package common import ( "bytes" "encoding/binary" "fmt" "math" "math/big" eth "github.com/ethereum/go-ethereum/common" cryptoUtils "github.com/iden3/go-iden3-crypto/utils" ) // Leaf is the data structure stored in the Leaf of the MerkleTree type Leaf struct { TokenID TokenID Nonce uint64 // max of 40 bits used Balance *big.Int // max of 192 bits used Ax *big.Int Ay *big.Int EthAddr eth.Address } // Bytes returns the bytes representing the Leaf, in a way that each BigInt is represented by 32 bytes, in spite of the BigInt could be represented in less bytes (due a small big.Int), so in this way each BigInt is always 32 bytes and can be automatically parsed from a byte array. func (l *Leaf) Bytes() ([32 * 5]byte, error) { var b [32 * 5]byte if l.Nonce >= uint64(math.Pow(2, 40)) { return b, fmt.Errorf("%s Nonce", ErrNumOverflow) } if len(l.Balance.Bytes()) > 24 { return b, fmt.Errorf("%s Balance", ErrNumOverflow) } var tokenIDBytes [4]byte binary.LittleEndian.PutUint32(tokenIDBytes[:], uint32(l.TokenID)) var nonceBytes [8]byte binary.LittleEndian.PutUint64(nonceBytes[:], l.Nonce) copy(b[0:4], tokenIDBytes[:]) copy(b[4:9], nonceBytes[:]) copy(b[32:64], SwapEndianness(l.Balance.Bytes())) // SwapEndianness, as big.Int uses BigEndian copy(b[64:96], SwapEndianness(l.Ax.Bytes())) copy(b[96:128], SwapEndianness(l.Ay.Bytes())) copy(b[128:148], l.EthAddr.Bytes()) return b, nil } // BigInts returns the [5]*big.Int, where each *big.Int is inside the Finite Field func (l *Leaf) BigInts() ([5]*big.Int, error) { e := [5]*big.Int{} b, err := l.Bytes() if err != nil { return e, err } e[0] = new(big.Int).SetBytes(SwapEndianness(b[0:32])) e[1] = new(big.Int).SetBytes(SwapEndianness(b[32:64])) e[2] = new(big.Int).SetBytes(SwapEndianness(b[64:96])) e[3] = new(big.Int).SetBytes(SwapEndianness(b[96:128])) e[4] = new(big.Int).SetBytes(SwapEndianness(b[128:160])) return e, nil } // LeafFromBigInts returns a Leaf from a [5]*big.Int func LeafFromBigInts(e [5]*big.Int) (*Leaf, error) { if !cryptoUtils.CheckBigIntArrayInField(e[:]) { return nil, ErrNotInFF } var b [32 * 5]byte copy(b[0:32], SwapEndianness(e[0].Bytes())) // SwapEndianness, as big.Int uses BigEndian copy(b[32:64], SwapEndianness(e[1].Bytes())) copy(b[64:96], SwapEndianness(e[2].Bytes())) copy(b[96:128], SwapEndianness(e[3].Bytes())) copy(b[128:160], SwapEndianness(e[4].Bytes())) return LeafFromBytes(b) } // LeafFromBytes returns a Leaf from a byte array func LeafFromBytes(b [32 * 5]byte) (*Leaf, error) { tokenID := binary.LittleEndian.Uint32(b[0:4]) nonce := binary.LittleEndian.Uint64(b[4:12]) if !bytes.Equal(b[9:12], []byte{0, 0, 0}) { // alternatively: if nonce >= uint64(math.Pow(2, 40)) { return nil, fmt.Errorf("%s Nonce", ErrNumOverflow) } balance := new(big.Int).SetBytes(SwapEndianness(b[32:56])) // b[32:56], as Balance is 192 bits (24 bytes) if !bytes.Equal(b[56:64], []byte{0, 0, 0, 0, 0, 0, 0, 0}) { return nil, fmt.Errorf("%s Balance", ErrNumOverflow) } ax := new(big.Int).SetBytes(SwapEndianness(b[64:96])) // SwapEndianness, as big.Int uses BigEndian ay := new(big.Int).SetBytes(SwapEndianness(b[96:128])) ethAddr := eth.BytesToAddress(b[128:148]) if !cryptoUtils.CheckBigIntInField(balance) { return nil, ErrNotInFF } if !cryptoUtils.CheckBigIntInField(ax) { return nil, ErrNotInFF } if !cryptoUtils.CheckBigIntInField(ay) { return nil, ErrNotInFF } l := Leaf{ TokenID: TokenID(tokenID), Nonce: nonce, Balance: balance, Ax: ax, Ay: ay, EthAddr: ethAddr, } return &l, nil }