [nTx] IsOld0_1 []*big.Int // bool, len: [nTx]
oldKey1 []*big.Int // uint64 (max 40 bits), len: [nTx] OldKey1 []*big.Int // uint64 (max 40 bits), len: [nTx]
oldValue1 []*big.Int // Hash, len: [nTx] OldValue1 []*big.Int // Hash, len: [nTx]
// state 2, value of the receiver (to) account leaf // state 2, value of the receiver (to) account leaf
tokenID2 []*big.Int // uint32, len: [nTx] // if Tx is an Exit, state 2 is used for the Exit Merkle Proof
nonce2 []*big.Int // uint64 (max 40 bits), len: [nTx] TokenID2 []*big.Int // uint32, len: [nTx]
sign2 []*big.Int // bool, len: [nTx] Nonce2 []*big.Int // uint64 (max 40 bits), len: [nTx]
balance2 []*big.Int // big.Int (max 192 bits), len: [nTx] Sign2 []*big.Int // bool, len: [nTx]
ay2 []*big.Int // big.Int, len: [nTx] Balance2 []*big.Int // big.Int (max 192 bits), len: [nTx]
ethAddr2 []*big.Int // ethCommon.Address, len: [nTx] Ay2 []*big.Int // big.Int, len: [nTx]
siblings2 [][]*big.Int // big.Int, len: [nTx][nLevels + 1] EthAddr2 []*big.Int // ethCommon.Address, len: [nTx]
Siblings2 [][]*big.Int // big.Int, len: [nTx][nLevels + 1]
// newExit determines if an exit transaction has to create a new leaf in the exit tree // newExit determines if an exit transaction has to create a new leaf in the exit tree
newExit []*big.Int // bool, len: [nTx] NewExit []*big.Int // bool, len: [nTx]
// Required for inserts and deletes, values of the CircomProcessorProof (smt insert proof) // Required for inserts and deletes, values of the CircomProcessorProof (smt insert proof)
isOld0_2 []*big.Int // bool, len: [nTx] IsOld0_2 []*big.Int // bool, len: [nTx]
oldKey2 []*big.Int // uint64 (max 40 bits), len: [nTx] OldKey2 []*big.Int // uint64 (max 40 bits), len: [nTx]
oldValue2 []*big.Int // Hash, len: [nTx] OldValue2 []*big.Int // Hash, len: [nTx]
// state 3, value of the account leaf receiver of the Fees // state 3, value of the account leaf receiver of the Fees
// fee tx // fee tx
// State fees // State fees
tokenID3 []*big.Int // uint32, len: [maxFeeTx] TokenID3 []*big.Int // uint32, len: [maxFeeTx]
nonce3 []*big.Int // uint64 (max 40 bits), len: [maxFeeTx] Nonce3 []*big.Int // uint64 (max 40 bits), len: [maxFeeTx]
sign3 []*big.Int // bool, len: [maxFeeTx] Sign3 []*big.Int // bool, len: [maxFeeTx]
balance3 []*big.Int // big.Int (max 192 bits), len: [maxFeeTx] Balance3 []*big.Int // big.Int (max 192 bits), len: [maxFeeTx]
ay3 []*big.Int // big.Int, len: [maxFeeTx] Ay3 []*big.Int // big.Int, len: [maxFeeTx]
ethAddr3 []*big.Int // ethCommon.Address, len: [maxFeeTx] EthAddr3 []*big.Int // ethCommon.Address, len: [maxFeeTx]
siblings3 [][]*big.Int // Hash, len: [maxFeeTx][nLevels + 1] Siblings3 [][]*big.Int // Hash, len: [maxFeeTx][nLevels + 1]
//
// Intermediate States
//
// Intermediate States to parallelize witness computation
// decode-tx
// ISOnChain indicates if tx is L1 (true) or L2 (false)
ISOnChain []*big.Int // bool, len: [nTx - 1]
// ISOutIdx current index account for each Tx
ISOutIdx []*big.Int // uint64 (max nLevels bits), len: [nTx - 1]
// rollup-tx
// ISStateRoot root at the moment of the Tx, the state root value once the Tx is processed into the state tree
ISStateRoot []*big.Int // Hash, len: [nTx - 1]
// ISExitTree root at the moment of the Tx the value once the Tx is processed into the exit tree
ISExitRoot []*big.Int // Hash, len: [nTx - 1]
// ISAccFeeOut accumulated fees once the Tx is processed
ISAccFeeOut [][]*big.Int // big.Int, len: [nTx - 1][maxFeeTx]
// fee-tx
// ISStateRootFee root at the moment of the Tx, the state root value once the Tx is processed into the state tree
ISStateRootFee []*big.Int // Hash, len: [maxFeeTx - 1]
// ISInitStateRootFee state root once all L1-L2 tx are processed (before computing the fees-tx)
ISInitStateRootFee *big.Int // Hash
// ISFinalAccFee final accumulated fees (before computing the fees-tx)
ISFinalAccFee []*big.Int // big.Int, len: [maxFeeTx - 1]
}
// NewZKInputs returns a pointer to an initialized struct of ZKInputs
func NewZKInputs(nTx, maxFeeTx, nLevels int) *ZKInputs {
zki := &ZKInputs{}
// General
zki.OldLastIdx = big.NewInt(0)
zki.OldStateRoot = big.NewInt(0)
zki.GlobalChainID = big.NewInt(0)
zki.FeeIdxs = newSlice(maxFeeTx)
zki.FeePlanTokens = newSlice(maxFeeTx)
// Txs
zki.TxCompressedData = newSlice(nTx)
zki.TxCompressedDataV2 = newSlice(nTx)
zki.FromIdx = newSlice(nTx)
zki.AuxFromIdx = newSlice(nTx)
zki.ToIdx = newSlice(nTx)
zki.AuxToIdx = newSlice(nTx)
zki.ToBJJAy = newSlice(nTx)
zki.ToEthAddr = newSlice(nTx)
zki.OnChain = newSlice(nTx)
zki.NewAccount = newSlice(nTx)
// L1
zki.LoadAmountF = newSlice(nTx)
zki.FromEthAddr = newSlice(nTx)
zki.FromBJJCompressed = make([][256]*big.Int, nTx)
for i := 0; i < len(zki.FromBJJCompressed); i++ {
// zki.FromBJJCompressed[i] = newSlice(256)
for j := 0; j < 256; j++ {
zki.FromBJJCompressed[i][j] = big.NewInt(0)
}
}
// L2
zki.RqOffset = newSlice(nTx)
zki.RqTxCompressedDataV2 = newSlice(nTx)
zki.RqToEthAddr = newSlice(nTx)
zki.RqToBJJAy = newSlice(nTx)
zki.S = newSlice(nTx)
zki.R8x = newSlice(nTx)
zki.R8y = newSlice(nTx)
// State MerkleTree Leafs transitions
zki.TokenID1 = newSlice(nTx)
zki.Nonce1 = newSlice(nTx)
zki.Sign1 = newSlice(nTx)
zki.Balance1 = newSlice(nTx)
zki.Ay1 = newSlice(nTx)
zki.EthAddr1 = newSlice(nTx)
zki.Siblings1 = make([][]*big.Int, nTx)
for i := 0; i < len(zki.Siblings1); i++ {
zki.Siblings1[i] = newSlice(nLevels + 1)
}
zki.IsOld0_1 = newSlice(nTx)
zki.OldKey1 = newSlice(nTx)
zki.OldValue1 = newSlice(nTx)
zki.TokenID2 = newSlice(nTx)
zki.Nonce2 = newSlice(nTx)
zki.Sign2 = newSlice(nTx)
zki.Balance2 = newSlice(nTx)
zki.Ay2 = newSlice(nTx)
zki.EthAddr2 = newSlice(nTx)
zki.Siblings2 = make([][]*big.Int, nTx)
for i := 0; i < len(zki.Siblings2); i++ {
zki.Siblings2[i] = newSlice(nLevels + 1)
}
zki.NewExit = newSlice(nTx)
zki.IsOld0_2 = newSlice(nTx)
zki.OldKey2 = newSlice(nTx)
zki.OldValue2 = newSlice(nTx)
zki.TokenID3 = newSlice(maxFeeTx)
zki.Nonce3 = newSlice(maxFeeTx)
zki.Sign3 = newSlice(maxFeeTx)
zki.Balance3 = newSlice(maxFeeTx)
zki.Ay3 = newSlice(maxFeeTx)
zki.EthAddr3 = newSlice(maxFeeTx)
zki.Siblings3 = make([][]*big.Int, maxFeeTx)
for i := 0; i < len(zki.Siblings3); i++ {
zki.Siblings3[i] = newSlice(nLevels + 1)
}
// Intermediate States
zki.ISOnChain = newSlice(nTx - 1)
zki.ISOutIdx = newSlice(nTx - 1)
zki.ISStateRoot = newSlice(nTx - 1)
zki.ISExitRoot = newSlice(nTx - 1)
zki.ISAccFeeOut = make([][]*big.Int, nTx-1)
for i := 0; i < len(zki.ISAccFeeOut); i++ {
zki.ISAccFeeOut[i] = newSlice(maxFeeTx)
}
zki.ISStateRootFee = newSlice(maxFeeTx - 1)
zki.ISInitStateRootFee = big.NewInt(0)
zki.ISFinalAccFee = newSlice(maxFeeTx - 1)
return zki
}
// newSlice returns a []*big.Int slice of length n with values initialized at
// 0.
// Is used to initialize all *big.Ints of the ZKInputs data structure, so when
// the transactions are processed and the ZKInputs filled, there is no need to
// set all the elements, and if a transaction does not use a parameter, can be
// leaved as it is in the ZKInputs, as will be 0, so later when using the
// ZKInputs to generate the zkSnark proof there is no 'nil'/'null' values.
func newSlice(n int) []*big.Int {
s := make([]*big.Int, n)
for i := 0; i < len(s); i++ {
s[i] = big.NewInt(0)
}
return s
} }

15
common/zk_test.go Normal file
View File

@@ -0,0 +1,15 @@
package common
import (
"encoding/json"
"testing"
"github.com/stretchr/testify/require"
)
func TestZKInputs(t *testing.T) {
zki := NewZKInputs(100, 24, 32)
_, err := json.Marshal(zki)
require.Nil(t, err)
// fmt.Println(string(s))
}