package common import ( "encoding/binary" "errors" "fmt" "math/big" "time" ethCommon "github.com/ethereum/go-ethereum/common" "github.com/hermeznetwork/tracerr" "github.com/iden3/go-iden3-crypto/babyjub" "github.com/iden3/go-iden3-crypto/poseidon" ) // EmptyBJJComp contains the 32 byte array of a empty BabyJubJub PublicKey // Compressed. It is a valid point in the BabyJubJub curve, so does not give // errors when being decompressed. var EmptyBJJComp = babyjub.PublicKeyComp([32]byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}) // PoolL2Tx is a struct that represents a L2Tx sent by an account to the // coordinator that is waiting to be forged type PoolL2Tx struct { // Stored in DB: mandatory fileds // TxID (12 bytes) for L2Tx is: // bytes: | 1 | 6 | 5 | // values: | type | FromIdx | Nonce | TxID TxID `meddler:"tx_id"` FromIdx Idx `meddler:"from_idx"` ToIdx Idx `meddler:"to_idx,zeroisnull"` // AuxToIdx is only used internally at the StateDB to avoid repeated // computation when processing transactions (from Synchronizer, // TxSelector, BatchBuilder) AuxToIdx Idx `meddler:"-"` ToEthAddr ethCommon.Address `meddler:"to_eth_addr,zeroisnull"` ToBJJ babyjub.PublicKeyComp `meddler:"to_bjj,zeroisnull"` TokenID TokenID `meddler:"token_id"` Amount *big.Int `meddler:"amount,bigint"` Fee FeeSelector `meddler:"fee"` Nonce Nonce `meddler:"nonce"` // effective 40 bits used State PoolL2TxState `meddler:"state"` // Info contains information about the status & State of the // transaction. As for example, if the Tx has not been selected in the // last batch due not enough Balance at the Sender account, this reason // would appear at this parameter. Info string `meddler:"info,zeroisnull"` Signature babyjub.SignatureComp `meddler:"signature"` // tx signature Timestamp time.Time `meddler:"timestamp,utctime"` // time when added to the tx pool // Stored in DB: optional fileds, may be uninitialized RqFromIdx Idx `meddler:"rq_from_idx,zeroisnull"` RqToIdx Idx `meddler:"rq_to_idx,zeroisnull"` RqToEthAddr ethCommon.Address `meddler:"rq_to_eth_addr,zeroisnull"` RqToBJJ babyjub.PublicKeyComp `meddler:"rq_to_bjj,zeroisnull"` RqTokenID TokenID `meddler:"rq_token_id,zeroisnull"` RqAmount *big.Int `meddler:"rq_amount,bigintnull"` RqFee FeeSelector `meddler:"rq_fee,zeroisnull"` RqNonce Nonce `meddler:"rq_nonce,zeroisnull"` // effective 48 bits used AbsoluteFee float64 `meddler:"fee_usd,zeroisnull"` AbsoluteFeeUpdate time.Time `meddler:"usd_update,utctimez"` Type TxType `meddler:"tx_type"` // Extra metadata, may be uninitialized RqTxCompressedData []byte `meddler:"-"` // 253 bits, optional for atomic txs } // NewPoolL2Tx returns the given L2Tx with the TxId & Type parameters calculated // from the L2Tx values func NewPoolL2Tx(tx *PoolL2Tx) (*PoolL2Tx, error) { txTypeOld := tx.Type if err := tx.SetType(); err != nil { return nil, tracerr.Wrap(err) } // If original Type doesn't match the correct one, return error if txTypeOld != "" && txTypeOld != tx.Type { return nil, tracerr.Wrap(fmt.Errorf("L2Tx.Type: %s, should be: %s", txTypeOld, tx.Type)) } txIDOld := tx.TxID if err := tx.SetID(); err != nil { return nil, tracerr.Wrap(err) } // If original TxID doesn't match the correct one, return error if txIDOld != (TxID{}) && txIDOld != tx.TxID { return tx, tracerr.Wrap(fmt.Errorf("PoolL2Tx.TxID: %s, should be: %s", txIDOld.String(), tx.TxID.String())) } return tx, nil } // SetType sets the type of the transaction func (tx *PoolL2Tx) SetType() error { if tx.ToIdx >= IdxUserThreshold { tx.Type = TxTypeTransfer } else if tx.ToIdx == 1 { tx.Type = TxTypeExit } else if tx.ToIdx == 0 { if tx.ToBJJ != EmptyBJJComp && tx.ToEthAddr == FFAddr { tx.Type = TxTypeTransferToBJJ } else if tx.ToEthAddr != FFAddr && tx.ToEthAddr != EmptyAddr { tx.Type = TxTypeTransferToEthAddr } else { return tracerr.Wrap(errors.New("malformed transaction")) } } else { return tracerr.Wrap(errors.New("malformed transaction")) } return nil } // SetID sets the ID of the transaction func (tx *PoolL2Tx) SetID() error { txID, err := tx.L2Tx().CalculateTxID() if err != nil { return tracerr.Wrap(err) } tx.TxID = txID return nil } // TxCompressedData spec: // [ 1 bits ] toBJJSign // 1 byte // [ 8 bits ] userFee // 1 byte // [ 40 bits ] nonce // 5 bytes // [ 32 bits ] tokenID // 4 bytes // [ 48 bits ] toIdx // 6 bytes // [ 48 bits ] fromIdx // 6 bytes // [ 16 bits ] chainId // 2 bytes // [ 32 bits ] signatureConstant // 4 bytes // Total bits compressed data: 225 bits // 29 bytes in *big.Int representation func (tx *PoolL2Tx) TxCompressedData(chainID uint16) (*big.Int, error) { var b [29]byte toBJJSign := byte(0) pkSign, _ := babyjub.UnpackSignY(tx.ToBJJ) if pkSign { toBJJSign = byte(1) } b[0] = toBJJSign b[1] = byte(tx.Fee) nonceBytes, err := tx.Nonce.Bytes() if err != nil { return nil, tracerr.Wrap(err) } copy(b[2:7], nonceBytes[:]) copy(b[7:11], tx.TokenID.Bytes()) toIdxBytes, err := tx.ToIdx.Bytes() if err != nil { return nil, tracerr.Wrap(err) } copy(b[11:17], toIdxBytes[:]) fromIdxBytes, err := tx.FromIdx.Bytes() if err != nil { return nil, tracerr.Wrap(err) } copy(b[17:23], fromIdxBytes[:]) binary.BigEndian.PutUint16(b[23:25], chainID) copy(b[25:29], SignatureConstantBytes[:]) bi := new(big.Int).SetBytes(b[:]) return bi, nil } // TxCompressedDataEmpty calculates the TxCompressedData of an empty // transaction func TxCompressedDataEmpty(chainID uint16) *big.Int { var b [29]byte binary.BigEndian.PutUint16(b[23:25], chainID) copy(b[25:29], SignatureConstantBytes[:]) bi := new(big.Int).SetBytes(b[:]) return bi } // TxCompressedDataV2 spec: // [ 1 bits ] toBJJSign // 1 byte // [ 8 bits ] userFee // 1 byte // [ 40 bits ] nonce // 5 bytes // [ 32 bits ] tokenID // 4 bytes // [ 40 bits ] amountFloat40 // 5 bytes // [ 48 bits ] toIdx // 6 bytes // [ 48 bits ] fromIdx // 6 bytes // Total bits compressed data: 217 bits // 28 bytes in *big.Int representation func (tx *PoolL2Tx) TxCompressedDataV2() (*big.Int, error) { if tx.Amount == nil { tx.Amount = big.NewInt(0) } amountFloat40, err := NewFloat40(tx.Amount) if err != nil { return nil, tracerr.Wrap(err) } amountFloat40Bytes, err := amountFloat40.Bytes() if err != nil { return nil, tracerr.Wrap(err) } var b [28]byte toBJJSign := byte(0) if tx.ToBJJ != EmptyBJJComp { sign, _ := babyjub.UnpackSignY(tx.ToBJJ) if sign { toBJJSign = byte(1) } } b[0] = toBJJSign b[1] = byte(tx.Fee) nonceBytes, err := tx.Nonce.Bytes() if err != nil { return nil, tracerr.Wrap(err) } copy(b[2:7], nonceBytes[:]) copy(b[7:11], tx.TokenID.Bytes()) copy(b[11:16], amountFloat40Bytes) toIdxBytes, err := tx.ToIdx.Bytes() if err != nil { return nil, tracerr.Wrap(err) } copy(b[16:22], toIdxBytes[:]) fromIdxBytes, err := tx.FromIdx.Bytes() if err != nil { return nil, tracerr.Wrap(err) } copy(b[22:28], fromIdxBytes[:]) bi := new(big.Int).SetBytes(b[:]) return bi, nil } // RqTxCompressedDataV2 is like the TxCompressedDataV2 but using the 'Rq' // parameters. In a future iteration of the hermez-node, the 'Rq' parameters // can be inside a struct, which contains the 'Rq' transaction grouped inside, // so then computing the 'RqTxCompressedDataV2' would be just calling // 'tx.Rq.TxCompressedDataV2()'. // RqTxCompressedDataV2 spec: // [ 1 bits ] rqToBJJSign // 1 byte // [ 8 bits ] rqUserFee // 1 byte // [ 40 bits ] rqNonce // 5 bytes // [ 32 bits ] rqTokenID // 4 bytes // [ 40 bits ] rqAmountFloat40 // 5 bytes // [ 48 bits ] rqToIdx // 6 bytes // [ 48 bits ] rqFromIdx // 6 bytes // Total bits compressed data: 217 bits // 28 bytes in *big.Int representation func (tx *PoolL2Tx) RqTxCompressedDataV2() (*big.Int, error) { if tx.RqAmount == nil { tx.RqAmount = big.NewInt(0) } amountFloat40, err := NewFloat40(tx.RqAmount) if err != nil { return nil, tracerr.Wrap(err) } amountFloat40Bytes, err := amountFloat40.Bytes() if err != nil { return nil, tracerr.Wrap(err) } var b [28]byte rqToBJJSign := byte(0) if tx.RqToBJJ != EmptyBJJComp { sign, _ := babyjub.UnpackSignY(tx.RqToBJJ) if sign { rqToBJJSign = byte(1) } } b[0] = rqToBJJSign b[1] = byte(tx.RqFee) nonceBytes, err := tx.RqNonce.Bytes() if err != nil { return nil, tracerr.Wrap(err) } copy(b[2:7], nonceBytes[:]) copy(b[7:11], tx.RqTokenID.Bytes()) copy(b[11:16], amountFloat40Bytes) toIdxBytes, err := tx.RqToIdx.Bytes() if err != nil { return nil, tracerr.Wrap(err) } copy(b[16:22], toIdxBytes[:]) fromIdxBytes, err := tx.RqFromIdx.Bytes() if err != nil { return nil, tracerr.Wrap(err) } copy(b[22:28], fromIdxBytes[:]) bi := new(big.Int).SetBytes(b[:]) return bi, nil } // HashToSign returns the computed Poseidon hash from the *PoolL2Tx that will // be signed by the sender. func (tx *PoolL2Tx) HashToSign(chainID uint16) (*big.Int, error) { toCompressedData, err := tx.TxCompressedData(chainID) if err != nil { return nil, tracerr.Wrap(err) } // e1: [5 bytes AmountFloat40 | 20 bytes ToEthAddr] var e1B [25]byte amountFloat40, err := NewFloat40(tx.Amount) if err != nil { return nil, tracerr.Wrap(err) } amountFloat40Bytes, err := amountFloat40.Bytes() if err != nil { return nil, tracerr.Wrap(err) } copy(e1B[0:5], amountFloat40Bytes) toEthAddr := EthAddrToBigInt(tx.ToEthAddr) copy(e1B[5:25], toEthAddr.Bytes()) e1 := new(big.Int).SetBytes(e1B[:]) rqToEthAddr := EthAddrToBigInt(tx.RqToEthAddr) _, toBJJY := babyjub.UnpackSignY(tx.ToBJJ) rqTxCompressedDataV2, err := tx.RqTxCompressedDataV2() if err != nil { return nil, tracerr.Wrap(err) } _, rqToBJJY := babyjub.UnpackSignY(tx.RqToBJJ) return poseidon.Hash([]*big.Int{toCompressedData, e1, toBJJY, rqTxCompressedDataV2, rqToEthAddr, rqToBJJY}) } // VerifySignature returns true if the signature verification is correct for the given PublicKeyComp func (tx *PoolL2Tx) VerifySignature(chainID uint16, pkComp babyjub.PublicKeyComp) bool { h, err := tx.HashToSign(chainID) if err != nil { return false } s, err := tx.Signature.Decompress() if err != nil { return false } pk, err := pkComp.Decompress() if err != nil { return false } return pk.VerifyPoseidon(h, s) } // L2Tx returns a *L2Tx from the PoolL2Tx func (tx PoolL2Tx) L2Tx() L2Tx { var toIdx Idx if tx.ToIdx == Idx(0) { toIdx = tx.AuxToIdx } else { toIdx = tx.ToIdx } return L2Tx{ TxID: tx.TxID, FromIdx: tx.FromIdx, ToIdx: toIdx, TokenID: tx.TokenID, Amount: tx.Amount, Fee: tx.Fee, Nonce: tx.Nonce, Type: tx.Type, } } // Tx returns a *Tx from the PoolL2Tx func (tx PoolL2Tx) Tx() Tx { return Tx{ TxID: tx.TxID, FromIdx: tx.FromIdx, ToIdx: tx.ToIdx, Amount: tx.Amount, TokenID: tx.TokenID, Nonce: &tx.Nonce, Fee: &tx.Fee, Type: tx.Type, } } // PoolL2TxsToL2Txs returns an array of []L2Tx from an array of []PoolL2Tx func PoolL2TxsToL2Txs(txs []PoolL2Tx) ([]L2Tx, error) { l2Txs := make([]L2Tx, len(txs)) for i, poolTx := range txs { l2Txs[i] = poolTx.L2Tx() } return l2Txs, nil } // TxIDsFromPoolL2Txs returns an array of TxID from the []PoolL2Tx func TxIDsFromPoolL2Txs(txs []PoolL2Tx) []TxID { txIDs := make([]TxID, len(txs)) for i, tx := range txs { txIDs[i] = tx.TxID } return txIDs } // PoolL2TxState is a string that represents the status of a L2 transaction type PoolL2TxState string const ( // PoolL2TxStatePending represents a valid L2Tx that hasn't started the // forging process PoolL2TxStatePending PoolL2TxState = "pend" // PoolL2TxStateForging represents a valid L2Tx that has started the // forging process PoolL2TxStateForging PoolL2TxState = "fing" // PoolL2TxStateForged represents a L2Tx that has already been forged PoolL2TxStateForged PoolL2TxState = "fged" // PoolL2TxStateInvalid represents a L2Tx that has been invalidated PoolL2TxStateInvalid PoolL2TxState = "invl" )