package test import ( "context" "encoding/binary" "encoding/json" "fmt" "math/big" "reflect" "sync" "time" "github.com/ethereum/go-ethereum" ethCommon "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" "github.com/hermeznetwork/hermez-node/common" "github.com/hermeznetwork/hermez-node/eth" "github.com/hermeznetwork/hermez-node/log" "github.com/iden3/go-iden3-crypto/babyjub" "github.com/mitchellh/copystructure" ) func init() { copystructure.Copiers[reflect.TypeOf(big.Int{})] = func(raw interface{}) (interface{}, error) { in := raw.(big.Int) out := new(big.Int).Set(&in) return *out, nil } } // WDelayerBlock stores all the data related to the WDelayer SC from an ethereum block type WDelayerBlock struct { // State eth.WDelayerState // TODO Vars common.WDelayerVariables Events eth.WDelayerEvents Txs map[ethCommon.Hash]*types.Transaction Constants *common.WDelayerConstants Eth *EthereumBlock } func (w *WDelayerBlock) addTransaction(tx *types.Transaction) *types.Transaction { txHash := tx.Hash() w.Txs[txHash] = tx return tx } func (w *WDelayerBlock) deposit(txHash ethCommon.Hash, owner, token ethCommon.Address, amount *big.Int) { w.Events.Deposit = append(w.Events.Deposit, eth.WDelayerEventDeposit{ Owner: owner, Token: token, Amount: amount, DepositTimestamp: uint64(w.Eth.Time), TxHash: txHash, }) } // RollupBlock stores all the data related to the Rollup SC from an ethereum block type RollupBlock struct { State eth.RollupState Vars common.RollupVariables Events eth.RollupEvents Txs map[ethCommon.Hash]*types.Transaction Constants *common.RollupConstants Eth *EthereumBlock } func (r *RollupBlock) addTransaction(tx *types.Transaction) *types.Transaction { txHash := tx.Hash() r.Txs[txHash] = tx return tx } var ( errBidClosed = fmt.Errorf("Bid has already been closed") errBidNotOpen = fmt.Errorf("Bid has not been opened yet") errBidBelowMin = fmt.Errorf("Bid below minimum") errCoordNotReg = fmt.Errorf("Coordinator not registered") ) // AuctionBlock stores all the data related to the Auction SC from an ethereum block type AuctionBlock struct { State eth.AuctionState Vars common.AuctionVariables Events eth.AuctionEvents Txs map[ethCommon.Hash]*types.Transaction Constants *common.AuctionConstants Eth *EthereumBlock } func (a *AuctionBlock) addTransaction(tx *types.Transaction) *types.Transaction { txHash := tx.Hash() a.Txs[txHash] = tx return tx } func (a *AuctionBlock) getSlotNumber(blockNumber int64) int64 { if a.Eth.BlockNum >= a.Constants.GenesisBlockNum { return (blockNumber - a.Constants.GenesisBlockNum) / int64(a.Constants.BlocksPerSlot) } return 0 } func (a *AuctionBlock) getCurrentSlotNumber() int64 { return a.getSlotNumber(a.Eth.BlockNum) } func (a *AuctionBlock) getSlotSet(slot int64) int64 { return slot % int64(len(a.Vars.DefaultSlotSetBid)) } func (a *AuctionBlock) getMinBidBySlot(slot int64) (*big.Int, error) { if slot < a.getCurrentSlotNumber()+int64(a.Vars.ClosedAuctionSlots) { return nil, errBidClosed } slotSet := a.getSlotSet(slot) // fmt.Println("slot:", slot, "slotSet:", slotSet) var prevBid *big.Int slotState, ok := a.State.Slots[slot] if !ok { slotState = eth.NewSlotState() a.State.Slots[slot] = slotState } // If the bidAmount for a slot is 0 it means that it has not yet been bid, so the midBid will be the minimum // bid for the slot time plus the outbidding set, otherwise it will be the bidAmount plus the outbidding if slotState.BidAmount.Cmp(big.NewInt(0)) == 0 { prevBid = a.Vars.DefaultSlotSetBid[slotSet] } else { prevBid = slotState.BidAmount } outBid := new(big.Int).Set(prevBid) // fmt.Println("outBid:", outBid) outBid.Mul(outBid, big.NewInt(int64(a.Vars.Outbidding))) outBid.Div(outBid, big.NewInt(10000)) //nolint:gomnd outBid.Add(prevBid, outBid) // fmt.Println("minBid:", outBid) return outBid, nil } func (a *AuctionBlock) forge(forger ethCommon.Address) error { if ok, err := a.canForge(forger, a.Eth.BlockNum); err != nil { return err } else if !ok { return fmt.Errorf("Can't forge") } slotToForge := a.getSlotNumber(a.Eth.BlockNum) slotState, ok := a.State.Slots[slotToForge] if !ok { slotState = eth.NewSlotState() a.State.Slots[slotToForge] = slotState } slotState.Fulfilled = true a.Events.NewForge = append(a.Events.NewForge, eth.AuctionEventNewForge{ Forger: forger, SlotToForge: slotToForge, }) return nil } func (a *AuctionBlock) canForge(forger ethCommon.Address, blockNum int64) (bool, error) { if blockNum < a.Constants.GenesisBlockNum { return false, fmt.Errorf("Auction has not started yet") } slotToForge := a.getSlotNumber(blockNum) // Get the relativeBlock to check if the slotDeadline has been exceeded relativeBlock := blockNum - (a.Constants.GenesisBlockNum + (slotToForge * int64(a.Constants.BlocksPerSlot))) // If the closedMinBid is 0 it means that we have to take as minBid the one that is set for this slot set, // otherwise the one that has been saved will be used var minBid *big.Int slotState, ok := a.State.Slots[slotToForge] if !ok { slotState = eth.NewSlotState() a.State.Slots[slotToForge] = slotState } if slotState.ClosedMinBid.Cmp(big.NewInt(0)) == 0 { minBid = a.Vars.DefaultSlotSetBid[a.getSlotSet(slotToForge)] } else { minBid = slotState.ClosedMinBid } if !slotState.Fulfilled && (relativeBlock >= int64(a.Vars.SlotDeadline)) { // if the relative block has exceeded the slotDeadline and no batch has been forged, anyone can forge return true, nil // TODO, find the forger set by the Bidder } else if coord, ok := a.State.Coordinators[slotState.Bidder]; ok && coord.Forger == forger && slotState.BidAmount.Cmp(minBid) >= 0 { // if forger bidAmount has exceeded the minBid it can forge return true, nil } else if a.Vars.BootCoordinator == forger && slotState.BidAmount.Cmp(minBid) == -1 { // if it's the boot coordinator and it has not been bid or the bid is below the minimum it can forge return true, nil } else { return false, nil } } // EthereumBlock stores all the generic data related to the an ethereum block type EthereumBlock struct { BlockNum int64 Time int64 Hash ethCommon.Hash ParentHash ethCommon.Hash Tokens map[ethCommon.Address]eth.ERC20Consts // state ethState } // Block represents a ethereum block type Block struct { Rollup *RollupBlock Auction *AuctionBlock WDelayer *WDelayerBlock Eth *EthereumBlock } func (b *Block) copy() *Block { bCopyRaw, err := copystructure.Copy(b) if err != nil { panic(err) } bCopy := bCopyRaw.(*Block) return bCopy } // Next prepares the successive block. func (b *Block) Next() *Block { blockNext := b.copy() blockNext.Rollup.Events = eth.NewRollupEvents() blockNext.Auction.Events = eth.NewAuctionEvents() blockNext.Eth.BlockNum = b.Eth.BlockNum + 1 blockNext.Eth.ParentHash = b.Eth.Hash blockNext.Rollup.Constants = b.Rollup.Constants blockNext.Auction.Constants = b.Auction.Constants blockNext.WDelayer.Constants = b.WDelayer.Constants blockNext.Rollup.Eth = blockNext.Eth blockNext.Auction.Eth = blockNext.Eth blockNext.WDelayer.Eth = blockNext.Eth return blockNext } // ClientSetup is used to initialize the constants of the Smart Contracts and // other details of the test Client type ClientSetup struct { RollupConstants *common.RollupConstants RollupVariables *common.RollupVariables AuctionConstants *common.AuctionConstants AuctionVariables *common.AuctionVariables WDelayerConstants *common.WDelayerConstants WDelayerVariables *common.WDelayerVariables VerifyProof bool } // NewClientSetupExample returns a ClientSetup example with hardcoded realistic // values. With this setup, the rollup genesis will be block 1, and block 0 // and 1 will be premined. //nolint:gomnd func NewClientSetupExample() *ClientSetup { // rfield, ok := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10) // if !ok { // panic("bad rfield") // } initialMinimalBidding, ok := new(big.Int).SetString("10000000000000000000", 10) // 10 * (1e18) if !ok { panic("bad initialMinimalBidding") } tokenHEZ := ethCommon.HexToAddress("0x51D243D62852Bba334DD5cc33f242BAc8c698074") governanceAddress := ethCommon.HexToAddress("0x688EfD95BA4391f93717CF02A9aED9DBD2855cDd") rollupConstants := &common.RollupConstants{ Verifiers: []common.RollupVerifierStruct{ { MaxTx: 2048, NLevels: 32, }, }, TokenHEZ: tokenHEZ, HermezGovernanceDAOAddress: governanceAddress, SafetyAddress: ethCommon.HexToAddress("0x84d8B79E84fe87B14ad61A554e740f6736bF4c20"), HermezAuctionContract: ethCommon.HexToAddress("0x8E442975805fb1908f43050c9C1A522cB0e28D7b"), WithdrawDelayerContract: ethCommon.HexToAddress("0x5CB7979cBdbf65719BEE92e4D15b7b7Ed3D79114"), } rollupVariables := &common.RollupVariables{ FeeAddToken: big.NewInt(11), ForgeL1L2BatchTimeout: 9, WithdrawalDelay: 80, } auctionConstants := &common.AuctionConstants{ BlocksPerSlot: 40, InitialMinimalBidding: initialMinimalBidding, GenesisBlockNum: 1, GovernanceAddress: governanceAddress, TokenHEZ: tokenHEZ, HermezRollup: ethCommon.HexToAddress("0x474B6e29852257491cf283EfB1A9C61eBFe48369"), } auctionVariables := &common.AuctionVariables{ DonationAddress: ethCommon.HexToAddress("0x61Ed87CF0A1496b49A420DA6D84B58196b98f2e7"), BootCoordinator: ethCommon.HexToAddress("0xE39fEc6224708f0772D2A74fd3f9055A90E0A9f2"), DefaultSlotSetBid: [6]*big.Int{ big.NewInt(1000), big.NewInt(1100), big.NewInt(1200), big.NewInt(1300), big.NewInt(1400), big.NewInt(1500)}, ClosedAuctionSlots: 2, OpenAuctionSlots: 4320, AllocationRatio: [3]uint16{4000, 4000, 2000}, Outbidding: 1000, SlotDeadline: 20, } wDelayerConstants := &common.WDelayerConstants{ MaxWithdrawalDelay: 60 * 60 * 24 * 7 * 2, // 2 weeks MaxEmergencyModeTime: 60 * 60 * 24 * 7 * 26, // 26 weeks HermezRollup: auctionConstants.HermezRollup, } wDelayerVariables := &common.WDelayerVariables{ HermezGovernanceDAOAddress: ethCommon.HexToAddress("0xcfD0d163AE6432a72682323E2C3A5a69e6B37D12"), WhiteHackGroupAddress: ethCommon.HexToAddress("0x2730700932a4FDB97B9268A3Ca29f97Ea5fd7EA0"), HermezKeeperAddress: ethCommon.HexToAddress("0x92aAD86176dC0f0046FE85Ed5dA008a828bE3868"), WithdrawalDelay: 60, EmergencyModeStartingTime: 0, EmergencyMode: false, } return &ClientSetup{ RollupConstants: rollupConstants, RollupVariables: rollupVariables, AuctionConstants: auctionConstants, AuctionVariables: auctionVariables, WDelayerConstants: wDelayerConstants, WDelayerVariables: wDelayerVariables, } } // Timer is an interface to simulate a source of time, useful to advance time // virtually. type Timer interface { Time() int64 } // type forgeBatchArgs struct { // ethTx *types.Transaction // blockNum int64 // blockHash ethCommon.Hash // } type batch struct { ForgeBatchArgs eth.RollupForgeBatchArgs Sender ethCommon.Address } // Client implements the eth.ClientInterface interface, allowing to manipulate the // values for testing, working with deterministic results. type Client struct { rw *sync.RWMutex log bool addr *ethCommon.Address rollupConstants *common.RollupConstants auctionConstants *common.AuctionConstants wDelayerConstants *common.WDelayerConstants blocks map[int64]*Block // state state blockNum int64 // last mined block num maxBlockNum int64 // highest block num calculated timer Timer hasher hasher forgeBatchArgsPending map[ethCommon.Hash]*batch forgeBatchArgs map[ethCommon.Hash]*batch } // NewClient returns a new test Client that implements the eth.IClient // interface, at the given initialBlockNumber. func NewClient(l bool, timer Timer, addr *ethCommon.Address, setup *ClientSetup) *Client { blocks := make(map[int64]*Block) blockNum := int64(0) hasher := hasher{} // Add ethereum genesis block mapL1TxQueue := make(map[int64]*eth.QueueStruct) mapL1TxQueue[0] = eth.NewQueueStruct() mapL1TxQueue[1] = eth.NewQueueStruct() blockCurrent := &Block{ Rollup: &RollupBlock{ State: eth.RollupState{ StateRoot: big.NewInt(0), ExitRoots: make([]*big.Int, 1), ExitNullifierMap: make(map[int64]map[int64]bool), // TokenID = 0 is ETH. Set first entry in TokenList with 0x0 address for ETH. TokenList: []ethCommon.Address{{}}, TokenMap: make(map[ethCommon.Address]bool), MapL1TxQueue: mapL1TxQueue, LastL1L2Batch: 0, CurrentToForgeL1TxsNum: 0, LastToForgeL1TxsNum: 1, CurrentIdx: 0, }, Vars: *setup.RollupVariables, Txs: make(map[ethCommon.Hash]*types.Transaction), Events: eth.NewRollupEvents(), Constants: setup.RollupConstants, }, Auction: &AuctionBlock{ State: eth.AuctionState{ Slots: make(map[int64]*eth.SlotState), PendingBalances: make(map[ethCommon.Address]*big.Int), Coordinators: make(map[ethCommon.Address]*eth.Coordinator), }, Vars: *setup.AuctionVariables, Txs: make(map[ethCommon.Hash]*types.Transaction), Events: eth.NewAuctionEvents(), Constants: setup.AuctionConstants, }, WDelayer: &WDelayerBlock{ // State: TODO Vars: *setup.WDelayerVariables, Txs: make(map[ethCommon.Hash]*types.Transaction), Events: eth.NewWDelayerEvents(), Constants: setup.WDelayerConstants, }, Eth: &EthereumBlock{ BlockNum: blockNum, Time: timer.Time(), Hash: hasher.Next(), ParentHash: ethCommon.Hash{}, Tokens: make(map[ethCommon.Address]eth.ERC20Consts), }, } blockCurrent.Rollup.Eth = blockCurrent.Eth blockCurrent.Auction.Eth = blockCurrent.Eth blocks[blockNum] = blockCurrent blockNext := blockCurrent.Next() blocks[blockNum+1] = blockNext c := Client{ rw: &sync.RWMutex{}, log: l, addr: addr, rollupConstants: setup.RollupConstants, auctionConstants: setup.AuctionConstants, wDelayerConstants: setup.WDelayerConstants, blocks: blocks, timer: timer, hasher: hasher, forgeBatchArgsPending: make(map[ethCommon.Hash]*batch), forgeBatchArgs: make(map[ethCommon.Hash]*batch), blockNum: blockNum, maxBlockNum: blockNum, } for i := int64(1); i < setup.AuctionConstants.GenesisBlockNum+1; i++ { c.CtlMineBlock() } return &c } // // Mock Control // func (c *Client) setNextBlock(block *Block) { c.blocks[c.blockNum+1] = block } func (c *Client) revertIfErr(err error, block *Block) { if err != nil { log.Infow("TestClient revert", "block", block.Eth.BlockNum, "err", err) c.setNextBlock(block) } } // Debugf calls log.Debugf if c.log is true func (c *Client) Debugf(template string, args ...interface{}) { if c.log { log.Debugf(template, args...) } } // Debugw calls log.Debugw if c.log is true func (c *Client) Debugw(template string, kv ...interface{}) { if c.log { log.Debugw(template, kv...) } } type hasher struct { counter uint64 } // Next returns the next hash func (h *hasher) Next() ethCommon.Hash { var hash ethCommon.Hash binary.LittleEndian.PutUint64(hash[:], h.counter) h.counter++ return hash } func (c *Client) nextBlock() *Block { return c.blocks[c.blockNum+1] } func (c *Client) currentBlock() *Block { return c.blocks[c.blockNum] } // CtlSetAddr sets the address of the client func (c *Client) CtlSetAddr(addr ethCommon.Address) { c.addr = &addr } // CtlMineBlock moves one block forward func (c *Client) CtlMineBlock() { c.rw.Lock() defer c.rw.Unlock() blockCurrent := c.nextBlock() c.blockNum++ c.maxBlockNum = c.blockNum blockCurrent.Eth.Time = c.timer.Time() blockCurrent.Eth.Hash = c.hasher.Next() for ethTxHash, forgeBatchArgs := range c.forgeBatchArgsPending { c.forgeBatchArgs[ethTxHash] = forgeBatchArgs } c.forgeBatchArgsPending = make(map[ethCommon.Hash]*batch) blockNext := blockCurrent.Next() c.blocks[c.blockNum+1] = blockNext c.Debugw("TestClient mined block", "blockNum", c.blockNum) } // CtlRollback discards the last mined block. Use this to replace a mined // block to simulate reorgs. func (c *Client) CtlRollback() { c.rw.Lock() defer c.rw.Unlock() if c.blockNum == 0 { panic("Can't rollback at blockNum = 0") } delete(c.blocks, c.blockNum+1) // delete next block delete(c.blocks, c.blockNum) // delete current block c.blockNum-- blockCurrent := c.blocks[c.blockNum] blockNext := blockCurrent.Next() c.blocks[c.blockNum+1] = blockNext } // // Ethereum // // CtlCurrentBlock returns the current blockNum without checks func (c *Client) CtlCurrentBlock() int64 { c.rw.RLock() defer c.rw.RUnlock() return c.blockNum } // EthCurrentBlock returns the current blockNum func (c *Client) EthCurrentBlock() (int64, error) { c.rw.RLock() defer c.rw.RUnlock() if c.blockNum < c.maxBlockNum { panic("blockNum has decreased. " + "After a rollback you must mine to reach the same or higher blockNum") } return c.blockNum, nil } // EthTransactionReceipt returns the transaction receipt of the given txHash func (c *Client) EthTransactionReceipt(ctx context.Context, txHash ethCommon.Hash) (*types.Receipt, error) { c.rw.RLock() defer c.rw.RUnlock() for i := int64(0); i < c.blockNum; i++ { b := c.blocks[i] _, ok := b.Rollup.Txs[txHash] if !ok { _, ok = b.Auction.Txs[txHash] } if ok { return &types.Receipt{ TxHash: txHash, Status: types.ReceiptStatusSuccessful, BlockHash: b.Eth.Hash, BlockNumber: big.NewInt(b.Eth.BlockNum), }, nil } } return nil, nil } // CtlAddERC20 adds an ERC20 token to the blockchain. func (c *Client) CtlAddERC20(tokenAddr ethCommon.Address, constants eth.ERC20Consts) { nextBlock := c.nextBlock() e := nextBlock.Eth e.Tokens[tokenAddr] = constants } // EthERC20Consts returns the constants defined for a particular ERC20 Token instance. func (c *Client) EthERC20Consts(tokenAddr ethCommon.Address) (*eth.ERC20Consts, error) { currentBlock := c.currentBlock() e := currentBlock.Eth if constants, ok := e.Tokens[tokenAddr]; ok { return &constants, nil } return nil, fmt.Errorf("tokenAddr not found") } // func newHeader(number *big.Int) *types.Header { // return &types.Header{ // Number: number, // Time: uint64(number.Int64()), // } // } // EthHeaderByNumber returns the *types.Header for the given block number in a // deterministic way. // func (c *Client) EthHeaderByNumber(ctx context.Context, number *big.Int) (*types.Header, error) { // return newHeader(number), nil // } // EthBlockByNumber returns the *common.Block for the given block number in a // deterministic way. func (c *Client) EthBlockByNumber(ctx context.Context, blockNum int64) (*common.Block, error) { c.rw.RLock() defer c.rw.RUnlock() if blockNum > c.blockNum { return nil, ethereum.NotFound } block := c.blocks[blockNum] return &common.Block{ EthBlockNum: blockNum, Timestamp: time.Unix(block.Eth.Time, 0), Hash: block.Eth.Hash, ParentHash: block.Eth.ParentHash, }, nil } // EthAddress returns the ethereum address of the account loaded into the Client func (c *Client) EthAddress() (*ethCommon.Address, error) { if c.addr == nil { return nil, eth.ErrAccountNil } return c.addr, nil } var errTODO = fmt.Errorf("TODO: Not implemented yet") // // Rollup // // CtlAddL1TxUser adds an L1TxUser to the L1UserTxs queue of the Rollup // func (c *Client) CtlAddL1TxUser(l1Tx *common.L1Tx) { // c.rw.Lock() // defer c.rw.Unlock() // // nextBlock := c.nextBlock() // r := nextBlock.Rollup // queue := r.State.MapL1TxQueue[r.State.LastToForgeL1TxsNum] // if len(queue.L1TxQueue) >= eth.RollupConstMaxL1UserTx { // r.State.LastToForgeL1TxsNum++ // r.State.MapL1TxQueue[r.State.LastToForgeL1TxsNum] = eth.NewQueueStruct() // queue = r.State.MapL1TxQueue[r.State.LastToForgeL1TxsNum] // } // if int64(l1Tx.FromIdx) > r.State.CurrentIdx { // panic("l1Tx.FromIdx > r.State.CurrentIdx") // } // if int(l1Tx.TokenID)+1 > len(r.State.TokenList) { // panic("l1Tx.TokenID + 1 > len(r.State.TokenList)") // } // queue.L1TxQueue = append(queue.L1TxQueue, *l1Tx) // r.Events.L1UserTx = append(r.Events.L1UserTx, eth.RollupEventL1UserTx{ // L1Tx: *l1Tx, // ToForgeL1TxsNum: r.State.LastToForgeL1TxsNum, // Position: len(queue.L1TxQueue) - 1, // }) // } // RollupL1UserTxERC20Permit is the interface to call the smart contract function func (c *Client) RollupL1UserTxERC20Permit(fromBJJ *babyjub.PublicKey, fromIdx int64, loadAmount *big.Int, amount *big.Int, tokenID uint32, toIdx int64, deadline *big.Int) (tx *types.Transaction, err error) { log.Error("TODO") return nil, errTODO } // RollupL1UserTxERC20ETH sends an L1UserTx to the Rollup. func (c *Client) RollupL1UserTxERC20ETH( fromBJJ *babyjub.PublicKey, fromIdx int64, loadAmount *big.Int, amount *big.Int, tokenID uint32, toIdx int64, ) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() _, err = common.NewFloat16(amount) if err != nil { return nil, err } _, err = common.NewFloat16(loadAmount) if err != nil { return nil, err } nextBlock := c.nextBlock() r := nextBlock.Rollup queue := r.State.MapL1TxQueue[r.State.LastToForgeL1TxsNum] if len(queue.L1TxQueue) >= common.RollupConstMaxL1UserTx { r.State.LastToForgeL1TxsNum++ r.State.MapL1TxQueue[r.State.LastToForgeL1TxsNum] = eth.NewQueueStruct() queue = r.State.MapL1TxQueue[r.State.LastToForgeL1TxsNum] } if fromIdx > r.State.CurrentIdx { panic("l1Tx.FromIdx > r.State.CurrentIdx") } if int(tokenID)+1 > len(r.State.TokenList) { panic("l1Tx.TokenID + 1 > len(r.State.TokenList)") } toForgeL1TxsNum := r.State.LastToForgeL1TxsNum l1Tx, err := common.NewL1Tx(&common.L1Tx{ FromIdx: common.Idx(fromIdx), FromEthAddr: *c.addr, FromBJJ: fromBJJ, Amount: amount, LoadAmount: loadAmount, TokenID: common.TokenID(tokenID), ToIdx: common.Idx(toIdx), ToForgeL1TxsNum: &toForgeL1TxsNum, Position: len(queue.L1TxQueue), UserOrigin: true, }) if err != nil { return nil, err } queue.L1TxQueue = append(queue.L1TxQueue, *l1Tx) r.Events.L1UserTx = append(r.Events.L1UserTx, eth.RollupEventL1UserTx{ L1UserTx: *l1Tx, }) return r.addTransaction(newTransaction("l1UserTxERC20ETH", l1Tx)), nil } // RollupL1UserTxERC777 is the interface to call the smart contract function // func (c *Client) RollupL1UserTxERC777(fromBJJ *babyjub.PublicKey, fromIdx int64, loadAmount *big.Int, amount *big.Int, tokenID uint32, toIdx int64) (*types.Transaction, error) { // log.Error("TODO") // return nil, errTODO // } // RollupRegisterTokensCount is the interface to call the smart contract function func (c *Client) RollupRegisterTokensCount() (*big.Int, error) { log.Error("TODO") return nil, errTODO } // RollupLastForgedBatch is the interface to call the smart contract function func (c *Client) RollupLastForgedBatch() (int64, error) { c.rw.RLock() defer c.rw.RUnlock() currentBlock := c.currentBlock() e := currentBlock.Rollup return int64(len(e.State.ExitRoots)) - 1, nil } // RollupWithdrawCircuit is the interface to call the smart contract function func (c *Client) RollupWithdrawCircuit(proofA, proofC [2]*big.Int, proofB [2][2]*big.Int, tokenID uint32, numExitRoot, idx int64, amount *big.Int, instantWithdraw bool) (*types.Transaction, error) { log.Error("TODO") return nil, errTODO } // RollupWithdrawMerkleProof is the interface to call the smart contract function func (c *Client) RollupWithdrawMerkleProof(babyPubKey *babyjub.PublicKey, tokenID uint32, numExitRoot, idx int64, amount *big.Int, siblings []*big.Int, instantWithdraw bool) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() nextBlock := c.nextBlock() r := nextBlock.Rollup if int(numExitRoot) >= len(r.State.ExitRoots) { return nil, fmt.Errorf("numExitRoot >= len(r.State.ExitRoots)") } if _, ok := r.State.ExitNullifierMap[numExitRoot][idx]; ok { return nil, fmt.Errorf("exit already withdrawn") } r.State.ExitNullifierMap[numExitRoot][idx] = true type data struct { BabyPubKey *babyjub.PublicKey TokenID uint32 NumExitRoot int64 Idx int64 Amount *big.Int Siblings []*big.Int InstantWithdraw bool } tx = r.addTransaction(newTransaction("withdrawMerkleProof", data{ BabyPubKey: babyPubKey, TokenID: tokenID, NumExitRoot: numExitRoot, Idx: idx, Amount: amount, Siblings: siblings, InstantWithdraw: instantWithdraw, })) r.Events.Withdraw = append(r.Events.Withdraw, eth.RollupEventWithdraw{ Idx: uint64(idx), NumExitRoot: uint64(numExitRoot), InstantWithdraw: instantWithdraw, TxHash: tx.Hash(), }) if !instantWithdraw { w := nextBlock.WDelayer w.deposit(tx.Hash(), *c.addr, r.State.TokenList[int(tokenID)], amount) } return tx, nil } type transactionData struct { Name string Value interface{} } func newTransaction(name string, value interface{}) *types.Transaction { data, err := json.Marshal(transactionData{name, value}) if err != nil { panic(err) } return types.NewTransaction(0, ethCommon.Address{}, nil, 0, nil, data) } // RollupForgeBatch is the interface to call the smart contract function func (c *Client) RollupForgeBatch(args *eth.RollupForgeBatchArgs) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } a := c.nextBlock().Auction ok, err := a.canForge(*c.addr, a.Eth.BlockNum) if err != nil { return nil, err } if !ok { return nil, fmt.Errorf("incorrect slot") } // TODO: Verify proof // Auction err = a.forge(*c.addr) if err != nil { return nil, err } // TODO: If successful, store the tx in a successful array. // TODO: If failed, store the tx in a failed array. // TODO: Add method to move the tx to another block, reapply it there, and possibly go from successful to failed. return c.addBatch(args) } // CtlAddBatch adds forged batch to the Rollup, without checking any ZKProof func (c *Client) CtlAddBatch(args *eth.RollupForgeBatchArgs) { c.rw.Lock() defer c.rw.Unlock() if _, err := c.addBatch(args); err != nil { panic(err) } } func (c *Client) addBatch(args *eth.RollupForgeBatchArgs) (*types.Transaction, error) { nextBlock := c.nextBlock() r := nextBlock.Rollup r.State.StateRoot = args.NewStRoot if args.NewLastIdx < r.State.CurrentIdx { return nil, fmt.Errorf("args.NewLastIdx < r.State.CurrentIdx") } r.State.CurrentIdx = args.NewLastIdx r.State.ExitNullifierMap[int64(len(r.State.ExitRoots))] = make(map[int64]bool) r.State.ExitRoots = append(r.State.ExitRoots, args.NewExitRoot) if args.L1Batch { r.State.CurrentToForgeL1TxsNum++ if r.State.CurrentToForgeL1TxsNum == r.State.LastToForgeL1TxsNum { r.State.LastToForgeL1TxsNum++ r.State.MapL1TxQueue[r.State.LastToForgeL1TxsNum] = eth.NewQueueStruct() } } ethTx := r.addTransaction(newTransaction("forgebatch", args)) c.forgeBatchArgsPending[ethTx.Hash()] = &batch{*args, *c.addr} r.Events.ForgeBatch = append(r.Events.ForgeBatch, eth.RollupEventForgeBatch{ BatchNum: int64(len(r.State.ExitRoots)) - 1, EthTxHash: ethTx.Hash(), }) return ethTx, nil } // RollupAddTokenSimple is a wrapper around RollupAddToken that automatically // sets `deadlie`. func (c *Client) RollupAddTokenSimple(tokenAddress ethCommon.Address, feeAddToken *big.Int) (tx *types.Transaction, err error) { return c.RollupAddToken(tokenAddress, feeAddToken, big.NewInt(9999)) //nolint:gomnd } // RollupAddToken is the interface to call the smart contract function func (c *Client) RollupAddToken(tokenAddress ethCommon.Address, feeAddToken *big.Int, deadline *big.Int) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } nextBlock := c.nextBlock() r := nextBlock.Rollup if _, ok := r.State.TokenMap[tokenAddress]; ok { return nil, fmt.Errorf("Token %v already registered", tokenAddress) } if feeAddToken.Cmp(r.Vars.FeeAddToken) != 0 { return nil, fmt.Errorf("Expected fee: %v but got: %v", r.Vars.FeeAddToken, feeAddToken) } r.State.TokenMap[tokenAddress] = true r.State.TokenList = append(r.State.TokenList, tokenAddress) r.Events.AddToken = append(r.Events.AddToken, eth.RollupEventAddToken{TokenAddress: tokenAddress, TokenID: uint32(len(r.State.TokenList) - 1)}) return r.addTransaction(newTransaction("addtoken", tokenAddress)), nil } // RollupGetCurrentTokens is the interface to call the smart contract function func (c *Client) RollupGetCurrentTokens() (*big.Int, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return nil, errTODO } // RollupUpdateForgeL1L2BatchTimeout is the interface to call the smart contract function func (c *Client) RollupUpdateForgeL1L2BatchTimeout(newForgeL1Timeout int64) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } nextBlock := c.nextBlock() r := nextBlock.Rollup r.Vars.ForgeL1L2BatchTimeout = newForgeL1Timeout r.Events.UpdateForgeL1L2BatchTimeout = append(r.Events.UpdateForgeL1L2BatchTimeout, eth.RollupEventUpdateForgeL1L2BatchTimeout{NewForgeL1L2BatchTimeout: newForgeL1Timeout}) return r.addTransaction(newTransaction("updateForgeL1L2BatchTimeout", newForgeL1Timeout)), nil } // RollupUpdateFeeAddToken is the interface to call the smart contract function func (c *Client) RollupUpdateFeeAddToken(newFeeAddToken *big.Int) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // RollupUpdateTokensHEZ is the interface to call the smart contract function // func (c *Client) RollupUpdateTokensHEZ(newTokenHEZ ethCommon.Address) (tx *types.Transaction, err error) { // c.rw.Lock() // defer c.rw.Unlock() // cpy := c.nextBlock().copy() // defer func() { c.revertIfErr(err, cpy) }() // // log.Error("TODO") // return nil, errTODO // } // RollupUpdateGovernance is the interface to call the smart contract function // func (c *Client) RollupUpdateGovernance() (*types.Transaction, error) { // TODO (Not defined in Hermez.sol) // return nil, errTODO // } // RollupConstants returns the Constants of the Rollup Smart Contract func (c *Client) RollupConstants() (*common.RollupConstants, error) { c.rw.RLock() defer c.rw.RUnlock() return c.rollupConstants, nil } // RollupEventsByBlock returns the events in a block that happened in the Rollup Smart Contract func (c *Client) RollupEventsByBlock(blockNum int64) (*eth.RollupEvents, *ethCommon.Hash, error) { c.rw.RLock() defer c.rw.RUnlock() block, ok := c.blocks[blockNum] if !ok { return nil, nil, fmt.Errorf("Block %v doesn't exist", blockNum) } return &block.Rollup.Events, &block.Eth.Hash, nil } // RollupForgeBatchArgs returns the arguments used in a ForgeBatch call in the Rollup Smart Contract in the given transaction func (c *Client) RollupForgeBatchArgs(ethTxHash ethCommon.Hash) (*eth.RollupForgeBatchArgs, *ethCommon.Address, error) { c.rw.RLock() defer c.rw.RUnlock() batch, ok := c.forgeBatchArgs[ethTxHash] if !ok { return nil, nil, fmt.Errorf("transaction not found") } return &batch.ForgeBatchArgs, &batch.Sender, nil } // // Auction // // AuctionSetSlotDeadline is the interface to call the smart contract function func (c *Client) AuctionSetSlotDeadline(newDeadline uint8) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // AuctionGetSlotDeadline is the interface to call the smart contract function func (c *Client) AuctionGetSlotDeadline() (uint8, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return 0, errTODO } // AuctionSetOpenAuctionSlots is the interface to call the smart contract function func (c *Client) AuctionSetOpenAuctionSlots(newOpenAuctionSlots uint16) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } nextBlock := c.nextBlock() a := nextBlock.Auction a.Vars.OpenAuctionSlots = newOpenAuctionSlots a.Events.NewOpenAuctionSlots = append(a.Events.NewOpenAuctionSlots, eth.AuctionEventNewOpenAuctionSlots{NewOpenAuctionSlots: newOpenAuctionSlots}) return a.addTransaction(newTransaction("setOpenAuctionSlots", newOpenAuctionSlots)), nil } // AuctionGetOpenAuctionSlots is the interface to call the smart contract function func (c *Client) AuctionGetOpenAuctionSlots() (uint16, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return 0, errTODO } // AuctionSetClosedAuctionSlots is the interface to call the smart contract function func (c *Client) AuctionSetClosedAuctionSlots(newClosedAuctionSlots uint16) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // AuctionGetClosedAuctionSlots is the interface to call the smart contract function func (c *Client) AuctionGetClosedAuctionSlots() (uint16, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return 0, errTODO } // AuctionSetOutbidding is the interface to call the smart contract function func (c *Client) AuctionSetOutbidding(newOutbidding uint16) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // AuctionGetOutbidding is the interface to call the smart contract function func (c *Client) AuctionGetOutbidding() (uint16, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return 0, errTODO } // AuctionSetAllocationRatio is the interface to call the smart contract function func (c *Client) AuctionSetAllocationRatio(newAllocationRatio [3]uint16) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // AuctionGetAllocationRatio is the interface to call the smart contract function func (c *Client) AuctionGetAllocationRatio() ([3]uint16, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return [3]uint16{}, errTODO } // AuctionSetDonationAddress is the interface to call the smart contract function func (c *Client) AuctionSetDonationAddress(newDonationAddress ethCommon.Address) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // AuctionGetDonationAddress is the interface to call the smart contract function func (c *Client) AuctionGetDonationAddress() (*ethCommon.Address, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return nil, errTODO } // AuctionSetBootCoordinator is the interface to call the smart contract function func (c *Client) AuctionSetBootCoordinator(newBootCoordinator ethCommon.Address) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // AuctionGetBootCoordinator is the interface to call the smart contract function func (c *Client) AuctionGetBootCoordinator() (*ethCommon.Address, error) { c.rw.RLock() defer c.rw.RUnlock() currentBlock := c.currentBlock() a := currentBlock.Auction return &a.Vars.BootCoordinator, nil } // AuctionChangeDefaultSlotSetBid is the interface to call the smart contract function func (c *Client) AuctionChangeDefaultSlotSetBid(slotSet int64, newInitialMinBid *big.Int) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // AuctionSetCoordinator is the interface to call the smart contract function func (c *Client) AuctionSetCoordinator(forger ethCommon.Address, URL string) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } nextBlock := c.nextBlock() a := nextBlock.Auction a.State.Coordinators[*c.addr] = ð.Coordinator{ Forger: forger, URL: URL, } a.Events.SetCoordinator = append(a.Events.SetCoordinator, eth.AuctionEventSetCoordinator{ BidderAddress: *c.addr, ForgerAddress: forger, CoordinatorURL: URL, }) type data struct { BidderAddress ethCommon.Address ForgerAddress ethCommon.Address URL string } return a.addTransaction(newTransaction("registercoordinator", data{*c.addr, forger, URL})), nil } // AuctionIsRegisteredCoordinator is the interface to call the smart contract function func (c *Client) AuctionIsRegisteredCoordinator(forgerAddress ethCommon.Address) (bool, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return false, errTODO } // AuctionUpdateCoordinatorInfo is the interface to call the smart contract function func (c *Client) AuctionUpdateCoordinatorInfo(forgerAddress ethCommon.Address, newWithdrawAddress ethCommon.Address, newURL string) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // AuctionGetSlotNumber is the interface to call the smart contract function func (c *Client) AuctionGetSlotNumber(blockNum int64) (int64, error) { c.rw.RLock() defer c.rw.RUnlock() currentBlock := c.currentBlock() a := currentBlock.Auction return a.getSlotNumber(blockNum), nil } // AuctionGetCurrentSlotNumber is the interface to call the smart contract function func (c *Client) AuctionGetCurrentSlotNumber() (int64, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return 0, errTODO } // AuctionGetMinBidBySlot is the interface to call the smart contract function func (c *Client) AuctionGetMinBidBySlot(slot int64) (*big.Int, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return nil, errTODO } // AuctionGetDefaultSlotSetBid is the interface to call the smart contract function func (c *Client) AuctionGetDefaultSlotSetBid(slotSet uint8) (*big.Int, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return nil, errTODO } // AuctionGetSlotSet is the interface to call the smart contract function func (c *Client) AuctionGetSlotSet(slot int64) (*big.Int, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return nil, errTODO } // AuctionTokensReceived is the interface to call the smart contract function // func (c *Client) AuctionTokensReceived(operator, from, to ethCommon.Address, amount *big.Int, userData, operatorData []byte) error { // return errTODO // } // AuctionBidSimple is a wrapper around AuctionBid that automatically sets `amount` and `deadline`. func (c *Client) AuctionBidSimple(slot int64, bidAmount *big.Int) (tx *types.Transaction, err error) { return c.AuctionBid(bidAmount, slot, bidAmount, big.NewInt(99999)) //nolint:gomnd } // AuctionBid is the interface to call the smart contract function. This // implementation behaves as if any address has infinite tokens. func (c *Client) AuctionBid(amount *big.Int, slot int64, bidAmount *big.Int, deadline *big.Int) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { func() { c.revertIfErr(err, cpy) }() }() if c.addr == nil { return nil, eth.ErrAccountNil } nextBlock := c.nextBlock() a := nextBlock.Auction if slot < a.getCurrentSlotNumber()+int64(a.Vars.ClosedAuctionSlots) { return nil, errBidClosed } if slot >= a.getCurrentSlotNumber()+int64(a.Vars.ClosedAuctionSlots)+int64(a.Vars.OpenAuctionSlots) { return nil, errBidNotOpen } minBid, err := a.getMinBidBySlot(slot) if err != nil { return nil, err } if bidAmount.Cmp(minBid) == -1 { return nil, errBidBelowMin } if _, ok := a.State.Coordinators[*c.addr]; !ok { return nil, errCoordNotReg } slotState, ok := a.State.Slots[slot] if !ok { slotState = eth.NewSlotState() a.State.Slots[slot] = slotState } slotState.Bidder = *c.addr slotState.BidAmount = bidAmount a.Events.NewBid = append(a.Events.NewBid, eth.AuctionEventNewBid{Slot: slot, BidAmount: bidAmount, Bidder: *c.addr}) type data struct { Slot int64 BidAmount *big.Int Bidder ethCommon.Address } return a.addTransaction(newTransaction("bid", data{slot, bidAmount, *c.addr})), nil } // AuctionMultiBid is the interface to call the smart contract function. This // implementation behaves as if any address has infinite tokens. func (c *Client) AuctionMultiBid(amount *big.Int, startingSlot int64, endingSlot int64, slotSet [6]bool, maxBid, closedMinBid, deadline *big.Int) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // AuctionCanForge is the interface to call the smart contract function func (c *Client) AuctionCanForge(forger ethCommon.Address, blockNum int64) (bool, error) { c.rw.RLock() defer c.rw.RUnlock() currentBlock := c.currentBlock() a := currentBlock.Auction return a.canForge(forger, blockNum) } // AuctionForge is the interface to call the smart contract function func (c *Client) AuctionForge(forger ethCommon.Address) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // AuctionClaimHEZ is the interface to call the smart contract function func (c *Client) AuctionClaimHEZ() (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // AuctionGetClaimableHEZ is the interface to call the smart contract function func (c *Client) AuctionGetClaimableHEZ(bidder ethCommon.Address) (*big.Int, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return nil, errTODO } // AuctionConstants returns the Constants of the Auction Smart Contract func (c *Client) AuctionConstants() (*common.AuctionConstants, error) { c.rw.RLock() defer c.rw.RUnlock() return c.auctionConstants, nil } // AuctionEventsByBlock returns the events in a block that happened in the Auction Smart Contract func (c *Client) AuctionEventsByBlock(blockNum int64) (*eth.AuctionEvents, *ethCommon.Hash, error) { c.rw.RLock() defer c.rw.RUnlock() block, ok := c.blocks[blockNum] if !ok { return nil, nil, fmt.Errorf("Block %v doesn't exist", blockNum) } return &block.Auction.Events, &block.Eth.Hash, nil } // // WDelayer // // WDelayerGetHermezGovernanceDAOAddress is the interface to call the smart contract function func (c *Client) WDelayerGetHermezGovernanceDAOAddress() (*ethCommon.Address, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return nil, errTODO } // WDelayerSetHermezGovernanceDAOAddress is the interface to call the smart contract function func (c *Client) WDelayerSetHermezGovernanceDAOAddress(newAddress ethCommon.Address) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // WDelayerGetHermezKeeperAddress is the interface to call the smart contract function func (c *Client) WDelayerGetHermezKeeperAddress() (*ethCommon.Address, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return nil, errTODO } // WDelayerSetHermezKeeperAddress is the interface to call the smart contract function func (c *Client) WDelayerSetHermezKeeperAddress(newAddress ethCommon.Address) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // WDelayerGetWhiteHackGroupAddress is the interface to call the smart contract function func (c *Client) WDelayerGetWhiteHackGroupAddress() (*ethCommon.Address, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return nil, errTODO } // WDelayerSetWhiteHackGroupAddress is the interface to call the smart contract function func (c *Client) WDelayerSetWhiteHackGroupAddress(newAddress ethCommon.Address) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // WDelayerIsEmergencyMode is the interface to call the smart contract function func (c *Client) WDelayerIsEmergencyMode() (bool, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return false, errTODO } // WDelayerGetWithdrawalDelay is the interface to call the smart contract function func (c *Client) WDelayerGetWithdrawalDelay() (*big.Int, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return nil, errTODO } // WDelayerGetEmergencyModeStartingTime is the interface to call the smart contract function func (c *Client) WDelayerGetEmergencyModeStartingTime() (*big.Int, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return nil, errTODO } // WDelayerEnableEmergencyMode is the interface to call the smart contract function func (c *Client) WDelayerEnableEmergencyMode() (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // WDelayerChangeWithdrawalDelay is the interface to call the smart contract function func (c *Client) WDelayerChangeWithdrawalDelay(newWithdrawalDelay uint64) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } nextBlock := c.nextBlock() w := nextBlock.WDelayer w.Vars.WithdrawalDelay = newWithdrawalDelay w.Events.NewWithdrawalDelay = append(w.Events.NewWithdrawalDelay, eth.WDelayerEventNewWithdrawalDelay{WithdrawalDelay: newWithdrawalDelay}) return w.addTransaction(newTransaction("changeWithdrawalDelay", newWithdrawalDelay)), nil } // WDelayerDepositInfo is the interface to call the smart contract function func (c *Client) WDelayerDepositInfo(owner, token ethCommon.Address) (eth.DepositState, error) { c.rw.RLock() defer c.rw.RUnlock() log.Error("TODO") return eth.DepositState{}, errTODO } // WDelayerDeposit is the interface to call the smart contract function func (c *Client) WDelayerDeposit(onwer, token ethCommon.Address, amount *big.Int) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // WDelayerWithdrawal is the interface to call the smart contract function func (c *Client) WDelayerWithdrawal(owner, token ethCommon.Address) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // WDelayerEscapeHatchWithdrawal is the interface to call the smart contract function func (c *Client) WDelayerEscapeHatchWithdrawal(to, token ethCommon.Address, amount *big.Int) (tx *types.Transaction, err error) { c.rw.Lock() defer c.rw.Unlock() cpy := c.nextBlock().copy() defer func() { c.revertIfErr(err, cpy) }() if c.addr == nil { return nil, eth.ErrAccountNil } log.Error("TODO") return nil, errTODO } // WDelayerEventsByBlock returns the events in a block that happened in the WDelayer Contract func (c *Client) WDelayerEventsByBlock(blockNum int64) (*eth.WDelayerEvents, *ethCommon.Hash, error) { c.rw.RLock() defer c.rw.RUnlock() block, ok := c.blocks[blockNum] if !ok { return nil, nil, fmt.Errorf("Block %v doesn't exist", blockNum) } return &block.WDelayer.Events, &block.Eth.Hash, nil } // WDelayerConstants returns the Constants of the WDelayer Contract func (c *Client) WDelayerConstants() (*common.WDelayerConstants, error) { c.rw.RLock() defer c.rw.RUnlock() return c.wDelayerConstants, nil }