// Package common contains all the common data structures used at the // hermez-node, zk.go contains the zkSnark inputs used to generate the proof package common import ( "crypto/sha256" "encoding/binary" "encoding/json" "fmt" "math/big" "github.com/hermeznetwork/hermez-node/log" cryptoConstants "github.com/iden3/go-iden3-crypto/constants" "github.com/iden3/go-merkletree" "github.com/mitchellh/mapstructure" ) // ZKMetadata contains ZKInputs metadata that is not used directly in the // ZKInputs result, but to calculate values for Hash check type ZKMetadata struct { // Circuit parameters // absolute maximum of L1 or L2 transactions allowed NTx uint32 // merkle tree depth NLevels uint32 MaxLevels uint32 // absolute maximum of L1 transaction allowed MaxL1Tx uint32 // total txs allowed MaxTx uint32 // Maximum number of Idxs where Fees can be send in a batch (currently // is constant for all circuits: 64) MaxFeeIdxs uint32 L1TxsData [][]byte L1TxsDataAvailability [][]byte L2TxsData [][]byte ChainID uint16 NewLastIdxRaw Idx NewStateRootRaw *merkletree.Hash NewExitRootRaw *merkletree.Hash } // ZKInputs represents the inputs that will be used to generate the zkSNARK proof type ZKInputs struct { Metadata ZKMetadata `json:"-"` // // General // // CurrentNumBatch is the current batch number processed CurrentNumBatch *big.Int `json:"currentNumBatch"` // uint32 // inputs for final `hashGlobalInputs` // OldLastIdx is the last index assigned to an account OldLastIdx *big.Int `json:"oldLastIdx"` // uint64 (max nLevels bits) // OldStateRoot is the current state merkle tree root OldStateRoot *big.Int `json:"oldStateRoot"` // Hash // GlobalChainID is the blockchain ID (0 for Ethereum mainnet). This value can be get from the smart contract. GlobalChainID *big.Int `json:"globalChainID"` // uint16 // FeeIdxs is an array of merkle tree indexes where the coordinator will receive the accumulated fees FeeIdxs []*big.Int `json:"feeIdxs"` // uint64 (max nLevels bits), len: [maxFeeIdxs] // accumulate fees // FeePlanTokens contains all the tokenIDs for which the fees are being accumulated FeePlanTokens []*big.Int `json:"feePlanTokens"` // uint32 (max 32 bits), len: [maxFeeIdxs] // // Txs (L1&L2) // // transaction L1-L2 // TxCompressedData TxCompressedData []*big.Int `json:"txCompressedData"` // big.Int (max 251 bits), len: [nTx] // TxCompressedDataV2, only used in L2Txs, in L1Txs is set to 0 TxCompressedDataV2 []*big.Int `json:"txCompressedDataV2"` // big.Int (max 193 bits), len: [nTx] // MaxNumBatch is the maximum allowed batch number when the transaction // can be processed MaxNumBatch []*big.Int `json:"maxNumBatch"` // uint32 // FromIdx FromIdx []*big.Int `json:"fromIdx"` // uint64 (max nLevels bits), len: [nTx] // AuxFromIdx is the Idx of the new created account which is consequence of a L1CreateAccountTx AuxFromIdx []*big.Int `json:"auxFromIdx"` // uint64 (max nLevels bits), len: [nTx] // ToIdx ToIdx []*big.Int `json:"toIdx"` // uint64 (max nLevels bits), len: [nTx] // AuxToIdx is the Idx of the Tx that has 'toIdx==0', is the coordinator who will find which Idx corresponds to the 'toBJJAy' or 'toEthAddr' AuxToIdx []*big.Int `json:"auxToIdx"` // uint64 (max nLevels bits), len: [nTx] // ToBJJAy ToBJJAy []*big.Int `json:"toBjjAy"` // big.Int, len: [nTx] // ToEthAddr ToEthAddr []*big.Int `json:"toEthAddr"` // ethCommon.Address, len: [nTx] // OnChain determines if is L1 (1/true) or L2 (0/false) OnChain []*big.Int `json:"onChain"` // bool, len: [nTx] // // Txs/L1Txs // // NewAccount boolean (0/1) flag set 'true' when L1 tx creates a new account (fromIdx==0) NewAccount []*big.Int `json:"newAccount"` // bool, len: [nTx] // LoadAmountF encoded as float16 LoadAmountF []*big.Int `json:"loadAmountF"` // uint16, len: [nTx] // FromEthAddr FromEthAddr []*big.Int `json:"fromEthAddr"` // ethCommon.Address, len: [nTx] // FromBJJCompressed boolean encoded where each value is a *big.Int FromBJJCompressed [][256]*big.Int `json:"fromBjjCompressed"` // bool array, len: [nTx][256] // // Txs/L2Txs // // RqOffset relative transaction position to be linked. Used to perform atomic transactions. RqOffset []*big.Int `json:"rqOffset"` // uint8 (max 3 bits), len: [nTx] // transaction L2 request data // RqTxCompressedDataV2 RqTxCompressedDataV2 []*big.Int `json:"rqTxCompressedDataV2"` // big.Int (max 251 bits), len: [nTx] // RqToEthAddr RqToEthAddr []*big.Int `json:"rqToEthAddr"` // ethCommon.Address, len: [nTx] // RqToBJJAy RqToBJJAy []*big.Int `json:"rqToBjjAy"` // big.Int, len: [nTx] // transaction L2 signature // S S []*big.Int `json:"s"` // big.Int, len: [nTx] // R8x R8x []*big.Int `json:"r8x"` // big.Int, len: [nTx] // R8y R8y []*big.Int `json:"r8y"` // big.Int, len: [nTx] // // State MerkleTree Leafs transitions // // state 1, value of the sender (from) account leaf TokenID1 []*big.Int `json:"tokenID1"` // uint32, len: [nTx] Nonce1 []*big.Int `json:"nonce1"` // uint64 (max 40 bits), len: [nTx] Sign1 []*big.Int `json:"sign1"` // bool, len: [nTx] Ay1 []*big.Int `json:"ay1"` // big.Int, len: [nTx] Balance1 []*big.Int `json:"balance1"` // big.Int (max 192 bits), len: [nTx] EthAddr1 []*big.Int `json:"ethAddr1"` // ethCommon.Address, len: [nTx] Siblings1 [][]*big.Int `json:"siblings1"` // big.Int, len: [nTx][nLevels + 1] // Required for inserts and deletes, values of the CircomProcessorProof (smt insert proof) IsOld0_1 []*big.Int `json:"isOld0_1"` // bool, len: [nTx] OldKey1 []*big.Int `json:"oldKey1"` // uint64 (max 40 bits), len: [nTx] OldValue1 []*big.Int `json:"oldValue1"` // Hash, len: [nTx] // state 2, value of the receiver (to) account leaf // if Tx is an Exit, state 2 is used for the Exit Merkle Proof TokenID2 []*big.Int `json:"tokenID2"` // uint32, len: [nTx] Nonce2 []*big.Int `json:"nonce2"` // uint64 (max 40 bits), len: [nTx] Sign2 []*big.Int `json:"sign2"` // bool, len: [nTx] Ay2 []*big.Int `json:"ay2"` // big.Int, len: [nTx] Balance2 []*big.Int `json:"balance2"` // big.Int (max 192 bits), len: [nTx] EthAddr2 []*big.Int `json:"ethAddr2"` // ethCommon.Address, len: [nTx] Siblings2 [][]*big.Int `json:"siblings2"` // big.Int, len: [nTx][nLevels + 1] // newExit determines if an exit transaction has to create a new leaf in the exit tree NewExit []*big.Int `json:"newExit"` // bool, len: [nTx] // Required for inserts and deletes, values of the CircomProcessorProof (smt insert proof) IsOld0_2 []*big.Int `json:"isOld0_2"` // bool, len: [nTx] OldKey2 []*big.Int `json:"oldKey2"` // uint64 (max 40 bits), len: [nTx] OldValue2 []*big.Int `json:"oldValue2"` // Hash, len: [nTx] // state 3, value of the account leaf receiver of the Fees // fee tx // State fees TokenID3 []*big.Int `json:"tokenID3"` // uint32, len: [maxFeeIdxs] Nonce3 []*big.Int `json:"nonce3"` // uint64 (max 40 bits), len: [maxFeeIdxs] Sign3 []*big.Int `json:"sign3"` // bool, len: [maxFeeIdxs] Ay3 []*big.Int `json:"ay3"` // big.Int, len: [maxFeeIdxs] Balance3 []*big.Int `json:"balance3"` // big.Int (max 192 bits), len: [maxFeeIdxs] EthAddr3 []*big.Int `json:"ethAddr3"` // ethCommon.Address, len: [maxFeeIdxs] Siblings3 [][]*big.Int `json:"siblings3"` // Hash, len: [maxFeeIdxs][nLevels + 1] // // Intermediate States // // Intermediate States to parallelize witness computation // Note: the Intermediate States (IS) of the last transaction does not // exist. Meaning that transaction 3 (4th) will fill the parameters // FromIdx[3] and ISOnChain[3], but last transaction (nTx-1) will fill // FromIdx[nTx-1] but will not fill ISOnChain. That's why IS have // length of nTx-1, while the other parameters have length of nTx. // Last transaction does not need intermediate state since its output // will not be used. // decode-tx // ISOnChain indicates if tx is L1 (true (1)) or L2 (false (0)) ISOnChain []*big.Int `json:"imOnChain"` // bool, len: [nTx - 1] // ISOutIdx current index account for each Tx // Contains the index of the created account in case that the tx is of // account creation type. ISOutIdx []*big.Int `json:"imOutIdx"` // uint64 (max nLevels bits), len: [nTx - 1] // rollup-tx // ISStateRoot root at the moment of the Tx (once processed), the state root value once the Tx is processed into the state tree ISStateRoot []*big.Int `json:"imStateRoot"` // Hash, len: [nTx - 1] // ISExitTree root at the moment (once processed) of the Tx the value // once the Tx is processed into the exit tree ISExitRoot []*big.Int `json:"imExitRoot"` // Hash, len: [nTx - 1] // ISAccFeeOut accumulated fees once the Tx is processed. Contains the // array of FeeAccount Balances at each moment of each Tx processed. ISAccFeeOut [][]*big.Int `json:"imAccFeeOut"` // big.Int, len: [nTx - 1][maxFeeIdxs] // fee-tx // ISStateRootFee root at the moment of the Tx (once processed), the state root value once the Tx is processed into the state tree ISStateRootFee []*big.Int `json:"imStateRootFee"` // Hash, len: [maxFeeIdxs - 1] // ISInitStateRootFee state root once all L1-L2 tx are processed (before computing the fees-tx) ISInitStateRootFee *big.Int `json:"imInitStateRootFee"` // Hash // ISFinalAccFee final accumulated fees (before computing the fees-tx). // Contains the final values of the ISAccFeeOut parameter ISFinalAccFee []*big.Int `json:"imFinalAccFee"` // big.Int, len: [maxFeeIdxs - 1] } func bigIntsToStrings(v interface{}) interface{} { switch c := v.(type) { case *big.Int: return c.String() case []*big.Int: r := make([]interface{}, len(c)) for i := range c { r[i] = bigIntsToStrings(c[i]) } return r case [256]*big.Int: r := make([]interface{}, len(c)) for i := range c { r[i] = bigIntsToStrings(c[i]) } return r case [][]*big.Int: r := make([]interface{}, len(c)) for i := range c { r[i] = bigIntsToStrings(c[i]) } return r case [][256]*big.Int: r := make([]interface{}, len(c)) for i := range c { r[i] = bigIntsToStrings(c[i]) } return r case map[string]interface{}: // avoid printing a warning when there is a struct type default: log.Warnf("bigIntsToStrings unexpected type: %T\n", v) } return nil } // MarshalJSON implements the json marshaler for ZKInputs func (z ZKInputs) MarshalJSON() ([]byte, error) { var m map[string]interface{} dec, err := mapstructure.NewDecoder(&mapstructure.DecoderConfig{ TagName: "json", Result: &m, }) if err != nil { return nil, err } err = dec.Decode(z) if err != nil { return nil, err } for k, v := range m { m[k] = bigIntsToStrings(v) } return json.Marshal(m) } // NewZKInputs returns a pointer to an initialized struct of ZKInputs func NewZKInputs(nTx, maxL1Tx, maxTx, maxFeeIdxs, nLevels uint32, currentNumBatch *big.Int) *ZKInputs { zki := &ZKInputs{} zki.Metadata.NTx = nTx zki.Metadata.MaxFeeIdxs = maxFeeIdxs zki.Metadata.NLevels = nLevels zki.Metadata.MaxLevels = uint32(48) //nolint:gomnd zki.Metadata.MaxL1Tx = maxL1Tx zki.Metadata.MaxTx = maxTx // General zki.CurrentNumBatch = currentNumBatch zki.OldLastIdx = big.NewInt(0) zki.OldStateRoot = big.NewInt(0) zki.GlobalChainID = big.NewInt(0) // TODO pass by parameter zki.FeeIdxs = newSlice(maxFeeIdxs) zki.FeePlanTokens = newSlice(maxFeeIdxs) // Txs zki.TxCompressedData = newSlice(nTx) zki.TxCompressedDataV2 = newSlice(nTx) zki.MaxNumBatch = newSlice(nTx) zki.FromIdx = newSlice(nTx) zki.AuxFromIdx = newSlice(nTx) zki.ToIdx = newSlice(nTx) zki.AuxToIdx = newSlice(nTx) zki.ToBJJAy = newSlice(nTx) zki.ToEthAddr = newSlice(nTx) zki.OnChain = newSlice(nTx) zki.NewAccount = newSlice(nTx) // L1 zki.LoadAmountF = newSlice(nTx) zki.FromEthAddr = newSlice(nTx) zki.FromBJJCompressed = make([][256]*big.Int, nTx) for i := 0; i < len(zki.FromBJJCompressed); i++ { // zki.FromBJJCompressed[i] = newSlice(256) for j := 0; j < 256; j++ { zki.FromBJJCompressed[i][j] = big.NewInt(0) } } // L2 zki.RqOffset = newSlice(nTx) zki.RqTxCompressedDataV2 = newSlice(nTx) zki.RqToEthAddr = newSlice(nTx) zki.RqToBJJAy = newSlice(nTx) zki.S = newSlice(nTx) zki.R8x = newSlice(nTx) zki.R8y = newSlice(nTx) // State MerkleTree Leafs transitions zki.TokenID1 = newSlice(nTx) zki.Nonce1 = newSlice(nTx) zki.Sign1 = newSlice(nTx) zki.Ay1 = newSlice(nTx) zki.Balance1 = newSlice(nTx) zki.EthAddr1 = newSlice(nTx) zki.Siblings1 = make([][]*big.Int, nTx) for i := 0; i < len(zki.Siblings1); i++ { zki.Siblings1[i] = newSlice(nLevels + 1) } zki.IsOld0_1 = newSlice(nTx) zki.OldKey1 = newSlice(nTx) zki.OldValue1 = newSlice(nTx) zki.TokenID2 = newSlice(nTx) zki.Nonce2 = newSlice(nTx) zki.Sign2 = newSlice(nTx) zki.Ay2 = newSlice(nTx) zki.Balance2 = newSlice(nTx) zki.EthAddr2 = newSlice(nTx) zki.Siblings2 = make([][]*big.Int, nTx) for i := 0; i < len(zki.Siblings2); i++ { zki.Siblings2[i] = newSlice(nLevels + 1) } zki.NewExit = newSlice(nTx) zki.IsOld0_2 = newSlice(nTx) zki.OldKey2 = newSlice(nTx) zki.OldValue2 = newSlice(nTx) zki.TokenID3 = newSlice(maxFeeIdxs) zki.Nonce3 = newSlice(maxFeeIdxs) zki.Sign3 = newSlice(maxFeeIdxs) zki.Ay3 = newSlice(maxFeeIdxs) zki.Balance3 = newSlice(maxFeeIdxs) zki.EthAddr3 = newSlice(maxFeeIdxs) zki.Siblings3 = make([][]*big.Int, maxFeeIdxs) for i := 0; i < len(zki.Siblings3); i++ { zki.Siblings3[i] = newSlice(nLevels + 1) } // Intermediate States zki.ISOnChain = newSlice(nTx - 1) zki.ISOutIdx = newSlice(nTx - 1) zki.ISStateRoot = newSlice(nTx - 1) zki.ISExitRoot = newSlice(nTx - 1) zki.ISAccFeeOut = make([][]*big.Int, nTx-1) for i := 0; i < len(zki.ISAccFeeOut); i++ { zki.ISAccFeeOut[i] = newSlice(maxFeeIdxs) } zki.ISStateRootFee = newSlice(maxFeeIdxs - 1) zki.ISInitStateRootFee = big.NewInt(0) zki.ISFinalAccFee = newSlice(maxFeeIdxs - 1) return zki } // newSlice returns a []*big.Int slice of length n with values initialized at // 0. // Is used to initialize all *big.Ints of the ZKInputs data structure, so when // the transactions are processed and the ZKInputs filled, there is no need to // set all the elements, and if a transaction does not use a parameter, can be // leaved as it is in the ZKInputs, as will be 0, so later when using the // ZKInputs to generate the zkSnark proof there is no 'nil'/'null' values. func newSlice(n uint32) []*big.Int { s := make([]*big.Int, n) for i := 0; i < len(s); i++ { s[i] = big.NewInt(0) } return s } // HashGlobalData returns the HashGlobalData func (z ZKInputs) HashGlobalData() (*big.Int, error) { b, err := z.ToHashGlobalData() if err != nil { return nil, err } h := sha256.New() _, err = h.Write(b) if err != nil { return nil, err } r := new(big.Int).SetBytes(h.Sum(nil)) v := r.Mod(r, cryptoConstants.Q) return v, nil } // ToHashGlobalData returns the data to be hashed in the method HashGlobalData func (z ZKInputs) ToHashGlobalData() ([]byte, error) { var b []byte bytesMaxLevels := int(z.Metadata.MaxLevels / 8) //nolint:gomnd // [MAX_NLEVELS bits] oldLastIdx oldLastIdx := make([]byte, bytesMaxLevels) copy(oldLastIdx, z.OldLastIdx.Bytes()) b = append(b, SwapEndianness(oldLastIdx)...) // [MAX_NLEVELS bits] newLastIdx newLastIdx := make([]byte, bytesMaxLevels) newLastIdxBytes, err := z.Metadata.NewLastIdxRaw.Bytes() if err != nil { return nil, err } copy(newLastIdx, newLastIdxBytes[len(newLastIdxBytes)-bytesMaxLevels:]) b = append(b, newLastIdx...) // [256 bits] oldStRoot oldStateRoot := make([]byte, 32) copy(oldStateRoot, z.OldStateRoot.Bytes()) b = append(b, oldStateRoot...) // [256 bits] newStateRoot newStateRoot := make([]byte, 32) copy(newStateRoot, z.Metadata.NewStateRootRaw.Bytes()) b = append(b, newStateRoot...) // [256 bits] newExitRoot newExitRoot := make([]byte, 32) copy(newExitRoot, z.Metadata.NewExitRootRaw.Bytes()) b = append(b, newExitRoot...) // [MAX_L1_TX * (2 * MAX_NLEVELS + 480) bits] L1TxsData l1TxDataLen := (2*z.Metadata.MaxLevels + 480) l1TxsDataLen := (z.Metadata.MaxL1Tx * l1TxDataLen) l1TxsData := make([]byte, l1TxsDataLen/8) //nolint:gomnd for i := 0; i < len(z.Metadata.L1TxsData); i++ { dataLen := int(l1TxDataLen) / 8 //nolint:gomnd pos0 := i * dataLen pos1 := i*dataLen + dataLen copy(l1TxsData[pos0:pos1], z.Metadata.L1TxsData[i]) } b = append(b, l1TxsData...) var l1TxsDataAvailability []byte for i := 0; i < len(z.Metadata.L1TxsDataAvailability); i++ { l1TxsDataAvailability = append(l1TxsDataAvailability, z.Metadata.L1TxsDataAvailability[i]...) } b = append(b, l1TxsDataAvailability...) // [MAX_TX*(2*NLevels + 24) bits] L2TxsData var l2TxsData []byte l2TxDataLen := 2*z.Metadata.NLevels + 24 //nolint:gomnd l2TxsDataLen := (z.Metadata.MaxTx * l2TxDataLen) expectedL2TxsDataLen := l2TxsDataLen / 8 //nolint:gomnd for i := 0; i < len(z.Metadata.L2TxsData); i++ { l2TxsData = append(l2TxsData, z.Metadata.L2TxsData[i]...) } if len(l2TxsData) > int(expectedL2TxsDataLen) { return nil, fmt.Errorf("len(l2TxsData): %d, expected: %d", len(l2TxsData), expectedL2TxsDataLen) } b = append(b, l2TxsData...) l2TxsPadding := make([]byte, (int(z.Metadata.MaxTx)-len(z.Metadata.L1TxsDataAvailability)-len(z.Metadata.L2TxsData))*int(l2TxDataLen)/8) //nolint:gomnd b = append(b, l2TxsPadding...) // [NLevels * MAX_TOKENS_FEE bits] feeTxsData for i := 0; i < len(z.FeeIdxs); i++ { var r []byte padding := make([]byte, bytesMaxLevels/4) //nolint:gomnd r = append(r, padding...) feeIdx := make([]byte, bytesMaxLevels/2) //nolint:gomnd feeIdxBytes := z.FeeIdxs[i].Bytes() copy(feeIdx[len(feeIdx)-len(feeIdxBytes):], feeIdxBytes[:]) r = append(r, feeIdx...) b = append(b, r...) } // [16 bits] chainID var chainID [2]byte binary.BigEndian.PutUint16(chainID[:], z.Metadata.ChainID) b = append(b, chainID[:]...) // [32 bits] currentNumBatch currNumBatchBytes := z.CurrentNumBatch.Bytes() var currNumBatch [4]byte copy(currNumBatch[4-len(currNumBatchBytes):], currNumBatchBytes) b = append(b, currNumBatch[:]...) return b, nil }