package statedb import ( "bytes" "errors" "fmt" "math/big" ethCommon "github.com/ethereum/go-ethereum/common" "github.com/hermeznetwork/hermez-node/common" "github.com/iden3/go-iden3-crypto/poseidon" "github.com/iden3/go-merkletree" "github.com/iden3/go-merkletree/db" "github.com/iden3/go-merkletree/db/memory" ) var ( // keyidx is used as key in the db to store the current Idx keyidx = []byte("idx") ffAddr = ethCommon.HexToAddress("0xffffffffffffffffffffffffffffffffffffffff") ) func (s *StateDB) resetZKInputs() { s.zki = nil s.i = 0 } // ProcessTxs process the given L1Txs & L2Txs applying the needed updates to // the StateDB depending on the transaction Type. Returns the common.ZKInputs // to generate the SnarkProof later used by the BatchBuilder, and if // cmpExitTree is set to true, returns common.ExitTreeLeaf that is later used // by the Synchronizer to update the HistoryDB. func (s *StateDB) ProcessTxs(cmpExitTree, cmpZKInputs bool, l1usertxs, l1coordinatortxs []*common.L1Tx, l2txs []*common.PoolL2Tx) (*common.ZKInputs, []*common.ExitInfo, error) { var err error var exitTree *merkletree.MerkleTree exits := make(map[common.Idx]common.Account) if s.zki != nil { return nil, nil, errors.New("Expected StateDB.zki==nil, something went wrong ans is not empty") } defer s.resetZKInputs() nTx := len(l1usertxs) + len(l1coordinatortxs) + len(l2txs) if nTx == 0 { return nil, nil, nil // TBD if return an error in the case of no Txs to process } if cmpZKInputs { s.zki = common.NewZKInputs(nTx, 24, 32) // TODO this values will be parameters of the function } // TBD if ExitTree is only in memory or stored in disk, for the moment // only needed in memory exitTree, err = merkletree.NewMerkleTree(memory.NewMemoryStorage(), s.mt.MaxLevels()) if err != nil { return nil, nil, err } // assumption: l1usertx are sorted by L1Tx.Position for _, tx := range l1usertxs { exitIdx, exitAccount, err := s.processL1Tx(exitTree, tx) if err != nil { return nil, nil, err } if exitIdx != nil && cmpExitTree { exits[*exitIdx] = *exitAccount } if s.zki != nil { s.i++ } } for _, tx := range l1coordinatortxs { exitIdx, exitAccount, err := s.processL1Tx(exitTree, tx) if err != nil { return nil, nil, err } if exitIdx != nil && cmpExitTree { exits[*exitIdx] = *exitAccount } if s.zki != nil { s.i++ } } for _, tx := range l2txs { exitIdx, exitAccount, err := s.processL2Tx(exitTree, tx) if err != nil { return nil, nil, err } if exitIdx != nil && cmpExitTree { exits[*exitIdx] = *exitAccount } if s.zki != nil { s.i++ } } if !cmpExitTree && !cmpZKInputs { return nil, nil, nil } // once all txs processed (exitTree root frozen), for each leaf // generate common.ExitInfo data var exitInfos []*common.ExitInfo for exitIdx, exitAccount := range exits { // 0. generate MerkleProof p, err := exitTree.GenerateCircomVerifierProof(exitIdx.BigInt(), nil) if err != nil { return nil, nil, err } // 1. compute nullifier exitAccStateValue, err := exitAccount.HashValue() if err != nil { return nil, nil, err } nullifier, err := poseidon.Hash([]*big.Int{ exitAccStateValue, big.NewInt(int64(s.currentBatch)), exitTree.Root().BigInt(), }) if err != nil { return nil, nil, err } // 2. generate common.ExitInfo ei := &common.ExitInfo{ AccountIdx: exitIdx, MerkleProof: p, Nullifier: nullifier, Balance: exitAccount.Balance, } exitInfos = append(exitInfos, ei) } if !cmpZKInputs { return nil, exitInfos, nil } // compute last ZKInputs parameters s.zki.OldLastIdx = (s.idx - 1).BigInt() s.zki.OldStateRoot = s.mt.Root().BigInt() s.zki.GlobalChainID = big.NewInt(0) // TODO, 0: ethereum, get this from config file // zki.FeeIdxs = ? // TODO, this will be get from the config file tokenIDs, err := s.getTokenIDsBigInt(l1usertxs, l1coordinatortxs, l2txs) if err != nil { return nil, nil, err } s.zki.FeePlanTokens = tokenIDs // s.zki.ISInitStateRootFee = s.mt.Root().BigInt() // compute fees // once fees are computed // return exitInfos, so Synchronizer will be able to store it into // HistoryDB for the concrete BatchNum return s.zki, exitInfos, nil } // getTokenIDsBigInt returns the list of TokenIDs in *big.Int format func (s *StateDB) getTokenIDsBigInt(l1usertxs, l1coordinatortxs []*common.L1Tx, l2txs []*common.PoolL2Tx) ([]*big.Int, error) { tokenIDs := make(map[common.TokenID]bool) for i := 0; i < len(l1usertxs); i++ { tokenIDs[l1usertxs[i].TokenID] = true } for i := 0; i < len(l1coordinatortxs); i++ { tokenIDs[l1coordinatortxs[i].TokenID] = true } for i := 0; i < len(l2txs); i++ { // as L2Tx does not have parameter TokenID, get it from the // AccountsDB (in the StateDB) acc, err := s.GetAccount(l2txs[i].ToIdx) if err != nil { return nil, err } tokenIDs[acc.TokenID] = true } var tBI []*big.Int for t := range tokenIDs { tBI = append(tBI, t.BigInt()) } return tBI, nil } // processL1Tx process the given L1Tx applying the needed updates to the // StateDB depending on the transaction Type. func (s *StateDB) processL1Tx(exitTree *merkletree.MerkleTree, tx *common.L1Tx) (*common.Idx, *common.Account, error) { // ZKInputs if s.zki != nil { // Txs // s.zki.TxCompressedData[s.i] = tx.TxCompressedData() // uncomment once L1Tx.TxCompressedData is ready s.zki.FromIdx[s.i] = tx.FromIdx.BigInt() s.zki.ToIdx[s.i] = tx.ToIdx.BigInt() s.zki.OnChain[s.i] = big.NewInt(1) // L1Txs s.zki.LoadAmountF[s.i] = tx.LoadAmount s.zki.FromEthAddr[s.i] = common.EthAddrToBigInt(tx.FromEthAddr) if tx.FromBJJ != nil { s.zki.FromBJJCompressed[s.i] = common.BJJCompressedTo256BigInts(tx.FromBJJ.Compress()) } // Intermediate States s.zki.ISOnChain[s.i] = big.NewInt(1) } switch tx.Type { case common.TxTypeForceTransfer, common.TxTypeTransfer: // go to the MT account of sender and receiver, and update balance // & nonce err := s.applyTransfer(tx.Tx()) if err != nil { return nil, nil, err } case common.TxTypeCreateAccountDeposit: // add new account to the MT, update balance of the MT account err := s.applyCreateAccount(tx) if err != nil { return nil, nil, err } if s.zki != nil { s.zki.AuxFromIdx[s.i] = s.idx.BigInt() // last s.idx is the one used for creating the new account s.zki.NewAccount[s.i] = big.NewInt(1) } case common.TxTypeDeposit: // update balance of the MT account err := s.applyDeposit(tx, false) if err != nil { return nil, nil, err } case common.TxTypeDepositTransfer: // update balance in MT account, update balance & nonce of sender // & receiver err := s.applyDeposit(tx, true) if err != nil { return nil, nil, err } case common.TxTypeCreateAccountDepositTransfer: // add new account to the merkletree, update balance in MT account, // update balance & nonce of sender & receiver err := s.applyCreateAccount(tx) if err != nil { return nil, nil, err } err = s.applyTransfer(tx.Tx()) if err != nil { return nil, nil, err } if s.zki != nil { s.zki.AuxFromIdx[s.i] = s.idx.BigInt() // last s.idx is the one used for creating the new account s.zki.NewAccount[s.i] = big.NewInt(1) } case common.TxTypeExit: // execute exit flow exitAccount, err := s.applyExit(exitTree, tx.Tx()) if err != nil { return nil, nil, err } return &tx.FromIdx, exitAccount, nil default: } return nil, nil, nil } // processL2Tx process the given L2Tx applying the needed updates to // the StateDB depending on the transaction Type. func (s *StateDB) processL2Tx(exitTree *merkletree.MerkleTree, tx *common.PoolL2Tx) (*common.Idx, *common.Account, error) { // ZKInputs if s.zki != nil { // Txs // s.zki.TxCompressedData[s.i] = tx.TxCompressedData() // uncomment once L1Tx.TxCompressedData is ready // s.zki.TxCompressedDataV2[s.i] = tx.TxCompressedDataV2() // uncomment once L2Tx.TxCompressedDataV2 is ready s.zki.FromIdx[s.i] = tx.FromIdx.BigInt() s.zki.ToIdx[s.i] = tx.ToIdx.BigInt() // fill AuxToIdx if needed if tx.ToIdx == common.Idx(0) { // Idx not set in the Tx, get it from DB through ToEthAddr or ToBJJ var idx common.Idx if !bytes.Equal(tx.ToEthAddr.Bytes(), ffAddr.Bytes()) { idx = s.getIdxByEthAddr(tx.ToEthAddr) if idx == common.Idx(0) { return nil, nil, fmt.Errorf("Idx can not be found for given tx.FromEthAddr") } } else { idx = s.getIdxByBJJ(tx.ToBJJ) if idx == common.Idx(0) { return nil, nil, fmt.Errorf("Idx can not be found for given tx.FromBJJ") } } s.zki.AuxToIdx[s.i] = idx.BigInt() } s.zki.ToBJJAy[s.i] = tx.ToBJJ.Y s.zki.ToEthAddr[s.i] = common.EthAddrToBigInt(tx.ToEthAddr) s.zki.OnChain[s.i] = big.NewInt(0) s.zki.NewAccount[s.i] = big.NewInt(0) // L2Txs // s.zki.RqOffset[s.i] = // TODO // s.zki.RqTxCompressedDataV2[s.i] = // TODO // s.zki.RqToEthAddr[s.i] = common.EthAddrToBigInt(tx.RqToEthAddr) // TODO // s.zki.RqToBJJAy[s.i] = tx.ToBJJ.Y // TODO s.zki.S[s.i] = tx.Signature.S s.zki.R8x[s.i] = tx.Signature.R8.X s.zki.R8y[s.i] = tx.Signature.R8.Y } switch tx.Type { case common.TxTypeTransfer: // go to the MT account of sender and receiver, and update // balance & nonce err := s.applyTransfer(tx.Tx()) if err != nil { return nil, nil, err } case common.TxTypeExit: // execute exit flow exitAccount, err := s.applyExit(exitTree, tx.Tx()) if err != nil { return nil, nil, err } return &tx.FromIdx, exitAccount, nil default: } return nil, nil, nil } // applyCreateAccount creates a new account in the account of the depositer, it // stores the deposit value func (s *StateDB) applyCreateAccount(tx *common.L1Tx) error { account := &common.Account{ TokenID: tx.TokenID, Nonce: 0, Balance: tx.LoadAmount, PublicKey: tx.FromBJJ, EthAddr: tx.FromEthAddr, } _, err := s.CreateAccount(common.Idx(s.idx+1), account) if err != nil { return err } s.idx = s.idx + 1 return s.setIdx(s.idx) } // applyDeposit updates the balance in the account of the depositer, if // andTransfer parameter is set to true, the method will also apply the // Transfer of the L1Tx/DepositTransfer func (s *StateDB) applyDeposit(tx *common.L1Tx, transfer bool) error { // deposit the tx.LoadAmount into the sender account accSender, err := s.GetAccount(tx.FromIdx) if err != nil { return err } accSender.Balance = new(big.Int).Add(accSender.Balance, tx.LoadAmount) // in case that the tx is a L1Tx>DepositTransfer if transfer { accReceiver, err := s.GetAccount(tx.ToIdx) if err != nil { return err } // subtract amount to the sender accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.Amount) // add amount to the receiver accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.Amount) // update receiver account in localStateDB _, err = s.UpdateAccount(tx.ToIdx, accReceiver) if err != nil { return err } } // update sender account in localStateDB _, err = s.UpdateAccount(tx.FromIdx, accSender) if err != nil { return err } return nil } // applyTransfer updates the balance & nonce in the account of the sender, and // the balance in the account of the receiver func (s *StateDB) applyTransfer(tx *common.Tx) error { // get sender and receiver accounts from localStateDB accSender, err := s.GetAccount(tx.FromIdx) if err != nil { return err } accReceiver, err := s.GetAccount(tx.ToIdx) if err != nil { return err } // increment nonce accSender.Nonce++ // subtract amount to the sender accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.Amount) // add amount to the receiver accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.Amount) // update receiver account in localStateDB _, err = s.UpdateAccount(tx.ToIdx, accReceiver) if err != nil { return err } // update sender account in localStateDB _, err = s.UpdateAccount(tx.FromIdx, accSender) if err != nil { return err } return nil } func (s *StateDB) applyExit(exitTree *merkletree.MerkleTree, tx *common.Tx) (*common.Account, error) { // 0. subtract tx.Amount from current Account in StateMT // add the tx.Amount into the Account (tx.FromIdx) in the ExitMT acc, err := s.GetAccount(tx.FromIdx) if err != nil { return nil, err } acc.Balance = new(big.Int).Sub(acc.Balance, tx.Amount) _, err = s.UpdateAccount(tx.FromIdx, acc) if err != nil { return nil, err } exitAccount, err := getAccountInTreeDB(exitTree.DB(), tx.FromIdx) if err == db.ErrNotFound { // 1a. if idx does not exist in exitTree: // add new leaf 'ExitTreeLeaf', where ExitTreeLeaf.Balance = exitAmount (exitAmount=tx.Amount) exitAccount := &common.Account{ TokenID: acc.TokenID, Nonce: common.Nonce(1), Balance: tx.Amount, PublicKey: acc.PublicKey, EthAddr: acc.EthAddr, } _, err = createAccountInTreeDB(exitTree.DB(), exitTree, tx.FromIdx, exitAccount) return exitAccount, err } else if err != nil { return exitAccount, err } // 1b. if idx already exist in exitTree: // update account, where account.Balance += exitAmount exitAccount.Balance = new(big.Int).Add(exitAccount.Balance, tx.Amount) _, err = updateAccountInTreeDB(exitTree.DB(), exitTree, tx.FromIdx, exitAccount) return exitAccount, err } // getIdx returns the stored Idx from the localStateDB, which is the last Idx // used for an Account in the localStateDB. func (s *StateDB) getIdx() (common.Idx, error) { idxBytes, err := s.DB().Get(keyidx) if err == db.ErrNotFound { return 0, nil } if err != nil { return 0, err } return common.IdxFromBytes(idxBytes[:4]) } // setIdx stores Idx in the localStateDB func (s *StateDB) setIdx(idx common.Idx) error { tx, err := s.DB().NewTx() if err != nil { return err } err = tx.Put(keyidx, idx.Bytes()) if err != nil { return err } if err := tx.Commit(); err != nil { return err } return nil }