Browse Source

Merge pull request #114 from hermeznetwork/feature/compute-zkinputs

Feature/compute zkinputs
feature/sql-semaphore1
Eduard S 4 years ago
committed by GitHub
parent
commit
d416203f10
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 840 additions and 183 deletions
  1. +2
    -2
      batchbuilder/batchbuilder.go
  2. +25
    -0
      common/l2tx.go
  3. +15
    -10
      common/pooll2tx.go
  4. +6
    -0
      common/token.go
  5. +243
    -103
      common/zk.go
  6. +15
    -0
      common/zk_test.go
  7. +1
    -2
      coordinator/coordinator.go
  8. +2
    -0
      db/statedb/statedb.go
  9. +408
    -58
      db/statedb/txprocessors.go
  10. +39
    -8
      db/statedb/txprocessors_test.go
  11. +45
    -0
      db/statedb/utils.go
  12. +39
    -0
      db/statedb/utils_test.go

+ 2
- 2
batchbuilder/batchbuilder.go

@ -51,8 +51,8 @@ func (bb *BatchBuilder) Reset(batchNum common.BatchNum, fromSynchronizer bool) e
}
// BuildBatch takes the transactions and returns the common.ZKInputs of the next batch
func (bb *BatchBuilder) BuildBatch(configBatch *ConfigBatch, l1usertxs, l1coordinatortxs []*common.L1Tx, l2txs []*common.L2Tx, tokenIDs []common.TokenID) (*common.ZKInputs, error) {
zkInputs, _, err := bb.localStateDB.ProcessTxs(false, l1usertxs, l1coordinatortxs, l2txs)
func (bb *BatchBuilder) BuildBatch(configBatch *ConfigBatch, l1usertxs, l1coordinatortxs []*common.L1Tx, pooll2txs []*common.PoolL2Tx, tokenIDs []common.TokenID) (*common.ZKInputs, error) {
zkInputs, _, err := bb.localStateDB.ProcessTxs(false, true, l1usertxs, l1coordinatortxs, pooll2txs)
if err != nil {
return nil, err
}

+ 25
- 0
common/l2tx.go

@ -30,3 +30,28 @@ func (tx *L2Tx) Tx() *Tx {
Type: tx.Type,
}
}
// PoolL2Tx returns the data structure of PoolL2Tx with the parameters of a
// L2Tx filled
func (tx *L2Tx) PoolL2Tx() *PoolL2Tx {
return &PoolL2Tx{
TxID: tx.TxID,
BatchNum: tx.BatchNum,
FromIdx: tx.FromIdx,
ToIdx: tx.ToIdx,
Amount: tx.Amount,
Fee: tx.Fee,
Nonce: tx.Nonce,
Type: tx.Type,
}
}
// L2TxsToPoolL2Txs returns an array of []*PoolL2Tx from an array of []*L2Tx,
// where the PoolL2Tx only have the parameters of a L2Tx filled.
func L2TxsToPoolL2Txs(txs []*L2Tx) []*PoolL2Tx {
var r []*PoolL2Tx
for _, tx := range txs {
r = append(r, tx.PoolL2Tx())
}
return r
}

+ 15
- 10
common/pooll2tx.go

@ -27,6 +27,11 @@ func (n Nonce) Bytes() ([5]byte, error) {
return b, nil
}
// BigInt returns the *big.Int representation of the Nonce value
func (n Nonce) BigInt() *big.Int {
return big.NewInt(int64(n))
}
// NonceFromBytes returns Nonce from a [5]byte
func NonceFromBytes(b [5]byte) Nonce {
var nonceBytes [8]byte
@ -76,7 +81,7 @@ type PoolL2Tx struct {
// [ 32 bits ] tokenID // 4 bytes: [20:24]
// [ 40 bits ] nonce // 5 bytes: [24:29]
// [ 8 bits ] userFee // 1 byte: [29:30]
// [ 1 bits ] toBjjSign // 1 byte: [30:31]
// [ 1 bits ] toBJJSign // 1 byte: [30:31]
// Total bits compressed data: 241 bits // 31 bytes in *big.Int representation
func (tx *PoolL2Tx) TxCompressedData() (*big.Int, error) {
// sigconstant
@ -102,11 +107,11 @@ func (tx *PoolL2Tx) TxCompressedData() (*big.Int, error) {
}
copy(b[24:29], nonceBytes[:])
b[29] = byte(tx.Fee)
toBjjSign := byte(0)
toBJJSign := byte(0)
if babyjub.PointCoordSign(tx.ToBJJ.X) {
toBjjSign = byte(1)
toBJJSign = byte(1)
}
b[30] = toBjjSign
b[30] = toBJJSign
bi := new(big.Int).SetBytes(SwapEndianness(b[:]))
return bi, nil
@ -119,7 +124,7 @@ func (tx *PoolL2Tx) TxCompressedData() (*big.Int, error) {
// [ 32 bits ] tokenID // 4 bytes: [14:18]
// [ 40 bits ] nonce // 5 bytes: [18:23]
// [ 8 bits ] userFee // 1 byte: [23:24]
// [ 1 bits ] toBjjSign // 1 byte: [24:25]
// [ 1 bits ] toBJJSign // 1 byte: [24:25]
// Total bits compressed data: 193 bits // 25 bytes in *big.Int representation
func (tx *PoolL2Tx) TxCompressedDataV2() (*big.Int, error) {
amountFloat16, err := utils.NewFloat16(tx.Amount)
@ -137,11 +142,11 @@ func (tx *PoolL2Tx) TxCompressedDataV2() (*big.Int, error) {
}
copy(b[18:23], nonceBytes[:])
b[23] = byte(tx.Fee)
toBjjSign := byte(0)
toBJJSign := byte(0)
if babyjub.PointCoordSign(tx.ToBJJ.X) {
toBjjSign = byte(1)
toBJJSign = byte(1)
}
b[24] = toBjjSign
b[24] = toBJJSign
bi := new(big.Int).SetBytes(SwapEndianness(b[:]))
return bi, nil
@ -154,13 +159,13 @@ func (tx *PoolL2Tx) HashToSign() (*big.Int, error) {
return nil, err
}
toEthAddr := EthAddrToBigInt(tx.ToEthAddr)
toBjjAy := tx.ToBJJ.Y
toBJJAy := tx.ToBJJ.Y
rqTxCompressedDataV2, err := tx.TxCompressedDataV2()
if err != nil {
return nil, err
}
return poseidon.Hash([]*big.Int{toCompressedData, toEthAddr, toBjjAy, rqTxCompressedDataV2, EthAddrToBigInt(tx.RqToEthAddr), tx.RqToBJJ.Y})
return poseidon.Hash([]*big.Int{toCompressedData, toEthAddr, toBJJAy, rqTxCompressedDataV2, EthAddrToBigInt(tx.RqToEthAddr), tx.RqToBJJ.Y})
}
// VerifySignature returns true if the signature verification is correct for the given PublicKey

+ 6
- 0
common/token.go

@ -2,6 +2,7 @@ package common
import (
"encoding/binary"
"math/big"
"time"
ethCommon "github.com/ethereum/go-ethereum/common"
@ -34,3 +35,8 @@ func (t TokenID) Bytes() []byte {
binary.LittleEndian.PutUint32(tokenIDBytes[:], uint32(t))
return tokenIDBytes[:]
}
// BigInt returns the *big.Int representation of the TokenID
func (t TokenID) BigInt() *big.Int {
return big.NewInt(int64(t))
}

+ 243
- 103
common/zk.go

@ -1,6 +1,6 @@
// Package common contains all the common data structures used at the
// hermez-node, zk.go contains the zkSnark inputs used to generate the proof
//nolint:deadcode,structcheck, unused
//nolint:deadcode,structcheck,unused
package common
import "math/big"
@ -20,127 +20,267 @@ type maxFeeTx uint32
// ZKInputs represents the inputs that will be used to generate the zkSNARK proof
type ZKInputs struct {
//
// General
//
// inputs for final `hashGlobalInputs`
// oldLastIdx is the last index assigned to an account
oldLastIdx *big.Int // uint64 (max nLevels bits)
// oldStateRoot is the current state merkle tree root
oldStateRoot *big.Int // Hash
// globalChainID is the blockchain ID (0 for Ethereum mainnet). This value can be get from the smart contract.
globalChainID *big.Int // uint16
// feeIdxs is an array of merkle tree indexes where the coordinator will receive the accumulated fees
feeIdxs []*big.Int // uint64 (max nLevels bits), len: [maxFeeTx]
// OldLastIdx is the last index assigned to an account
OldLastIdx *big.Int // uint64 (max nLevels bits)
// OldStateRoot is the current state merkle tree root
OldStateRoot *big.Int // Hash
// GlobalChainID is the blockchain ID (0 for Ethereum mainnet). This value can be get from the smart contract.
GlobalChainID *big.Int // uint16
// FeeIdxs is an array of merkle tree indexes where the coordinator will receive the accumulated fees
FeeIdxs []*big.Int // uint64 (max nLevels bits), len: [maxFeeTx]
// accumulate fees
// feePlanTokens contains all the tokenIDs for which the fees are being accumulated
feePlanTokens []*big.Int // uint32 (max 32 bits), len: [maxFeeTx]
// FeePlanTokens contains all the tokenIDs for which the fees are being accumulated
FeePlanTokens []*big.Int // uint32 (max 32 bits), len: [maxFeeTx]
// Intermediary States to parallelize witness computation
// decode-tx
// imOnChain indicates if tx is L1 (true) or L2 (false)
imOnChain []*big.Int // bool, len: [nTx - 1]
// imOutIdx current index account for each Tx
imOutIdx []*big.Int // uint64 (max nLevels bits), len: [nTx - 1]
// rollup-tx
// imStateRoot root at the moment of the Tx, the state root value once the Tx is processed into the state tree
imStateRoot []*big.Int // Hash, len: [nTx - 1]
// imExitTree root at the moment of the Tx the value once the Tx is processed into the exit tree
imExitRoot []*big.Int // Hash, len: [nTx - 1]
// imAccFeeOut accumulated fees once the Tx is processed
imAccFeeOut [][]*big.Int // big.Int, len: [nTx - 1][maxFeeTx]
// fee-tx
// imStateRootFee root at the moment of the Tx, the state root value once the Tx is processed into the state tree
imStateRootFee []*big.Int // Hash, len: [maxFeeTx - 1]
// imInitStateRootFee state root once all L1-L2 tx are processed (before computing the fees-tx)
imInitStateRootFee *big.Int // Hash
// imFinalAccFee final accumulated fees (before computing the fees-tx)
imFinalAccFee []*big.Int // big.Int, len: [maxFeeTx - 1]
//
// Txs (L1&L2)
//
// transaction L1-L2
// txCompressedData
txCompressedData []*big.Int // big.Int (max 251 bits), len: [nTx]
// txCompressedDataV2
txCompressedDataV2 []*big.Int // big.Int (max 193 bits), len: [nTx]
// fromIdx
fromIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
// auxFromIdx is the Idx of the new created account which is consequence of a L1CreateAccountTx
auxFromIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
// toIdx
toIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
// auxToIdx is the Idx of the Tx that has 'toIdx==0', is the coordinator who will find which Idx corresponds to the 'toBjjAy' or 'toEthAddr'
auxToIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
// toBjjAy
toBjjAy []*big.Int // big.Int, len: [nTx]
// toEthAddr
toEthAddr []*big.Int // ethCommon.Address, len: [nTx]
// onChain determines if is L1 (1/true) or L2 (0/false)
onChain []*big.Int // bool, len: [nTx]
// newAccount boolean (0/1) flag to set L1 tx creates a new account
newAccount []*big.Int // bool, len: [nTx]
// rqOffset relative transaction position to be linked. Used to perform atomic transactions.
rqOffset []*big.Int // uint8 (max 3 bits), len: [nTx]
// TxCompressedData
TxCompressedData []*big.Int // big.Int (max 251 bits), len: [nTx]
// TxCompressedDataV2, only used in L2Txs, in L1Txs is set to 0
TxCompressedDataV2 []*big.Int // big.Int (max 193 bits), len: [nTx]
// FromIdx
FromIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
// AuxFromIdx is the Idx of the new created account which is consequence of a L1CreateAccountTx
AuxFromIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
// ToIdx
ToIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
// AuxToIdx is the Idx of the Tx that has 'toIdx==0', is the coordinator who will find which Idx corresponds to the 'toBJJAy' or 'toEthAddr'
AuxToIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
// ToBJJAy
ToBJJAy []*big.Int // big.Int, len: [nTx]
// ToEthAddr
ToEthAddr []*big.Int // ethCommon.Address, len: [nTx]
// OnChain determines if is L1 (1/true) or L2 (0/false)
OnChain []*big.Int // bool, len: [nTx]
//
// Txs/L1Txs
//
// NewAccount boolean (0/1) flag set 'true' when L1 tx creates a new account (fromIdx==0)
NewAccount []*big.Int // bool, len: [nTx]
// LoadAmountF encoded as float16
LoadAmountF []*big.Int // uint16, len: [nTx]
// FromEthAddr
FromEthAddr []*big.Int // ethCommon.Address, len: [nTx]
// FromBJJCompressed boolean encoded where each value is a *big.Int
FromBJJCompressed [][256]*big.Int // bool array, len: [nTx][256]
//
// Txs/L2Txs
//
// RqOffset relative transaction position to be linked. Used to perform atomic transactions.
RqOffset []*big.Int // uint8 (max 3 bits), len: [nTx]
// transaction L2 request data
// rqTxCompressedDataV2
rqTxCompressedDataV2 []*big.Int // big.Int (max 251 bits), len: [nTx]
// rqToEthAddr
rqToEthAddr []*big.Int // ethCommon.Address, len: [nTx]
// rqToBjjAy
rqToBjjAy []*big.Int // big.Int, len: [nTx]
// RqTxCompressedDataV2
RqTxCompressedDataV2 []*big.Int // big.Int (max 251 bits), len: [nTx]
// RqToEthAddr
RqToEthAddr []*big.Int // ethCommon.Address, len: [nTx]
// RqToBJJAy
RqToBJJAy []*big.Int // big.Int, len: [nTx]
// transaction L2 signature
// s
s []*big.Int // big.Int, len: [nTx]
// r8x
r8x []*big.Int // big.Int, len: [nTx]
// r8y
r8y []*big.Int // big.Int, len: [nTx]
// transaction L1
// loadAmountF encoded as float16
loadAmountF []*big.Int // uint16, len: [nTx]
// fromEthAddr
fromEthAddr []*big.Int // ethCommon.Address, len: [nTx]
// fromBjjCompressed boolean encoded where each value is a *big.Int
fromBjjCompressed [][]*big.Int // bool array, len: [nTx][256]
// S
S []*big.Int // big.Int, len: [nTx]
// R8x
R8x []*big.Int // big.Int, len: [nTx]
// R8y
R8y []*big.Int // big.Int, len: [nTx]
//
// State MerkleTree Leafs transitions
//
// state 1, value of the sender (from) account leaf
tokenID1 []*big.Int // uint32, len: [nTx]
nonce1 []*big.Int // uint64 (max 40 bits), len: [nTx]
sign1 []*big.Int // bool, len: [nTx]
balance1 []*big.Int // big.Int (max 192 bits), len: [nTx]
ay1 []*big.Int // big.Int, len: [nTx]
ethAddr1 []*big.Int // ethCommon.Address, len: [nTx]
siblings1 [][]*big.Int // big.Int, len: [nTx][nLevels + 1]
TokenID1 []*big.Int // uint32, len: [nTx]
Nonce1 []*big.Int // uint64 (max 40 bits), len: [nTx]
Sign1 []*big.Int // bool, len: [nTx]
Ay1 []*big.Int // big.Int, len: [nTx]
Balance1 []*big.Int // big.Int (max 192 bits), len: [nTx]
EthAddr1 []*big.Int // ethCommon.Address, len: [nTx]
Siblings1 [][]*big.Int // big.Int, len: [nTx][nLevels + 1]
// Required for inserts and deletes, values of the CircomProcessorProof (smt insert proof)
isOld0_1 []*big.Int // bool, len: [nTx]
oldKey1 []*big.Int // uint64 (max 40 bits), len: [nTx]
oldValue1 []*big.Int // Hash, len: [nTx]
IsOld0_1 []*big.Int // bool, len: [nTx]
OldKey1 []*big.Int // uint64 (max 40 bits), len: [nTx]
OldValue1 []*big.Int // Hash, len: [nTx]
// state 2, value of the receiver (to) account leaf
tokenID2 []*big.Int // uint32, len: [nTx]
nonce2 []*big.Int // uint64 (max 40 bits), len: [nTx]
sign2 []*big.Int // bool, len: [nTx]
balance2 []*big.Int // big.Int (max 192 bits), len: [nTx]
ay2 []*big.Int // big.Int, len: [nTx]
ethAddr2 []*big.Int // ethCommon.Address, len: [nTx]
siblings2 [][]*big.Int // big.Int, len: [nTx][nLevels + 1]
// if Tx is an Exit, state 2 is used for the Exit Merkle Proof
TokenID2 []*big.Int // uint32, len: [nTx]
Nonce2 []*big.Int // uint64 (max 40 bits), len: [nTx]
Sign2 []*big.Int // bool, len: [nTx]
Ay2 []*big.Int // big.Int, len: [nTx]
Balance2 []*big.Int // big.Int (max 192 bits), len: [nTx]
EthAddr2 []*big.Int // ethCommon.Address, len: [nTx]
Siblings2 [][]*big.Int // big.Int, len: [nTx][nLevels + 1]
// newExit determines if an exit transaction has to create a new leaf in the exit tree
newExit []*big.Int // bool, len: [nTx]
NewExit []*big.Int // bool, len: [nTx]
// Required for inserts and deletes, values of the CircomProcessorProof (smt insert proof)
isOld0_2 []*big.Int // bool, len: [nTx]
oldKey2 []*big.Int // uint64 (max 40 bits), len: [nTx]
oldValue2 []*big.Int // Hash, len: [nTx]
IsOld0_2 []*big.Int // bool, len: [nTx]
OldKey2 []*big.Int // uint64 (max 40 bits), len: [nTx]
OldValue2 []*big.Int // Hash, len: [nTx]
// state 3, value of the account leaf receiver of the Fees
// fee tx
// State fees
tokenID3 []*big.Int // uint32, len: [maxFeeTx]
nonce3 []*big.Int // uint64 (max 40 bits), len: [maxFeeTx]
sign3 []*big.Int // bool, len: [maxFeeTx]
balance3 []*big.Int // big.Int (max 192 bits), len: [maxFeeTx]
ay3 []*big.Int // big.Int, len: [maxFeeTx]
ethAddr3 []*big.Int // ethCommon.Address, len: [maxFeeTx]
siblings3 [][]*big.Int // Hash, len: [maxFeeTx][nLevels + 1]
TokenID3 []*big.Int // uint32, len: [maxFeeTx]
Nonce3 []*big.Int // uint64 (max 40 bits), len: [maxFeeTx]
Sign3 []*big.Int // bool, len: [maxFeeTx]
Ay3 []*big.Int // big.Int, len: [maxFeeTx]
Balance3 []*big.Int // big.Int (max 192 bits), len: [maxFeeTx]
EthAddr3 []*big.Int // ethCommon.Address, len: [maxFeeTx]
Siblings3 [][]*big.Int // Hash, len: [maxFeeTx][nLevels + 1]
//
// Intermediate States
//
// Intermediate States to parallelize witness computation
// decode-tx
// ISOnChain indicates if tx is L1 (true) or L2 (false)
ISOnChain []*big.Int // bool, len: [nTx - 1]
// ISOutIdx current index account for each Tx
ISOutIdx []*big.Int // uint64 (max nLevels bits), len: [nTx - 1]
// rollup-tx
// ISStateRoot root at the moment of the Tx, the state root value once the Tx is processed into the state tree
ISStateRoot []*big.Int // Hash, len: [nTx - 1]
// ISExitTree root at the moment of the Tx the value once the Tx is processed into the exit tree
ISExitRoot []*big.Int // Hash, len: [nTx - 1]
// ISAccFeeOut accumulated fees once the Tx is processed
ISAccFeeOut [][]*big.Int // big.Int, len: [nTx - 1][maxFeeTx]
// fee-tx
// ISStateRootFee root at the moment of the Tx, the state root value once the Tx is processed into the state tree
ISStateRootFee []*big.Int // Hash, len: [maxFeeTx - 1]
// ISInitStateRootFee state root once all L1-L2 tx are processed (before computing the fees-tx)
ISInitStateRootFee *big.Int // Hash
// ISFinalAccFee final accumulated fees (before computing the fees-tx)
ISFinalAccFee []*big.Int // big.Int, len: [maxFeeTx - 1]
}
// NewZKInputs returns a pointer to an initialized struct of ZKInputs
func NewZKInputs(nTx, maxFeeTx, nLevels int) *ZKInputs {
zki := &ZKInputs{}
// General
zki.OldLastIdx = big.NewInt(0)
zki.OldStateRoot = big.NewInt(0)
zki.GlobalChainID = big.NewInt(0)
zki.FeeIdxs = newSlice(maxFeeTx)
zki.FeePlanTokens = newSlice(maxFeeTx)
// Txs
zki.TxCompressedData = newSlice(nTx)
zki.TxCompressedDataV2 = newSlice(nTx)
zki.FromIdx = newSlice(nTx)
zki.AuxFromIdx = newSlice(nTx)
zki.ToIdx = newSlice(nTx)
zki.AuxToIdx = newSlice(nTx)
zki.ToBJJAy = newSlice(nTx)
zki.ToEthAddr = newSlice(nTx)
zki.OnChain = newSlice(nTx)
zki.NewAccount = newSlice(nTx)
// L1
zki.LoadAmountF = newSlice(nTx)
zki.FromEthAddr = newSlice(nTx)
zki.FromBJJCompressed = make([][256]*big.Int, nTx)
for i := 0; i < len(zki.FromBJJCompressed); i++ {
// zki.FromBJJCompressed[i] = newSlice(256)
for j := 0; j < 256; j++ {
zki.FromBJJCompressed[i][j] = big.NewInt(0)
}
}
// L2
zki.RqOffset = newSlice(nTx)
zki.RqTxCompressedDataV2 = newSlice(nTx)
zki.RqToEthAddr = newSlice(nTx)
zki.RqToBJJAy = newSlice(nTx)
zki.S = newSlice(nTx)
zki.R8x = newSlice(nTx)
zki.R8y = newSlice(nTx)
// State MerkleTree Leafs transitions
zki.TokenID1 = newSlice(nTx)
zki.Nonce1 = newSlice(nTx)
zki.Sign1 = newSlice(nTx)
zki.Ay1 = newSlice(nTx)
zki.Balance1 = newSlice(nTx)
zki.EthAddr1 = newSlice(nTx)
zki.Siblings1 = make([][]*big.Int, nTx)
for i := 0; i < len(zki.Siblings1); i++ {
zki.Siblings1[i] = newSlice(nLevels + 1)
}
zki.IsOld0_1 = newSlice(nTx)
zki.OldKey1 = newSlice(nTx)
zki.OldValue1 = newSlice(nTx)
zki.TokenID2 = newSlice(nTx)
zki.Nonce2 = newSlice(nTx)
zki.Sign2 = newSlice(nTx)
zki.Ay2 = newSlice(nTx)
zki.Balance2 = newSlice(nTx)
zki.EthAddr2 = newSlice(nTx)
zki.Siblings2 = make([][]*big.Int, nTx)
for i := 0; i < len(zki.Siblings2); i++ {
zki.Siblings2[i] = newSlice(nLevels + 1)
}
zki.NewExit = newSlice(nTx)
zki.IsOld0_2 = newSlice(nTx)
zki.OldKey2 = newSlice(nTx)
zki.OldValue2 = newSlice(nTx)
zki.TokenID3 = newSlice(maxFeeTx)
zki.Nonce3 = newSlice(maxFeeTx)
zki.Sign3 = newSlice(maxFeeTx)
zki.Ay3 = newSlice(maxFeeTx)
zki.Balance3 = newSlice(maxFeeTx)
zki.EthAddr3 = newSlice(maxFeeTx)
zki.Siblings3 = make([][]*big.Int, maxFeeTx)
for i := 0; i < len(zki.Siblings3); i++ {
zki.Siblings3[i] = newSlice(nLevels + 1)
}
// Intermediate States
zki.ISOnChain = newSlice(nTx - 1)
zki.ISOutIdx = newSlice(nTx - 1)
zki.ISStateRoot = newSlice(nTx - 1)
zki.ISExitRoot = newSlice(nTx - 1)
zki.ISAccFeeOut = make([][]*big.Int, nTx-1)
for i := 0; i < len(zki.ISAccFeeOut); i++ {
zki.ISAccFeeOut[i] = newSlice(maxFeeTx)
}
zki.ISStateRootFee = newSlice(maxFeeTx - 1)
zki.ISInitStateRootFee = big.NewInt(0)
zki.ISFinalAccFee = newSlice(maxFeeTx - 1)
return zki
}
// newSlice returns a []*big.Int slice of length n with values initialized at
// 0.
// Is used to initialize all *big.Ints of the ZKInputs data structure, so when
// the transactions are processed and the ZKInputs filled, there is no need to
// set all the elements, and if a transaction does not use a parameter, can be
// leaved as it is in the ZKInputs, as will be 0, so later when using the
// ZKInputs to generate the zkSnark proof there is no 'nil'/'null' values.
func newSlice(n int) []*big.Int {
s := make([]*big.Int, n)
for i := 0; i < len(s); i++ {
s[i] = big.NewInt(0)
}
return s
}

+ 15
- 0
common/zk_test.go

@ -0,0 +1,15 @@
package common
import (
"encoding/json"
"testing"
"github.com/stretchr/testify/require"
)
func TestZKInputs(t *testing.T) {
zki := NewZKInputs(100, 24, 32)
_, err := json.Marshal(zki)
require.Nil(t, err)
// fmt.Println(string(s))
}

+ 1
- 2
coordinator/coordinator.go

@ -198,8 +198,7 @@ func (c *Coordinator) forge(serverProofInfo *ServerProofInfo) (*BatchInfo, error
configBatch := &batchbuilder.ConfigBatch{
ForgerAddress: c.config.ForgerAddress,
}
l2Txs := common.PoolL2TxsToL2Txs(poolL2Txs)
zkInputs, err := c.batchBuilder.BuildBatch(configBatch, l1UserTxsExtra, l1OperatorTxs, l2Txs, nil) // TODO []common.TokenID --> feesInfo
zkInputs, err := c.batchBuilder.BuildBatch(configBatch, l1UserTxsExtra, l1OperatorTxs, poolL2Txs, nil) // TODO []common.TokenID --> feesInfo
if err != nil {
return nil, err
}

+ 2
- 0
db/statedb/statedb.go

@ -43,6 +43,8 @@ type StateDB struct {
mt *merkletree.MerkleTree
// idx holds the current Idx that the BatchBuilder is using
idx common.Idx
zki *common.ZKInputs
i int // i is the current transaction index in the ZKInputs generation (zki)
}
// NewStateDB creates a new StateDB, allowing to use an in-memory or in-disk

+ 408
- 58
db/statedb/txprocessors.go

@ -1,27 +1,66 @@
package statedb
import (
"bytes"
"errors"
"fmt"
"math/big"
ethCommon "github.com/ethereum/go-ethereum/common"
"github.com/hermeznetwork/hermez-node/common"
"github.com/hermeznetwork/hermez-node/log"
"github.com/iden3/go-iden3-crypto/babyjub"
"github.com/iden3/go-iden3-crypto/poseidon"
"github.com/iden3/go-merkletree"
"github.com/iden3/go-merkletree/db"
"github.com/iden3/go-merkletree/db/memory"
)
// keyidx is used as key in the db to store the current Idx
var keyidx = []byte("idx")
var (
// keyidx is used as key in the db to store the current Idx
keyidx = []byte("idx")
ffAddr = ethCommon.HexToAddress("0xffffffffffffffffffffffffffffffffffffffff")
)
func (s *StateDB) resetZKInputs() {
s.zki = nil
s.i = 0
}
type processedExit struct {
exit bool
newExit bool
idx common.Idx
acc common.Account
}
// ProcessTxs process the given L1Txs & L2Txs applying the needed updates to
// the StateDB depending on the transaction Type. Returns the common.ZKInputs
// to generate the SnarkProof later used by the BatchBuilder, and if
// cmpExitTree is set to true, returns common.ExitTreeLeaf that is later used
// by the Synchronizer to update the HistoryDB.
func (s *StateDB) ProcessTxs(cmpExitTree bool, l1usertxs, l1coordinatortxs []*common.L1Tx, l2txs []*common.L2Tx) (*common.ZKInputs, []*common.ExitInfo, error) {
func (s *StateDB) ProcessTxs(cmpExitTree, cmpZKInputs bool, l1usertxs, l1coordinatortxs []*common.L1Tx, l2txs []*common.PoolL2Tx) (*common.ZKInputs, []*common.ExitInfo, error) {
var err error
var exitTree *merkletree.MerkleTree
exits := make(map[common.Idx]common.Account)
if s.zki != nil {
return nil, nil, errors.New("Expected StateDB.zki==nil, something went wrong and it's not empty")
}
defer s.resetZKInputs()
nTx := len(l1usertxs) + len(l1coordinatortxs) + len(l2txs)
if nTx == 0 {
// TODO return ZKInputs of batch without txs
return nil, nil, nil
}
exits := make([]processedExit, nTx)
if cmpZKInputs {
s.zki = common.NewZKInputs(nTx, 24, 32) // TODO this values will be parameters of the function, taken from config file/coordinator call
s.zki.OldLastIdx = (s.idx - 1).BigInt()
s.zki.OldStateRoot = s.mt.Root().BigInt()
}
// TBD if ExitTree is only in memory or stored in disk, for the moment
// only needed in memory
@ -30,42 +69,76 @@ func (s *StateDB) ProcessTxs(cmpExitTree bool, l1usertxs, l1coordinatortxs []*co
return nil, nil, err
}
for _, tx := range l1coordinatortxs {
exitIdx, exitAccount, err := s.processL1Tx(exitTree, tx)
// assumption: l1usertx are sorted by L1Tx.Position
for _, tx := range l1usertxs {
exitIdx, exitAccount, newExit, err := s.processL1Tx(exitTree, tx)
if err != nil {
return nil, nil, err
}
if exitIdx != nil && cmpExitTree {
exits[*exitIdx] = *exitAccount
exits[s.i] = processedExit{
exit: true,
newExit: newExit,
idx: *exitIdx,
acc: *exitAccount,
}
}
if s.zki != nil {
s.i++
}
}
for _, tx := range l1usertxs {
exitIdx, exitAccount, err := s.processL1Tx(exitTree, tx)
for _, tx := range l1coordinatortxs {
exitIdx, exitAccount, newExit, err := s.processL1Tx(exitTree, tx)
if err != nil {
return nil, nil, err
}
if exitIdx != nil {
log.Error("Unexpected Exit in L1CoordinatorTx")
}
if exitIdx != nil && cmpExitTree {
exits[*exitIdx] = *exitAccount
exits[s.i] = processedExit{
exit: true,
newExit: newExit,
idx: *exitIdx,
acc: *exitAccount,
}
}
if s.zki != nil {
s.i++
}
}
for _, tx := range l2txs {
exitIdx, exitAccount, err := s.processL2Tx(exitTree, tx)
exitIdx, exitAccount, newExit, err := s.processL2Tx(exitTree, tx)
if err != nil {
return nil, nil, err
}
if exitIdx != nil && cmpExitTree {
exits[*exitIdx] = *exitAccount
exits[s.i] = processedExit{
exit: true,
newExit: newExit,
idx: *exitIdx,
acc: *exitAccount,
}
}
if s.zki != nil {
s.i++
}
}
if !cmpExitTree {
if !cmpExitTree && !cmpZKInputs {
return nil, nil, nil
}
// once all txs processed (exitTree root frozen), for each leaf
// once all txs processed (exitTree root frozen), for each Exit,
// generate common.ExitInfo data
var exitInfos []*common.ExitInfo
for exitIdx, exitAccount := range exits {
for i := 0; i < nTx; i++ {
if !exits[i].exit {
continue
}
exitIdx := exits[i].idx
exitAccount := exits[i].acc
// 0. generate MerkleProof
p, err := exitTree.GenerateCircomVerifierProof(exitIdx.BigInt(), nil)
if err != nil {
@ -92,88 +165,220 @@ func (s *StateDB) ProcessTxs(cmpExitTree bool, l1usertxs, l1coordinatortxs []*co
Balance: exitAccount.Balance,
}
exitInfos = append(exitInfos, ei)
if s.zki != nil {
s.zki.TokenID2[i] = exitAccount.TokenID.BigInt()
s.zki.Nonce2[i] = exitAccount.Nonce.BigInt()
if babyjub.PointCoordSign(exitAccount.PublicKey.X) {
s.zki.Sign2[i] = big.NewInt(1)
}
s.zki.Ay2[i] = exitAccount.PublicKey.Y
s.zki.Balance2[i] = exitAccount.Balance
s.zki.EthAddr2[i] = common.EthAddrToBigInt(exitAccount.EthAddr)
s.zki.Siblings2[i] = p.Siblings
if exits[i].newExit {
s.zki.NewExit[i] = big.NewInt(1)
}
if p.IsOld0 {
s.zki.IsOld0_2[i] = big.NewInt(1)
}
s.zki.OldKey2[i] = p.OldKey.BigInt()
s.zki.OldValue2[i] = p.OldValue.BigInt()
}
}
if !cmpZKInputs {
return nil, exitInfos, nil
}
// compute last ZKInputs parameters
s.zki.GlobalChainID = big.NewInt(0) // TODO, 0: ethereum, this will be get from config file
// zki.FeeIdxs = ? // TODO, this will be get from the config file
tokenIDs, err := s.getTokenIDsBigInt(l1usertxs, l1coordinatortxs, l2txs)
if err != nil {
return nil, nil, err
}
s.zki.FeePlanTokens = tokenIDs
// s.zki.ISInitStateRootFee = s.mt.Root().BigInt()
// TODO once the Node Config sets the Accounts where to send the Fees
// compute fees & update ZKInputs
// return exitInfos, so Synchronizer will be able to store it into
// HistoryDB for the concrete BatchNum
return nil, exitInfos, nil
return s.zki, exitInfos, nil
}
// getTokenIDsBigInt returns the list of TokenIDs in *big.Int format
func (s *StateDB) getTokenIDsBigInt(l1usertxs, l1coordinatortxs []*common.L1Tx, l2txs []*common.PoolL2Tx) ([]*big.Int, error) {
tokenIDs := make(map[common.TokenID]bool)
for i := 0; i < len(l1usertxs); i++ {
tokenIDs[l1usertxs[i].TokenID] = true
}
for i := 0; i < len(l1coordinatortxs); i++ {
tokenIDs[l1coordinatortxs[i].TokenID] = true
}
for i := 0; i < len(l2txs); i++ {
// as L2Tx does not have parameter TokenID, get it from the
// AccountsDB (in the StateDB)
acc, err := s.GetAccount(l2txs[i].ToIdx)
if err != nil {
return nil, err
}
tokenIDs[acc.TokenID] = true
}
var tBI []*big.Int
for t := range tokenIDs {
tBI = append(tBI, t.BigInt())
}
return tBI, nil
}
// processL1Tx process the given L1Tx applying the needed updates to the
// StateDB depending on the transaction Type.
func (s *StateDB) processL1Tx(exitTree *merkletree.MerkleTree, tx *common.L1Tx) (*common.Idx, *common.Account, error) {
// StateDB depending on the transaction Type. It returns the 3 parameters
// related to the Exit (in case of): Idx, ExitAccount, boolean determining if
// the Exit created a new Leaf in the ExitTree.
func (s *StateDB) processL1Tx(exitTree *merkletree.MerkleTree, tx *common.L1Tx) (*common.Idx, *common.Account, bool, error) {
// ZKInputs
if s.zki != nil {
// Txs
// s.zki.TxCompressedData[s.i] = tx.TxCompressedData() // uncomment once L1Tx.TxCompressedData is ready
s.zki.FromIdx[s.i] = tx.FromIdx.BigInt()
s.zki.ToIdx[s.i] = tx.ToIdx.BigInt()
s.zki.OnChain[s.i] = big.NewInt(1)
// L1Txs
s.zki.LoadAmountF[s.i] = tx.LoadAmount
s.zki.FromEthAddr[s.i] = common.EthAddrToBigInt(tx.FromEthAddr)
if tx.FromBJJ != nil {
s.zki.FromBJJCompressed[s.i] = BJJCompressedTo256BigInts(tx.FromBJJ.Compress())
}
// Intermediate States
s.zki.ISOnChain[s.i] = big.NewInt(1)
}
switch tx.Type {
case common.TxTypeForceTransfer, common.TxTypeTransfer:
// go to the MT account of sender and receiver, and update balance
// & nonce
err := s.applyTransfer(tx.Tx())
if err != nil {
return nil, nil, err
return nil, nil, false, err
}
case common.TxTypeCreateAccountDeposit:
// add new account to the MT, update balance of the MT account
err := s.applyCreateAccount(tx)
if err != nil {
return nil, nil, err
return nil, nil, false, err
}
if s.zki != nil {
s.zki.AuxFromIdx[s.i] = s.idx.BigInt() // last s.idx is the one used for creating the new account
s.zki.NewAccount[s.i] = big.NewInt(1)
}
case common.TxTypeDeposit:
// update balance of the MT account
err := s.applyDeposit(tx, false)
if err != nil {
return nil, nil, err
return nil, nil, false, err
}
case common.TxTypeDepositTransfer:
// update balance in MT account, update balance & nonce of sender
// & receiver
err := s.applyDeposit(tx, true)
if err != nil {
return nil, nil, err
return nil, nil, false, err
}
case common.TxTypeCreateAccountDepositTransfer:
// add new account to the merkletree, update balance in MT account,
// update balance & nonce of sender & receiver
err := s.applyCreateAccount(tx)
err := s.applyCreateAccountDepositTransfer(tx)
if err != nil {
return nil, nil, err
return nil, nil, false, err
}
err = s.applyTransfer(tx.Tx())
if err != nil {
return nil, nil, err
if s.zki != nil {
s.zki.AuxFromIdx[s.i] = s.idx.BigInt() // last s.idx is the one used for creating the new account
s.zki.NewAccount[s.i] = big.NewInt(1)
}
case common.TxTypeExit:
// execute exit flow
exitAccount, err := s.applyExit(exitTree, tx.Tx())
exitAccount, newExit, err := s.applyExit(exitTree, tx.Tx())
if err != nil {
return nil, nil, err
return nil, nil, false, err
}
return &tx.FromIdx, exitAccount, nil
return &tx.FromIdx, exitAccount, newExit, nil
default:
}
return nil, nil, nil
return nil, nil, false, nil
}
// processL2Tx process the given L2Tx applying the needed updates to
// the StateDB depending on the transaction Type.
func (s *StateDB) processL2Tx(exitTree *merkletree.MerkleTree, tx *common.L2Tx) (*common.Idx, *common.Account, error) {
// processL2Tx process the given L2Tx applying the needed updates to the
// StateDB depending on the transaction Type. It returns the 3 parameters
// related to the Exit (in case of): Idx, ExitAccount, boolean determining if
// the Exit created a new Leaf in the ExitTree.
func (s *StateDB) processL2Tx(exitTree *merkletree.MerkleTree, tx *common.PoolL2Tx) (*common.Idx, *common.Account, bool, error) {
// ZKInputs
if s.zki != nil {
// Txs
// s.zki.TxCompressedData[s.i] = tx.TxCompressedData() // uncomment once L1Tx.TxCompressedData is ready
// s.zki.TxCompressedDataV2[s.i] = tx.TxCompressedDataV2() // uncomment once L2Tx.TxCompressedDataV2 is ready
s.zki.FromIdx[s.i] = tx.FromIdx.BigInt()
s.zki.ToIdx[s.i] = tx.ToIdx.BigInt()
// fill AuxToIdx if needed
if tx.ToIdx == common.Idx(0) {
// Idx not set in the Tx, get it from DB through ToEthAddr or ToBJJ
var idx common.Idx
if !bytes.Equal(tx.ToEthAddr.Bytes(), ffAddr.Bytes()) {
idx = s.getIdxByEthAddr(tx.ToEthAddr)
if idx == common.Idx(0) {
return nil, nil, false, fmt.Errorf("Idx can not be found for given tx.FromEthAddr")
}
} else {
idx = s.getIdxByBJJ(tx.ToBJJ)
if idx == common.Idx(0) {
return nil, nil, false, fmt.Errorf("Idx can not be found for given tx.FromBJJ")
}
}
s.zki.AuxToIdx[s.i] = idx.BigInt()
}
s.zki.ToBJJAy[s.i] = tx.ToBJJ.Y
s.zki.ToEthAddr[s.i] = common.EthAddrToBigInt(tx.ToEthAddr)
s.zki.OnChain[s.i] = big.NewInt(0)
s.zki.NewAccount[s.i] = big.NewInt(0)
// L2Txs
// s.zki.RqOffset[s.i] = // TODO Rq once TxSelector is ready
// s.zki.RqTxCompressedDataV2[s.i] = // TODO
// s.zki.RqToEthAddr[s.i] = common.EthAddrToBigInt(tx.RqToEthAddr) // TODO
// s.zki.RqToBJJAy[s.i] = tx.ToBJJ.Y // TODO
s.zki.S[s.i] = tx.Signature.S
s.zki.R8x[s.i] = tx.Signature.R8.X
s.zki.R8y[s.i] = tx.Signature.R8.Y
}
switch tx.Type {
case common.TxTypeTransfer:
// go to the MT account of sender and receiver, and update
// balance & nonce
err := s.applyTransfer(tx.Tx())
if err != nil {
return nil, nil, err
return nil, nil, false, err
}
case common.TxTypeExit:
// execute exit flow
exitAccount, err := s.applyExit(exitTree, tx.Tx())
exitAccount, newExit, err := s.applyExit(exitTree, tx.Tx())
if err != nil {
return nil, nil, err
return nil, nil, false, err
}
return &tx.FromIdx, exitAccount, nil
return &tx.FromIdx, exitAccount, newExit, nil
default:
}
return nil, nil, nil
return nil, nil, false, nil
}
// applyCreateAccount creates a new account in the account of the depositer, it
@ -187,10 +392,26 @@ func (s *StateDB) applyCreateAccount(tx *common.L1Tx) error {
EthAddr: tx.FromEthAddr,
}
_, err := s.CreateAccount(common.Idx(s.idx+1), account)
p, err := s.CreateAccount(common.Idx(s.idx+1), account)
if err != nil {
return err
}
if s.zki != nil {
s.zki.TokenID1[s.i] = tx.TokenID.BigInt()
s.zki.Nonce1[s.i] = big.NewInt(0)
if babyjub.PointCoordSign(tx.FromBJJ.X) {
s.zki.Sign1[s.i] = big.NewInt(1)
}
s.zki.Ay1[s.i] = tx.FromBJJ.Y
s.zki.Balance1[s.i] = tx.LoadAmount
s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(tx.FromEthAddr)
s.zki.Siblings1[s.i] = siblingsToZKInputFormat(p.Siblings)
if p.IsOld0 {
s.zki.IsOld0_1[s.i] = big.NewInt(1)
}
s.zki.OldKey1[s.i] = p.OldKey.BigInt()
s.zki.OldValue1[s.i] = p.OldValue.BigInt()
}
s.idx = s.idx + 1
return s.setIdx(s.idx)
@ -208,8 +429,9 @@ func (s *StateDB) applyDeposit(tx *common.L1Tx, transfer bool) error {
accSender.Balance = new(big.Int).Add(accSender.Balance, tx.LoadAmount)
// in case that the tx is a L1Tx>DepositTransfer
var accReceiver *common.Account
if transfer {
accReceiver, err := s.GetAccount(tx.ToIdx)
accReceiver, err = s.GetAccount(tx.ToIdx)
if err != nil {
return err
}
@ -217,17 +439,46 @@ func (s *StateDB) applyDeposit(tx *common.L1Tx, transfer bool) error {
accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.Amount)
// add amount to the receiver
accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.Amount)
// update receiver account in localStateDB
_, err = s.UpdateAccount(tx.ToIdx, accReceiver)
if err != nil {
return err
}
}
// update sender account in localStateDB
_, err = s.UpdateAccount(tx.FromIdx, accSender)
p, err := s.UpdateAccount(tx.FromIdx, accSender)
if err != nil {
return err
}
if s.zki != nil {
s.zki.TokenID1[s.i] = accSender.TokenID.BigInt()
s.zki.Nonce1[s.i] = accSender.Nonce.BigInt()
if babyjub.PointCoordSign(accSender.PublicKey.X) {
s.zki.Sign1[s.i] = big.NewInt(1)
}
s.zki.Ay1[s.i] = accSender.PublicKey.Y
s.zki.Balance1[s.i] = accSender.Balance
s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(accSender.EthAddr)
s.zki.Siblings1[s.i] = siblingsToZKInputFormat(p.Siblings)
// IsOld0_1, OldKey1, OldValue1 not needed as this is not an insert
}
// this is done after updating Sender Account (depositer)
if transfer {
// update receiver account in localStateDB
p, err := s.UpdateAccount(tx.ToIdx, accReceiver)
if err != nil {
return err
}
if s.zki != nil {
s.zki.TokenID2[s.i] = accReceiver.TokenID.BigInt()
s.zki.Nonce2[s.i] = accReceiver.Nonce.BigInt()
if babyjub.PointCoordSign(accReceiver.PublicKey.X) {
s.zki.Sign2[s.i] = big.NewInt(1)
}
s.zki.Ay2[s.i] = accReceiver.PublicKey.Y
s.zki.Balance2[s.i] = accReceiver.Balance
s.zki.EthAddr2[s.i] = common.EthAddrToBigInt(accReceiver.EthAddr)
s.zki.Siblings2[s.i] = siblingsToZKInputFormat(p.Siblings)
// IsOld0_2, OldKey2, OldValue2 not needed as this is not an insert
}
}
return nil
}
@ -252,31 +503,130 @@ func (s *StateDB) applyTransfer(tx *common.Tx) error {
// add amount to the receiver
accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.Amount)
// update receiver account in localStateDB
_, err = s.UpdateAccount(tx.ToIdx, accReceiver)
// update sender account in localStateDB
pSender, err := s.UpdateAccount(tx.FromIdx, accSender)
if err != nil {
return err
}
// update sender account in localStateDB
_, err = s.UpdateAccount(tx.FromIdx, accSender)
if s.zki != nil {
s.zki.TokenID1[s.i] = accSender.TokenID.BigInt()
s.zki.Nonce1[s.i] = accSender.Nonce.BigInt()
if babyjub.PointCoordSign(accSender.PublicKey.X) {
s.zki.Sign1[s.i] = big.NewInt(1)
}
s.zki.Ay1[s.i] = accSender.PublicKey.Y
s.zki.Balance1[s.i] = accSender.Balance
s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(accSender.EthAddr)
s.zki.Siblings1[s.i] = siblingsToZKInputFormat(pSender.Siblings)
}
// update receiver account in localStateDB
pReceiver, err := s.UpdateAccount(tx.ToIdx, accReceiver)
if err != nil {
return err
}
if s.zki != nil {
s.zki.TokenID2[s.i] = accReceiver.TokenID.BigInt()
s.zki.Nonce2[s.i] = accReceiver.Nonce.BigInt()
if babyjub.PointCoordSign(accReceiver.PublicKey.X) {
s.zki.Sign2[s.i] = big.NewInt(1)
}
s.zki.Ay2[s.i] = accReceiver.PublicKey.Y
s.zki.Balance2[s.i] = accReceiver.Balance
s.zki.EthAddr2[s.i] = common.EthAddrToBigInt(accReceiver.EthAddr)
s.zki.Siblings2[s.i] = siblingsToZKInputFormat(pReceiver.Siblings)
}
return nil
}
func (s *StateDB) applyExit(exitTree *merkletree.MerkleTree, tx *common.Tx) (*common.Account, error) {
// applyCreateAccountDepositTransfer, in a single tx, creates a new account,
// makes a deposit, and performs a transfer to another account
func (s *StateDB) applyCreateAccountDepositTransfer(tx *common.L1Tx) error {
accSender := &common.Account{
TokenID: tx.TokenID,
Nonce: 0,
Balance: tx.LoadAmount,
PublicKey: tx.FromBJJ,
EthAddr: tx.FromEthAddr,
}
accSender.Balance = new(big.Int).Add(accSender.Balance, tx.LoadAmount)
accReceiver, err := s.GetAccount(tx.ToIdx)
if err != nil {
return err
}
// subtract amount to the sender
accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.Amount)
// add amount to the receiver
accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.Amount)
// create Account of the Sender
p, err := s.CreateAccount(common.Idx(s.idx+1), accSender)
if err != nil {
return err
}
if s.zki != nil {
s.zki.TokenID1[s.i] = tx.TokenID.BigInt()
s.zki.Nonce1[s.i] = big.NewInt(0)
if babyjub.PointCoordSign(tx.FromBJJ.X) {
s.zki.Sign1[s.i] = big.NewInt(1)
}
s.zki.Ay1[s.i] = tx.FromBJJ.Y
s.zki.Balance1[s.i] = tx.LoadAmount
s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(tx.FromEthAddr)
s.zki.Siblings1[s.i] = siblingsToZKInputFormat(p.Siblings)
if p.IsOld0 {
s.zki.IsOld0_1[s.i] = big.NewInt(1)
}
s.zki.OldKey1[s.i] = p.OldKey.BigInt()
s.zki.OldValue1[s.i] = p.OldValue.BigInt()
}
// update receiver account in localStateDB
p, err = s.UpdateAccount(tx.ToIdx, accReceiver)
if err != nil {
return err
}
if s.zki != nil {
s.zki.TokenID2[s.i] = accReceiver.TokenID.BigInt()
s.zki.Nonce2[s.i] = accReceiver.Nonce.BigInt()
if babyjub.PointCoordSign(accReceiver.PublicKey.X) {
s.zki.Sign2[s.i] = big.NewInt(1)
}
s.zki.Ay2[s.i] = accReceiver.PublicKey.Y
s.zki.Balance2[s.i] = accReceiver.Balance
s.zki.EthAddr2[s.i] = common.EthAddrToBigInt(accReceiver.EthAddr)
s.zki.Siblings2[s.i] = siblingsToZKInputFormat(p.Siblings)
}
s.idx = s.idx + 1
return s.setIdx(s.idx)
}
// It returns the ExitAccount and a boolean determining if the Exit created a
// new Leaf in the ExitTree.
func (s *StateDB) applyExit(exitTree *merkletree.MerkleTree, tx *common.Tx) (*common.Account, bool, error) {
// 0. subtract tx.Amount from current Account in StateMT
// add the tx.Amount into the Account (tx.FromIdx) in the ExitMT
acc, err := s.GetAccount(tx.FromIdx)
if err != nil {
return nil, err
return nil, false, err
}
acc.Balance = new(big.Int).Sub(acc.Balance, tx.Amount)
_, err = s.UpdateAccount(tx.FromIdx, acc)
p, err := s.UpdateAccount(tx.FromIdx, acc)
if err != nil {
return nil, err
return nil, false, err
}
if s.zki != nil {
s.zki.TokenID1[s.i] = acc.TokenID.BigInt()
s.zki.Nonce1[s.i] = acc.Nonce.BigInt()
if babyjub.PointCoordSign(acc.PublicKey.X) {
s.zki.Sign1[s.i] = big.NewInt(1)
}
s.zki.Ay1[s.i] = acc.PublicKey.Y
s.zki.Balance1[s.i] = acc.Balance
s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(acc.EthAddr)
s.zki.Siblings1[s.i] = siblingsToZKInputFormat(p.Siblings)
}
exitAccount, err := getAccountInTreeDB(exitTree.DB(), tx.FromIdx)
@ -291,16 +641,16 @@ func (s *StateDB) applyExit(exitTree *merkletree.MerkleTree, tx *common.Tx) (*co
EthAddr: acc.EthAddr,
}
_, err = createAccountInTreeDB(exitTree.DB(), exitTree, tx.FromIdx, exitAccount)
return exitAccount, err
return exitAccount, true, err
} else if err != nil {
return exitAccount, err
return exitAccount, false, err
}
// 1b. if idx already exist in exitTree:
// update account, where account.Balance += exitAmount
exitAccount.Balance = new(big.Int).Add(exitAccount.Balance, tx.Amount)
_, err = updateAccountInTreeDB(exitTree.DB(), exitTree, tx.FromIdx, exitAccount)
return exitAccount, err
return exitAccount, false, err
}
// getIdx returns the stored Idx from the localStateDB, which is the last Idx

+ 39
- 8
db/statedb/txprocessors_test.go

@ -1,6 +1,8 @@
package statedb
import (
"encoding/json"
"fmt"
"io/ioutil"
"strings"
"testing"
@ -11,6 +13,8 @@ import (
"github.com/stretchr/testify/require"
)
var debug = false
func TestProcessTxs(t *testing.T) {
dir, err := ioutil.TempDir("", "tmpdb")
require.Nil(t, err)
@ -30,9 +34,9 @@ func TestProcessTxs(t *testing.T) {
// iterate for each batch
for i := 0; i < len(l1Txs); i++ {
l2Txs := common.PoolL2TxsToL2Txs(poolL2Txs[i])
// l2Txs := common.PoolL2TxsToL2Txs(poolL2Txs[i])
_, _, err := sdb.ProcessTxs(true, l1Txs[i], coordinatorL1Txs[i], l2Txs)
_, _, err := sdb.ProcessTxs(true, true, l1Txs[i], coordinatorL1Txs[i], poolL2Txs[i])
require.Nil(t, err)
}
@ -65,8 +69,8 @@ func TestProcessTxsBatchByBatch(t *testing.T) {
assert.Equal(t, 7, len(poolL2Txs[2]))
// use first batch
l2txs := common.PoolL2TxsToL2Txs(poolL2Txs[0])
_, exitInfos, err := sdb.ProcessTxs(true, l1Txs[0], coordinatorL1Txs[0], l2txs)
// l2txs := common.PoolL2TxsToL2Txs(poolL2Txs[0])
_, exitInfos, err := sdb.ProcessTxs(true, true, l1Txs[0], coordinatorL1Txs[0], poolL2Txs[0])
require.Nil(t, err)
assert.Equal(t, 0, len(exitInfos))
acc, err := sdb.GetAccount(common.Idx(1))
@ -74,8 +78,8 @@ func TestProcessTxsBatchByBatch(t *testing.T) {
assert.Equal(t, "28", acc.Balance.String())
// use second batch
l2txs = common.PoolL2TxsToL2Txs(poolL2Txs[1])
_, exitInfos, err = sdb.ProcessTxs(true, l1Txs[1], coordinatorL1Txs[1], l2txs)
// l2txs = common.PoolL2TxsToL2Txs(poolL2Txs[1])
_, exitInfos, err = sdb.ProcessTxs(true, true, l1Txs[1], coordinatorL1Txs[1], poolL2Txs[1])
require.Nil(t, err)
assert.Equal(t, 5, len(exitInfos))
acc, err = sdb.GetAccount(common.Idx(1))
@ -83,11 +87,38 @@ func TestProcessTxsBatchByBatch(t *testing.T) {
assert.Equal(t, "48", acc.Balance.String())
// use third batch
l2txs = common.PoolL2TxsToL2Txs(poolL2Txs[2])
_, exitInfos, err = sdb.ProcessTxs(true, l1Txs[2], coordinatorL1Txs[2], l2txs)
// l2txs = common.PoolL2TxsToL2Txs(poolL2Txs[2])
_, exitInfos, err = sdb.ProcessTxs(true, true, l1Txs[2], coordinatorL1Txs[2], poolL2Txs[2])
require.Nil(t, err)
assert.Equal(t, 1, len(exitInfos))
acc, err = sdb.GetAccount(common.Idx(1))
assert.Nil(t, err)
assert.Equal(t, "23", acc.Balance.String())
}
func TestZKInputsGeneration(t *testing.T) {
dir, err := ioutil.TempDir("", "tmpdb")
require.Nil(t, err)
sdb, err := NewStateDB(dir, true, 32)
assert.Nil(t, err)
// generate test transactions from test.SetTest0 code
parser := test.NewParser(strings.NewReader(test.SetTest0))
instructions, err := parser.Parse()
assert.Nil(t, err)
l1Txs, coordinatorL1Txs, poolL2Txs := test.GenerateTestTxs(t, instructions)
assert.Equal(t, 29, len(l1Txs[0]))
assert.Equal(t, 0, len(coordinatorL1Txs[0]))
assert.Equal(t, 21, len(poolL2Txs[0]))
zki, _, err := sdb.ProcessTxs(false, true, l1Txs[0], coordinatorL1Txs[0], poolL2Txs[0])
require.Nil(t, err)
s, err := json.Marshal(zki)
require.Nil(t, err)
if debug {
fmt.Println(string(s))
}
}

+ 45
- 0
db/statedb/utils.go

@ -0,0 +1,45 @@
package statedb
import (
"math/big"
ethCommon "github.com/ethereum/go-ethereum/common"
"github.com/hermeznetwork/hermez-node/common"
"github.com/iden3/go-iden3-crypto/babyjub"
"github.com/iden3/go-merkletree"
)
// TODO
func (s *StateDB) getIdxByEthAddr(addr ethCommon.Address) common.Idx {
return common.Idx(0)
}
// TODO
func (s *StateDB) getIdxByBJJ(pk *babyjub.PublicKey) common.Idx {
return common.Idx(0)
}
func siblingsToZKInputFormat(s []*merkletree.Hash) []*big.Int {
b := make([]*big.Int, len(s))
for i := 0; i < len(s); i++ {
b[i] = s[i].BigInt()
}
return b
}
// BJJCompressedTo256BigInts returns a [256]*big.Int array with the bit
// representation of the babyjub.PublicKeyComp
func BJJCompressedTo256BigInts(pkComp babyjub.PublicKeyComp) [256]*big.Int {
var r [256]*big.Int
b := pkComp[:]
for i := 0; i < 256; i++ {
if b[i/8]&(1<<(i%8)) == 0 {
r[i] = big.NewInt(0)
} else {
r[i] = big.NewInt(1)
}
}
return r
}

+ 39
- 0
db/statedb/utils_test.go

@ -0,0 +1,39 @@
package statedb
import (
"math/big"
"testing"
"github.com/iden3/go-iden3-crypto/babyjub"
"github.com/stretchr/testify/assert"
)
func TestBJJCompressedTo256BigInt(t *testing.T) {
var pkComp babyjub.PublicKeyComp
r := BJJCompressedTo256BigInts(pkComp)
zero := big.NewInt(0)
for i := 0; i < 256; i++ {
assert.Equal(t, zero, r[i])
}
pkComp[0] = 3
r = BJJCompressedTo256BigInts(pkComp)
one := big.NewInt(1)
for i := 0; i < 256; i++ {
if i != 0 && i != 1 {
assert.Equal(t, zero, r[i])
} else {
assert.Equal(t, one, r[i])
}
}
pkComp[31] = 4
r = BJJCompressedTo256BigInts(pkComp)
for i := 0; i < 256; i++ {
if i != 0 && i != 1 && i != 250 {
assert.Equal(t, zero, r[i])
} else {
assert.Equal(t, one, r[i])
}
}
}

Loading…
Cancel
Save