package statedb import ( "bytes" "errors" "fmt" "io/ioutil" "math/big" "os" "github.com/hermeznetwork/hermez-node/common" "github.com/hermeznetwork/hermez-node/log" "github.com/hermeznetwork/tracerr" "github.com/iden3/go-iden3-crypto/babyjub" "github.com/iden3/go-merkletree" "github.com/iden3/go-merkletree/db" "github.com/iden3/go-merkletree/db/pebble" ) var ( // keyidx is used as key in the db to store the current Idx keyidx = []byte("k:idx") ) func (s *StateDB) resetZKInputs() { s.zki = nil s.i = 0 // initialize current transaction index in the ZKInputs generation } type processedExit struct { exit bool newExit bool idx common.Idx acc common.Account } // ProcessTxOutput contains the output of the ProcessTxs method type ProcessTxOutput struct { ZKInputs *common.ZKInputs ExitInfos []common.ExitInfo CreatedAccounts []common.Account CoordinatorIdxsMap map[common.TokenID]common.Idx CollectedFees map[common.TokenID]*big.Int } // ProcessTxsConfig contains the config for ProcessTxs type ProcessTxsConfig struct { NLevels uint32 MaxFeeTx uint32 MaxTx uint32 MaxL1Tx uint32 } // ProcessTxs process the given L1Txs & L2Txs applying the needed updates to // the StateDB depending on the transaction Type. If StateDB // type==TypeBatchBuilder, returns the common.ZKInputs to generate the // SnarkProof later used by the BatchBuilder. If StateDB // type==TypeSynchronizer, assumes that the call is done from the Synchronizer, // returns common.ExitTreeLeaf that is later used by the Synchronizer to update // the HistoryDB, and adds Nonce & TokenID to the L2Txs. // And if TypeSynchronizer returns an array of common.Account with all the // created accounts. func (s *StateDB) ProcessTxs(ptc ProcessTxsConfig, coordIdxs []common.Idx, l1usertxs, l1coordinatortxs []common.L1Tx, l2txs []common.PoolL2Tx) (ptOut *ProcessTxOutput, err error) { defer func() { if err == nil { err = s.MakeCheckpoint() } }() var exitTree *merkletree.MerkleTree var createdAccounts []common.Account if s.zki != nil { return nil, tracerr.Wrap(errors.New("Expected StateDB.zki==nil, something went wrong and it's not empty")) } defer s.resetZKInputs() if len(coordIdxs) >= int(ptc.MaxFeeTx) { return nil, tracerr.Wrap(fmt.Errorf("CoordIdxs (%d) length must be smaller than MaxFeeTx (%d)", len(coordIdxs), ptc.MaxFeeTx)) } s.accumulatedFees = make(map[common.Idx]*big.Int) nTx := len(l1usertxs) + len(l1coordinatortxs) + len(l2txs) if nTx == 0 { // TODO return ZKInputs of batch without txs return &ProcessTxOutput{ ZKInputs: nil, ExitInfos: nil, CreatedAccounts: nil, CoordinatorIdxsMap: nil, CollectedFees: nil, }, nil } if nTx > int(ptc.MaxTx) { return nil, tracerr.Wrap(fmt.Errorf("L1UserTx + L1CoordinatorTx + L2Tx (%d) can not be bigger than MaxTx (%d)", nTx, ptc.MaxTx)) } if len(l1usertxs)+len(l1coordinatortxs) > int(ptc.MaxL1Tx) { return nil, tracerr.Wrap(fmt.Errorf("L1UserTx + L1CoordinatorTx (%d) can not be bigger than MaxL1Tx (%d)", len(l1usertxs)+len(l1coordinatortxs), ptc.MaxTx)) } exits := make([]processedExit, nTx) if s.typ == TypeBatchBuilder { s.zki = common.NewZKInputs(ptc.MaxTx, ptc.MaxL1Tx, ptc.MaxTx, ptc.MaxFeeTx, ptc.NLevels, s.currentBatch.BigInt()) s.zki.OldLastIdx = s.idx.BigInt() s.zki.OldStateRoot = s.mt.Root().BigInt() } // TBD if ExitTree is only in memory or stored in disk, for the moment // is only needed in memory if s.typ == TypeSynchronizer || s.typ == TypeBatchBuilder { tmpDir, err := ioutil.TempDir("", "hermez-statedb-exittree") if err != nil { return nil, tracerr.Wrap(err) } defer func() { if err := os.RemoveAll(tmpDir); err != nil { log.Errorw("Deleting statedb temp exit tree", "err", err) } }() sto, err := pebble.NewPebbleStorage(tmpDir, false) if err != nil { return nil, tracerr.Wrap(err) } exitTree, err = merkletree.NewMerkleTree(sto, s.mt.MaxLevels()) if err != nil { return nil, tracerr.Wrap(err) } } // Process L1UserTxs for i := 0; i < len(l1usertxs); i++ { // assumption: l1usertx are sorted by L1Tx.Position exitIdx, exitAccount, newExit, createdAccount, err := s.processL1Tx(exitTree, &l1usertxs[i]) if err != nil { return nil, tracerr.Wrap(err) } if s.typ == TypeSynchronizer && createdAccount != nil { createdAccounts = append(createdAccounts, *createdAccount) } if s.zki != nil { l1TxData, err := l1usertxs[i].BytesGeneric() if err != nil { return nil, tracerr.Wrap(err) } s.zki.Metadata.L1TxsData = append(s.zki.Metadata.L1TxsData, l1TxData) l1TxDataAvailability, err := l1usertxs[i].BytesDataAvailability(s.zki.Metadata.NLevels) if err != nil { return nil, tracerr.Wrap(err) } s.zki.Metadata.L1TxsDataAvailability = append(s.zki.Metadata.L1TxsDataAvailability, l1TxDataAvailability) s.zki.ISOutIdx[s.i] = s.idx.BigInt() s.zki.ISStateRoot[s.i] = s.mt.Root().BigInt() } if s.typ == TypeSynchronizer || s.typ == TypeBatchBuilder { if exitIdx != nil && exitTree != nil { exits[s.i] = processedExit{ exit: true, newExit: newExit, idx: *exitIdx, acc: *exitAccount, } } s.i++ } } // Process L1CoordinatorTxs for i := 0; i < len(l1coordinatortxs); i++ { exitIdx, _, _, createdAccount, err := s.processL1Tx(exitTree, &l1coordinatortxs[i]) if err != nil { return nil, tracerr.Wrap(err) } if exitIdx != nil { log.Error("Unexpected Exit in L1CoordinatorTx") } if s.typ == TypeSynchronizer && createdAccount != nil { createdAccounts = append(createdAccounts, *createdAccount) } if s.zki != nil { l1TxData, err := l1coordinatortxs[i].BytesGeneric() if err != nil { return nil, tracerr.Wrap(err) } s.zki.Metadata.L1TxsData = append(s.zki.Metadata.L1TxsData, l1TxData) s.zki.ISOutIdx[s.i] = s.idx.BigInt() s.zki.ISStateRoot[s.i] = s.mt.Root().BigInt() s.i++ } } s.accumulatedFees = make(map[common.Idx]*big.Int) for _, idx := range coordIdxs { s.accumulatedFees[idx] = big.NewInt(0) } // once L1UserTxs & L1CoordinatorTxs are processed, get TokenIDs of // coordIdxs. In this way, if a coordIdx uses an Idx that is being // created in the current batch, at this point the Idx will be created coordIdxsMap, err := s.getTokenIDsFromIdxs(coordIdxs) if err != nil { return nil, tracerr.Wrap(err) } // collectedFees will contain the amount of fee collected for each // TokenID var collectedFees map[common.TokenID]*big.Int if s.typ == TypeSynchronizer || s.typ == TypeBatchBuilder { collectedFees = make(map[common.TokenID]*big.Int) for tokenID := range coordIdxsMap { collectedFees[tokenID] = big.NewInt(0) } } if s.zki != nil { // get the feePlanTokens feePlanTokens, err := s.getFeePlanTokens(coordIdxs, l2txs) if err != nil { log.Error(err) return nil, tracerr.Wrap(err) } copy(s.zki.FeePlanTokens, feePlanTokens) } // Process L2Txs for i := 0; i < len(l2txs); i++ { exitIdx, exitAccount, newExit, err := s.processL2Tx(coordIdxsMap, collectedFees, exitTree, &l2txs[i]) if err != nil { return nil, tracerr.Wrap(err) } if s.zki != nil { l2TxData, err := l2txs[i].L2Tx().BytesDataAvailability(s.zki.Metadata.NLevels) if err != nil { return nil, tracerr.Wrap(err) } s.zki.Metadata.L2TxsData = append(s.zki.Metadata.L2TxsData, l2TxData) if s.i < nTx-1 { // Intermediate States s.zki.ISOutIdx[s.i] = s.idx.BigInt() s.zki.ISStateRoot[s.i] = s.mt.Root().BigInt() s.zki.ISAccFeeOut[s.i] = formatAccumulatedFees(collectedFees, s.zki.FeePlanTokens) } if s.i == nTx-1 { s.zki.ISFinalAccFee = formatAccumulatedFees(collectedFees, s.zki.FeePlanTokens) } } if s.typ == TypeSynchronizer || s.typ == TypeBatchBuilder { if exitIdx != nil && exitTree != nil { exits[s.i] = processedExit{ exit: true, newExit: newExit, idx: *exitIdx, acc: *exitAccount, } } s.i++ } } if s.zki != nil { for i := s.i - 1; i < int(ptc.MaxTx); i++ { if i < int(ptc.MaxTx)-1 { s.zki.ISOutIdx[i] = s.idx.BigInt() s.zki.ISStateRoot[i] = s.mt.Root().BigInt() } if i >= s.i { s.zki.TxCompressedData[i] = new(big.Int).SetBytes(common.SignatureConstantBytes) } } // before computing the Fees txs, set the ISInitStateRootFee s.zki.ISInitStateRootFee = s.mt.Root().BigInt() } // distribute the AccumulatedFees from the processed L2Txs into the // Coordinator Idxs iFee := 0 for idx, accumulatedFee := range s.accumulatedFees { // send the fee to the Idx of the Coordinator for the TokenID accCoord, err := s.GetAccount(idx) if err != nil { log.Errorw("Can not distribute accumulated fees to coordinator account: No coord Idx to receive fee", "idx", idx) return nil, tracerr.Wrap(err) } accCoord.Balance = new(big.Int).Add(accCoord.Balance, accumulatedFee) pFee, err := s.UpdateAccount(idx, accCoord) if err != nil { log.Error(err) return nil, tracerr.Wrap(err) } if s.zki != nil { s.zki.TokenID3[iFee] = accCoord.TokenID.BigInt() s.zki.Nonce3[iFee] = accCoord.Nonce.BigInt() if babyjub.PointCoordSign(accCoord.PublicKey.X) { s.zki.Sign3[iFee] = big.NewInt(1) } s.zki.Ay3[iFee] = accCoord.PublicKey.Y s.zki.Balance3[iFee] = accCoord.Balance s.zki.EthAddr3[iFee] = common.EthAddrToBigInt(accCoord.EthAddr) s.zki.Siblings3[iFee] = siblingsToZKInputFormat(pFee.Siblings) // add Coord Idx to ZKInputs.FeeTxsData s.zki.FeeIdxs[iFee] = idx.BigInt() s.zki.ISStateRootFee[iFee] = s.mt.Root().BigInt() } iFee++ } if s.zki != nil { for i := len(s.accumulatedFees); i < int(ptc.MaxFeeTx)-1; i++ { s.zki.ISStateRootFee[i] = s.mt.Root().BigInt() } } if s.typ == TypeTxSelector { return nil, nil } // once all txs processed (exitTree root frozen), for each Exit, // generate common.ExitInfo data var exitInfos []common.ExitInfo for i := 0; i < nTx; i++ { if !exits[i].exit { continue } exitIdx := exits[i].idx exitAccount := exits[i].acc // 0. generate MerkleProof p, err := exitTree.GenerateCircomVerifierProof(exitIdx.BigInt(), nil) if err != nil { return nil, tracerr.Wrap(err) } // 1. generate common.ExitInfo ei := common.ExitInfo{ AccountIdx: exitIdx, MerkleProof: p, Balance: exitAccount.Balance, } exitInfos = append(exitInfos, ei) if s.zki != nil { s.zki.TokenID2[i] = exitAccount.TokenID.BigInt() s.zki.Nonce2[i] = exitAccount.Nonce.BigInt() if babyjub.PointCoordSign(exitAccount.PublicKey.X) { s.zki.Sign2[i] = big.NewInt(1) } s.zki.Ay2[i] = exitAccount.PublicKey.Y s.zki.Balance2[i] = exitAccount.Balance s.zki.EthAddr2[i] = common.EthAddrToBigInt(exitAccount.EthAddr) for j := 0; j < len(p.Siblings); j++ { s.zki.Siblings2[i][j] = p.Siblings[j].BigInt() } if exits[i].newExit { s.zki.NewExit[i] = big.NewInt(1) } if p.IsOld0 { s.zki.IsOld0_2[i] = big.NewInt(1) } s.zki.OldKey2[i] = p.OldKey.BigInt() s.zki.OldValue2[i] = p.OldValue.BigInt() if i < nTx-1 { s.zki.ISExitRoot[i] = exitTree.Root().BigInt() } } } if s.typ == TypeSynchronizer { // return exitInfos, createdAccounts and collectedFees, so Synchronizer will // be able to store it into HistoryDB for the concrete BatchNum return &ProcessTxOutput{ ZKInputs: nil, ExitInfos: exitInfos, CreatedAccounts: createdAccounts, CoordinatorIdxsMap: coordIdxsMap, CollectedFees: collectedFees, }, nil } // compute last ZKInputs parameters s.zki.GlobalChainID = big.NewInt(0) // TODO, 0: ethereum, this will be get from config file // zki.FeeIdxs = ? // TODO, this will be get from the config file s.zki.Metadata.NewStateRootRaw = s.mt.Root() s.zki.Metadata.NewExitRootRaw = exitTree.Root() // return ZKInputs as the BatchBuilder will return it to forge the Batch return &ProcessTxOutput{ ZKInputs: s.zki, ExitInfos: nil, CreatedAccounts: nil, CoordinatorIdxsMap: coordIdxsMap, CollectedFees: nil, }, nil } // getFeePlanTokens returns an array of *big.Int containing a list of tokenIDs // corresponding to the given CoordIdxs and the processed L2Txs func (s *StateDB) getFeePlanTokens(coordIdxs []common.Idx, l2txs []common.PoolL2Tx) ([]*big.Int, error) { // get Coordinator TokenIDs corresponding to the Idxs where the Fees // will be sent coordTokenIDs := make(map[common.TokenID]bool) for i := 0; i < len(coordIdxs); i++ { acc, err := s.GetAccount(coordIdxs[i]) if err != nil { log.Errorf("could not get account to determine TokenID of CoordIdx %d not found: %s", coordIdxs[i], err.Error()) return nil, tracerr.Wrap(err) } coordTokenIDs[acc.TokenID] = true } tokenIDs := make(map[common.TokenID]bool) for i := 0; i < len(l2txs); i++ { // as L2Tx does not have parameter TokenID, get it from the // AccountsDB (in the StateDB) acc, err := s.GetAccount(l2txs[i].FromIdx) if err != nil { log.Errorf("could not get account to determine TokenID of L2Tx: FromIdx %d not found: %s", l2txs[i].FromIdx, err.Error()) return nil, tracerr.Wrap(err) } if _, ok := coordTokenIDs[acc.TokenID]; ok { tokenIDs[acc.TokenID] = true } } var tBI []*big.Int for t := range tokenIDs { tBI = append(tBI, t.BigInt()) } return tBI, nil } // processL1Tx process the given L1Tx applying the needed updates to the // StateDB depending on the transaction Type. It returns the 3 parameters // related to the Exit (in case of): Idx, ExitAccount, boolean determining if // the Exit created a new Leaf in the ExitTree. // And another *common.Account parameter which contains the created account in // case that has been a new created account and that the StateDB is of type // TypeSynchronizer. func (s *StateDB) processL1Tx(exitTree *merkletree.MerkleTree, tx *common.L1Tx) (*common.Idx, *common.Account, bool, *common.Account, error) { // ZKInputs if s.zki != nil { // Txs var err error s.zki.TxCompressedData[s.i], err = tx.TxCompressedData() if err != nil { log.Error(err) return nil, nil, false, nil, tracerr.Wrap(err) } s.zki.FromIdx[s.i] = tx.FromIdx.BigInt() s.zki.ToIdx[s.i] = tx.ToIdx.BigInt() s.zki.OnChain[s.i] = big.NewInt(1) // L1Txs loadAmountF16, err := common.NewFloat16(tx.LoadAmount) if err != nil { return nil, nil, false, nil, tracerr.Wrap(err) } s.zki.LoadAmountF[s.i] = big.NewInt(int64(loadAmountF16)) s.zki.FromEthAddr[s.i] = common.EthAddrToBigInt(tx.FromEthAddr) if tx.FromBJJ != nil { s.zki.FromBJJCompressed[s.i] = BJJCompressedTo256BigInts(tx.FromBJJ.Compress()) } // Intermediate States, for all the transactions except for the last one if s.i < len(s.zki.ISOnChain) { // len(s.zki.ISOnChain) == nTx s.zki.ISOnChain[s.i] = big.NewInt(1) } } switch tx.Type { case common.TxTypeForceTransfer: s.computeEffectiveAmounts(tx) // go to the MT account of sender and receiver, and update balance // & nonce // coordIdxsMap is 'nil', as at L1Txs there is no L2 fees // 0 for the parameter toIdx, as at L1Tx ToIdx can only be 0 in the Deposit type case. err := s.applyTransfer(nil, nil, tx.Tx(), 0) if err != nil { log.Error(err) return nil, nil, false, nil, tracerr.Wrap(err) } case common.TxTypeCreateAccountDeposit: s.computeEffectiveAmounts(tx) // add new account to the MT, update balance of the MT account err := s.applyCreateAccount(tx) if err != nil { log.Error(err) return nil, nil, false, nil, tracerr.Wrap(err) } // TODO applyCreateAccount will return the created account, // which in the case type==TypeSynchronizer will be added to an // array of created accounts that will be returned case common.TxTypeDeposit: s.computeEffectiveAmounts(tx) // update balance of the MT account err := s.applyDeposit(tx, false) if err != nil { log.Error(err) return nil, nil, false, nil, tracerr.Wrap(err) } case common.TxTypeDepositTransfer: s.computeEffectiveAmounts(tx) // update balance in MT account, update balance & nonce of sender // & receiver err := s.applyDeposit(tx, true) if err != nil { log.Error(err) return nil, nil, false, nil, tracerr.Wrap(err) } case common.TxTypeCreateAccountDepositTransfer: s.computeEffectiveAmounts(tx) // add new account to the merkletree, update balance in MT account, // update balance & nonce of sender & receiver err := s.applyCreateAccountDepositTransfer(tx) if err != nil { log.Error(err) return nil, nil, false, nil, tracerr.Wrap(err) } case common.TxTypeForceExit: s.computeEffectiveAmounts(tx) // execute exit flow // coordIdxsMap is 'nil', as at L1Txs there is no L2 fees exitAccount, newExit, err := s.applyExit(nil, nil, exitTree, tx.Tx()) if err != nil { log.Error(err) return nil, nil, false, nil, tracerr.Wrap(err) } return &tx.FromIdx, exitAccount, newExit, nil, nil default: } var createdAccount *common.Account if s.typ == TypeSynchronizer && (tx.Type == common.TxTypeCreateAccountDeposit || tx.Type == common.TxTypeCreateAccountDepositTransfer) { var err error createdAccount, err = s.GetAccount(s.idx) if err != nil { log.Error(err) return nil, nil, false, nil, tracerr.Wrap(err) } } return nil, nil, false, createdAccount, nil } // processL2Tx process the given L2Tx applying the needed updates to the // StateDB depending on the transaction Type. It returns the 3 parameters // related to the Exit (in case of): Idx, ExitAccount, boolean determining if // the Exit created a new Leaf in the ExitTree. func (s *StateDB) processL2Tx(coordIdxsMap map[common.TokenID]common.Idx, collectedFees map[common.TokenID]*big.Int, exitTree *merkletree.MerkleTree, tx *common.PoolL2Tx) (*common.Idx, *common.Account, bool, error) { var err error // if tx.ToIdx==0, get toIdx by ToEthAddr or ToBJJ if tx.ToIdx == common.Idx(0) && tx.AuxToIdx == common.Idx(0) { if s.typ == TypeSynchronizer { // this should never be reached log.Error("WARNING: In StateDB with Synchronizer mode L2.ToIdx can't be 0") return nil, nil, false, tracerr.Wrap(fmt.Errorf("In StateDB with Synchronizer mode L2.ToIdx can't be 0")) } // case when tx.Type== common.TxTypeTransferToEthAddr or common.TxTypeTransferToBJJ tx.AuxToIdx, err = s.GetIdxByEthAddrBJJ(tx.ToEthAddr, tx.ToBJJ, tx.TokenID) if err != nil { return nil, nil, false, tracerr.Wrap(err) } } // ZKInputs if s.zki != nil { // Txs s.zki.TxCompressedData[s.i], err = tx.TxCompressedData() if err != nil { return nil, nil, false, tracerr.Wrap(err) } s.zki.TxCompressedDataV2[s.i], err = tx.TxCompressedDataV2() if err != nil { return nil, nil, false, tracerr.Wrap(err) } s.zki.FromIdx[s.i] = tx.FromIdx.BigInt() s.zki.ToIdx[s.i] = tx.ToIdx.BigInt() // fill AuxToIdx if needed if tx.ToIdx == 0 { // use toIdx that can have been filled by tx.ToIdx or // if tx.Idx==0 (this case), toIdx is filled by the Idx // from db by ToEthAddr&ToBJJ s.zki.AuxToIdx[s.i] = tx.AuxToIdx.BigInt() } if tx.ToBJJ != nil { s.zki.ToBJJAy[s.i] = tx.ToBJJ.Y } s.zki.ToEthAddr[s.i] = common.EthAddrToBigInt(tx.ToEthAddr) s.zki.OnChain[s.i] = big.NewInt(0) s.zki.NewAccount[s.i] = big.NewInt(0) // L2Txs // s.zki.RqOffset[s.i] = // TODO Rq once TxSelector is ready // s.zki.RqTxCompressedDataV2[s.i] = // TODO // s.zki.RqToEthAddr[s.i] = common.EthAddrToBigInt(tx.RqToEthAddr) // TODO // s.zki.RqToBJJAy[s.i] = tx.ToBJJ.Y // TODO signature, err := tx.Signature.Decompress() if err != nil { log.Error(err) return nil, nil, false, tracerr.Wrap(err) } s.zki.S[s.i] = signature.S s.zki.R8x[s.i] = signature.R8.X s.zki.R8y[s.i] = signature.R8.Y } // if StateDB type==TypeSynchronizer, will need to add Nonce if s.typ == TypeSynchronizer { // as type==TypeSynchronizer, always tx.ToIdx!=0 acc, err := s.GetAccount(tx.FromIdx) if err != nil { log.Errorw("GetAccount", "fromIdx", tx.FromIdx, "err", err) return nil, nil, false, tracerr.Wrap(err) } tx.Nonce = acc.Nonce + 1 tx.TokenID = acc.TokenID } switch tx.Type { case common.TxTypeTransfer, common.TxTypeTransferToEthAddr, common.TxTypeTransferToBJJ: // go to the MT account of sender and receiver, and update // balance & nonce err = s.applyTransfer(coordIdxsMap, collectedFees, tx.Tx(), tx.AuxToIdx) if err != nil { log.Error(err) return nil, nil, false, tracerr.Wrap(err) } case common.TxTypeExit: // execute exit flow exitAccount, newExit, err := s.applyExit(coordIdxsMap, collectedFees, exitTree, tx.Tx()) if err != nil { log.Error(err) return nil, nil, false, tracerr.Wrap(err) } return &tx.FromIdx, exitAccount, newExit, nil default: } return nil, nil, false, nil } // applyCreateAccount creates a new account in the account of the depositer, it // stores the deposit value func (s *StateDB) applyCreateAccount(tx *common.L1Tx) error { account := &common.Account{ TokenID: tx.TokenID, Nonce: 0, Balance: tx.EffectiveLoadAmount, PublicKey: tx.FromBJJ, EthAddr: tx.FromEthAddr, } p, err := s.CreateAccount(common.Idx(s.idx+1), account) if err != nil { return tracerr.Wrap(err) } if s.zki != nil { s.zki.TokenID1[s.i] = tx.TokenID.BigInt() s.zki.Nonce1[s.i] = big.NewInt(0) if babyjub.PointCoordSign(tx.FromBJJ.X) { s.zki.Sign1[s.i] = big.NewInt(1) } s.zki.Ay1[s.i] = tx.FromBJJ.Y s.zki.Balance1[s.i] = tx.EffectiveLoadAmount s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(tx.FromEthAddr) s.zki.Siblings1[s.i] = siblingsToZKInputFormat(p.Siblings) if p.IsOld0 { s.zki.IsOld0_1[s.i] = big.NewInt(1) } s.zki.OldKey1[s.i] = p.OldKey.BigInt() s.zki.OldValue1[s.i] = p.OldValue.BigInt() s.zki.Metadata.NewLastIdxRaw = s.idx + 1 s.zki.AuxFromIdx[s.i] = common.Idx(s.idx + 1).BigInt() s.zki.NewAccount[s.i] = big.NewInt(1) if s.i < len(s.zki.ISOnChain) { // len(s.zki.ISOnChain) == nTx // intermediate states s.zki.ISOnChain[s.i] = big.NewInt(1) } } s.idx = s.idx + 1 return s.setIdx(s.idx) } // applyDeposit updates the balance in the account of the depositer, if // andTransfer parameter is set to true, the method will also apply the // Transfer of the L1Tx/DepositTransfer func (s *StateDB) applyDeposit(tx *common.L1Tx, transfer bool) error { // deposit the tx.EffectiveLoadAmount into the sender account accSender, err := s.GetAccount(tx.FromIdx) if err != nil { return tracerr.Wrap(err) } accSender.Balance = new(big.Int).Add(accSender.Balance, tx.EffectiveLoadAmount) // in case that the tx is a L1Tx>DepositTransfer var accReceiver *common.Account if transfer { accReceiver, err = s.GetAccount(tx.ToIdx) if err != nil { return tracerr.Wrap(err) } // subtract amount to the sender accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.EffectiveAmount) // add amount to the receiver accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.EffectiveAmount) } // update sender account in localStateDB p, err := s.UpdateAccount(tx.FromIdx, accSender) if err != nil { return tracerr.Wrap(err) } if s.zki != nil { s.zki.TokenID1[s.i] = accSender.TokenID.BigInt() s.zki.Nonce1[s.i] = accSender.Nonce.BigInt() if babyjub.PointCoordSign(accSender.PublicKey.X) { s.zki.Sign1[s.i] = big.NewInt(1) } s.zki.Ay1[s.i] = accSender.PublicKey.Y s.zki.Balance1[s.i] = accSender.Balance s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(accSender.EthAddr) s.zki.Siblings1[s.i] = siblingsToZKInputFormat(p.Siblings) // IsOld0_1, OldKey1, OldValue1 not needed as this is not an insert } // this is done after updating Sender Account (depositer) if transfer { // update receiver account in localStateDB p, err := s.UpdateAccount(tx.ToIdx, accReceiver) if err != nil { return tracerr.Wrap(err) } if s.zki != nil { s.zki.TokenID2[s.i] = accReceiver.TokenID.BigInt() s.zki.Nonce2[s.i] = accReceiver.Nonce.BigInt() if babyjub.PointCoordSign(accReceiver.PublicKey.X) { s.zki.Sign2[s.i] = big.NewInt(1) } s.zki.Ay2[s.i] = accReceiver.PublicKey.Y s.zki.Balance2[s.i] = accReceiver.Balance s.zki.EthAddr2[s.i] = common.EthAddrToBigInt(accReceiver.EthAddr) s.zki.Siblings2[s.i] = siblingsToZKInputFormat(p.Siblings) // IsOld0_2, OldKey2, OldValue2 not needed as this is not an insert } } return nil } // applyTransfer updates the balance & nonce in the account of the sender, and // the balance in the account of the receiver. // Parameter 'toIdx' should be at 0 if the tx already has tx.ToIdx!=0, if // tx.ToIdx==0, then toIdx!=0, and will be used the toIdx parameter as Idx of // the receiver. This parameter is used when the tx.ToIdx is not specified and // the real ToIdx is found trhrough the ToEthAddr or ToBJJ. func (s *StateDB) applyTransfer(coordIdxsMap map[common.TokenID]common.Idx, collectedFees map[common.TokenID]*big.Int, tx common.Tx, auxToIdx common.Idx) error { if auxToIdx == common.Idx(0) { auxToIdx = tx.ToIdx } // get sender and receiver accounts from localStateDB accSender, err := s.GetAccount(tx.FromIdx) if err != nil { log.Error(err) return tracerr.Wrap(err) } if s.zki != nil { // Set the State1 before updating the Sender leaf s.zki.TokenID1[s.i] = accSender.TokenID.BigInt() s.zki.Nonce1[s.i] = accSender.Nonce.BigInt() if babyjub.PointCoordSign(accSender.PublicKey.X) { s.zki.Sign1[s.i] = big.NewInt(1) } s.zki.Ay1[s.i] = accSender.PublicKey.Y s.zki.Balance1[s.i] = accSender.Balance s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(accSender.EthAddr) } if !tx.IsL1 { // increment nonce accSender.Nonce++ // compute fee and subtract it from the accSender fee, err := common.CalcFeeAmount(tx.Amount, *tx.Fee) if err != nil { return tracerr.Wrap(err) } feeAndAmount := new(big.Int).Add(tx.Amount, fee) accSender.Balance = new(big.Int).Sub(accSender.Balance, feeAndAmount) if _, ok := coordIdxsMap[accSender.TokenID]; ok { accCoord, err := s.GetAccount(coordIdxsMap[accSender.TokenID]) if err != nil { return tracerr.Wrap(fmt.Errorf("Can not use CoordIdx that does not exist in the tree. TokenID: %d, CoordIdx: %d", accSender.TokenID, coordIdxsMap[accSender.TokenID])) } // accumulate the fee for the Coord account accumulated := s.accumulatedFees[accCoord.Idx] accumulated.Add(accumulated, fee) if s.typ == TypeSynchronizer || s.typ == TypeBatchBuilder { collected := collectedFees[accCoord.TokenID] collected.Add(collected, fee) } } else { log.Debugw("No coord Idx to receive fee", "tx", tx) } } else { accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.Amount) } // update sender account in localStateDB pSender, err := s.UpdateAccount(tx.FromIdx, accSender) if err != nil { log.Error(err) return tracerr.Wrap(err) } if s.zki != nil { s.zki.Siblings1[s.i] = siblingsToZKInputFormat(pSender.Siblings) } var accReceiver *common.Account if tx.FromIdx == auxToIdx { // if Sender is the Receiver, reuse 'accSender' pointer, // because in the DB the account for 'auxToIdx' won't be // updated yet accReceiver = accSender } else { accReceiver, err = s.GetAccount(auxToIdx) if err != nil { log.Error(err) return tracerr.Wrap(err) } } if s.zki != nil { // Set the State2 before updating the Receiver leaf s.zki.TokenID2[s.i] = accReceiver.TokenID.BigInt() s.zki.Nonce2[s.i] = accReceiver.Nonce.BigInt() if babyjub.PointCoordSign(accReceiver.PublicKey.X) { s.zki.Sign2[s.i] = big.NewInt(1) } s.zki.Ay2[s.i] = accReceiver.PublicKey.Y s.zki.Balance2[s.i] = accReceiver.Balance s.zki.EthAddr2[s.i] = common.EthAddrToBigInt(accReceiver.EthAddr) } // add amount-feeAmount to the receiver accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.Amount) // update receiver account in localStateDB pReceiver, err := s.UpdateAccount(auxToIdx, accReceiver) if err != nil { return tracerr.Wrap(err) } if s.zki != nil { s.zki.Siblings2[s.i] = siblingsToZKInputFormat(pReceiver.Siblings) } return nil } // applyCreateAccountDepositTransfer, in a single tx, creates a new account, // makes a deposit, and performs a transfer to another account func (s *StateDB) applyCreateAccountDepositTransfer(tx *common.L1Tx) error { accSender := &common.Account{ TokenID: tx.TokenID, Nonce: 0, Balance: tx.EffectiveLoadAmount, PublicKey: tx.FromBJJ, EthAddr: tx.FromEthAddr, } accReceiver, err := s.GetAccount(tx.ToIdx) if err != nil { return tracerr.Wrap(err) } // subtract amount to the sender accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.EffectiveAmount) // add amount to the receiver accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.EffectiveAmount) // create Account of the Sender p, err := s.CreateAccount(common.Idx(s.idx+1), accSender) if err != nil { return tracerr.Wrap(err) } if s.zki != nil { s.zki.TokenID1[s.i] = tx.TokenID.BigInt() s.zki.Nonce1[s.i] = big.NewInt(0) if babyjub.PointCoordSign(tx.FromBJJ.X) { s.zki.Sign1[s.i] = big.NewInt(1) } s.zki.Ay1[s.i] = tx.FromBJJ.Y s.zki.Balance1[s.i] = tx.EffectiveLoadAmount s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(tx.FromEthAddr) s.zki.Siblings1[s.i] = siblingsToZKInputFormat(p.Siblings) if p.IsOld0 { s.zki.IsOld0_1[s.i] = big.NewInt(1) } s.zki.OldKey1[s.i] = p.OldKey.BigInt() s.zki.OldValue1[s.i] = p.OldValue.BigInt() s.zki.Metadata.NewLastIdxRaw = s.idx + 1 s.zki.AuxFromIdx[s.i] = common.Idx(s.idx + 1).BigInt() s.zki.NewAccount[s.i] = big.NewInt(1) // intermediate states s.zki.ISOnChain[s.i] = big.NewInt(1) } // update receiver account in localStateDB p, err = s.UpdateAccount(tx.ToIdx, accReceiver) if err != nil { return tracerr.Wrap(err) } if s.zki != nil { s.zki.TokenID2[s.i] = accReceiver.TokenID.BigInt() s.zki.Nonce2[s.i] = accReceiver.Nonce.BigInt() if babyjub.PointCoordSign(accReceiver.PublicKey.X) { s.zki.Sign2[s.i] = big.NewInt(1) } s.zki.Ay2[s.i] = accReceiver.PublicKey.Y s.zki.Balance2[s.i] = accReceiver.Balance s.zki.EthAddr2[s.i] = common.EthAddrToBigInt(accReceiver.EthAddr) s.zki.Siblings2[s.i] = siblingsToZKInputFormat(p.Siblings) } s.idx = s.idx + 1 return s.setIdx(s.idx) } // It returns the ExitAccount and a boolean determining if the Exit created a // new Leaf in the ExitTree. func (s *StateDB) applyExit(coordIdxsMap map[common.TokenID]common.Idx, collectedFees map[common.TokenID]*big.Int, exitTree *merkletree.MerkleTree, tx common.Tx) (*common.Account, bool, error) { // 0. subtract tx.Amount from current Account in StateMT // add the tx.Amount into the Account (tx.FromIdx) in the ExitMT acc, err := s.GetAccount(tx.FromIdx) if err != nil { return nil, false, tracerr.Wrap(err) } if !tx.IsL1 { // increment nonce acc.Nonce++ // compute fee and subtract it from the accSender fee, err := common.CalcFeeAmount(tx.Amount, *tx.Fee) if err != nil { return nil, false, tracerr.Wrap(err) } feeAndAmount := new(big.Int).Add(tx.Amount, fee) acc.Balance = new(big.Int).Sub(acc.Balance, feeAndAmount) if _, ok := coordIdxsMap[acc.TokenID]; ok { accCoord, err := s.GetAccount(coordIdxsMap[acc.TokenID]) if err != nil { return nil, false, tracerr.Wrap(fmt.Errorf("Can not use CoordIdx that does not exist in the tree. TokenID: %d, CoordIdx: %d", acc.TokenID, coordIdxsMap[acc.TokenID])) } // accumulate the fee for the Coord account accumulated := s.accumulatedFees[accCoord.Idx] accumulated.Add(accumulated, fee) if s.typ == TypeSynchronizer || s.typ == TypeBatchBuilder { collected := collectedFees[accCoord.TokenID] collected.Add(collected, fee) } } else { log.Debugw("No coord Idx to receive fee", "tx", tx) } } else { acc.Balance = new(big.Int).Sub(acc.Balance, tx.Amount) } p, err := s.UpdateAccount(tx.FromIdx, acc) if err != nil { return nil, false, tracerr.Wrap(err) } if s.zki != nil { s.zki.TokenID1[s.i] = acc.TokenID.BigInt() s.zki.Nonce1[s.i] = acc.Nonce.BigInt() if babyjub.PointCoordSign(acc.PublicKey.X) { s.zki.Sign1[s.i] = big.NewInt(1) } s.zki.Ay1[s.i] = acc.PublicKey.Y s.zki.Balance1[s.i] = acc.Balance s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(acc.EthAddr) s.zki.Siblings1[s.i] = siblingsToZKInputFormat(p.Siblings) } if exitTree == nil { return nil, false, nil } exitAccount, err := getAccountInTreeDB(exitTree.DB(), tx.FromIdx) if tracerr.Unwrap(err) == db.ErrNotFound { // 1a. if idx does not exist in exitTree: // add new leaf 'ExitTreeLeaf', where ExitTreeLeaf.Balance = exitAmount (exitAmount=tx.Amount) exitAccount := &common.Account{ TokenID: acc.TokenID, Nonce: common.Nonce(1), Balance: tx.Amount, PublicKey: acc.PublicKey, EthAddr: acc.EthAddr, } _, err = createAccountInTreeDB(exitTree.DB(), exitTree, tx.FromIdx, exitAccount) return exitAccount, true, tracerr.Wrap(err) } else if err != nil { return exitAccount, false, tracerr.Wrap(err) } // 1b. if idx already exist in exitTree: // update account, where account.Balance += exitAmount exitAccount.Balance = new(big.Int).Add(exitAccount.Balance, tx.Amount) _, err = updateAccountInTreeDB(exitTree.DB(), exitTree, tx.FromIdx, exitAccount) return exitAccount, false, tracerr.Wrap(err) } // computeEffectiveAmounts checks that the L1Tx data is correct func (s *StateDB) computeEffectiveAmounts(tx *common.L1Tx) { if !tx.UserOrigin { // case where the L1Tx is generated by the Coordinator tx.EffectiveAmount = big.NewInt(0) tx.EffectiveLoadAmount = big.NewInt(0) return } tx.EffectiveAmount = tx.Amount tx.EffectiveLoadAmount = tx.LoadAmount if tx.Type == common.TxTypeCreateAccountDeposit { return } if tx.ToIdx >= common.UserThreshold && tx.FromIdx == common.Idx(0) { // CreateAccountDepositTransfer case cmp := tx.LoadAmount.Cmp(tx.Amount) if cmp == -1 { // LoadAmount