You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

1504 lines
49 KiB

/*
Package txprocessor is the module that takes the transactions from the input and
processes them, updating the Balances and Nonces of the Accounts in the StateDB.
It's a package used by 3 other different packages, and its behaviour will differ
depending on the Type of the StateDB of the TxProcessor:
- TypeSynchronizer:
- The StateDB contains the full State MerkleTree, where the leafs are
the accounts
- Updates the StateDB and as output returns: ExitInfos, CreatedAccounts,
CoordinatorIdxsMap, CollectedFees, UpdatedAccounts
- Internally computes the ExitTree
- TypeTxSelector:
- The StateDB contains only the Accounts, which are the equivalent to
only the leafs of the State MerkleTree
- Updates the Accounts from the StateDB
- TypeBatchBuilder:
- The StateDB contains the full State MerkleTree, where the leafs are
the accounts
- Updates the StateDB. As output returns: ZKInputs, CoordinatorIdxsMap
- Internally computes the ZKInputs
Packages dependency overview:
Outputs: + ExitInfos + + +
| CreatedAccounts | | |
| CoordinatorIdxsMap | | ZKInputs |
| CollectedFees | | CoordinatorIdxsMap |
| UpdatedAccounts | | |
+------------------------+----------------+ +-----------------------+
+------------+ +----------+ +------------+
|Synchronizer| |TxSelector| |BatchBuilder|
+-----+------+ +-----+----+ +-----+------+
| | |
v v v
TxProcessor TxProcessor TxProcessor
+ + +
| | |
+----+----+ v +----+----+
| | StateDB | |
v v + v v
StateDB ExitTree | StateDB ExitTree
+ +----+----+ +
| | | |
+----+----+ v v +----+----+
| | KVDB AccountsDB | |
v v v v
KVDB MerkleTree KVDB MerkleTree
The structure of the TxProcessor can be understand as:
- StateDB: where the Rollup state is stored. It contains the Accounts &
MerkleTree.
- Config: parameters of the configuration of the circuit
- ZKInputs: computed inputs for the circuit, depends on the Config parameters
- ExitTree: only in the TypeSynchronizer & TypeBatchBuilder, contains
the MerkleTree with the processed Exits of the Batch
The main exposed method of the TxProcessor is `ProcessTxs`, which as general
lines does:
- if type==(Synchronizer || BatchBuilder), creates an ephemeral ExitTree
- processes:
- L1UserTxs --> for each tx calls ProcessL1Tx()
- L1CoordinatorTxs --> for each tx calls ProcessL1Tx()
- L2Txs --> for each tx calls ProcessL2Tx()
- internally, it computes the Fees
- each transaction processment includes:
- updating the Account Balances (for sender & receiver, and in
case that there is fee, updates the fee receiver account)
- which includes updating the State MerkleTree (except
for the type==TxSelector, which only updates the
Accounts (leafs))
- in case of Synchronizer & BatchBuilder, updates the ExitTree
for the txs of type Exit (L1 & L2)
- in case of BatchBuilder, computes the ZKInputs while processing the txs
- if type==Synchronizer, once all the txs are processed, for each Exit
it generates the ExitInfo data
*/
package txprocessor
import (
"bytes"
"errors"
"fmt"
"io/ioutil"
"math/big"
"os"
"github.com/hermeznetwork/hermez-node/common"
"github.com/hermeznetwork/hermez-node/db/statedb"
"github.com/hermeznetwork/hermez-node/log"
"github.com/hermeznetwork/tracerr"
"github.com/iden3/go-iden3-crypto/babyjub"
"github.com/iden3/go-merkletree"
"github.com/iden3/go-merkletree/db"
"github.com/iden3/go-merkletree/db/pebble"
)
// TxProcessor represents the TxProcessor object
type TxProcessor struct {
s *statedb.StateDB
zki *common.ZKInputs
// i is the current transaction index in the ZKInputs generation (zki)
i int
// AccumulatedFees contains the accumulated fees for each token (Coord
// Idx) in the processed batch
AccumulatedFees map[common.Idx]*big.Int
// updatedAccounts stores the last version of the account when it has
// been created/updated by any of the processed transactions.
updatedAccounts map[common.Idx]*common.Account
config Config
}
// Config contains the TxProcessor configuration parameters
type Config struct {
NLevels uint32
// MaxFeeTx is the maximum number of coordinator accounts that can receive fees
MaxFeeTx uint32
MaxTx uint32
MaxL1Tx uint32
// ChainID of the blockchain
ChainID uint16
}
type processedExit struct {
exit bool
newExit bool
idx common.Idx
acc common.Account
}
// ProcessTxOutput contains the output of the ProcessTxs method
type ProcessTxOutput struct {
ZKInputs *common.ZKInputs
ExitInfos []common.ExitInfo
CreatedAccounts []common.Account
CoordinatorIdxsMap map[common.TokenID]common.Idx
CollectedFees map[common.TokenID]*big.Int
// UpdatedAccounts returns the current state of each account
// created/updated by any of the processed transactions.
UpdatedAccounts map[common.Idx]*common.Account
}
func newErrorNotEnoughBalance(tx common.Tx) error {
var msg error
if tx.IsL1 {
msg = fmt.Errorf("Invalid transaction, not enough balance on sender account. "+
"TxID: %s, TxType: %s, FromIdx: %d, ToIdx: %d, Amount: %d",
tx.TxID, tx.Type, tx.FromIdx, tx.ToIdx, tx.Amount)
} else {
msg = fmt.Errorf("Invalid transaction, not enough balance on sender account. "+
"TxID: %s, TxType: %s, FromIdx: %d, ToIdx: %d, Amount: %d, Fee: %d",
tx.TxID, tx.Type, tx.FromIdx, tx.ToIdx, tx.Amount, tx.Fee)
}
return tracerr.Wrap(msg)
}
// NewTxProcessor returns a new TxProcessor with the given *StateDB & Config
func NewTxProcessor(sdb *statedb.StateDB, config Config) *TxProcessor {
return &TxProcessor{
s: sdb,
zki: nil,
i: 0,
config: config,
}
}
// StateDB returns a pointer to the StateDB of the TxProcessor
func (tp *TxProcessor) StateDB() *statedb.StateDB {
return tp.s
}
func (tp *TxProcessor) resetZKInputs() {
tp.zki = nil
tp.i = 0 // initialize current transaction index in the ZKInputs generation
}
// ProcessTxs process the given L1Txs & L2Txs applying the needed updates to
// the StateDB depending on the transaction Type. If StateDB
// type==TypeBatchBuilder, returns the common.ZKInputs to generate the
// SnarkProof later used by the BatchBuilder. If StateDB
// type==TypeSynchronizer, assumes that the call is done from the Synchronizer,
// returns common.ExitTreeLeaf that is later used by the Synchronizer to update
// the HistoryDB, and adds Nonce & TokenID to the L2Txs.
// And if TypeSynchronizer returns an array of common.Account with all the
// created accounts.
func (tp *TxProcessor) ProcessTxs(coordIdxs []common.Idx, l1usertxs, l1coordinatortxs []common.L1Tx,
l2txs []common.PoolL2Tx) (ptOut *ProcessTxOutput, err error) {
defer func() {
if err == nil {
err = tp.s.MakeCheckpoint()
}
}()
var exitTree *merkletree.MerkleTree
var createdAccounts []common.Account
if tp.zki != nil {
return nil, tracerr.Wrap(
errors.New("Expected StateDB.zki==nil, something went wrong and it's not empty"))
}
defer tp.resetZKInputs()
if len(coordIdxs) >= int(tp.config.MaxFeeTx) {
return nil, tracerr.Wrap(
fmt.Errorf("CoordIdxs (%d) length must be smaller than MaxFeeTx (%d)",
len(coordIdxs), tp.config.MaxFeeTx))
}
nTx := len(l1usertxs) + len(l1coordinatortxs) + len(l2txs)
if nTx > int(tp.config.MaxTx) {
return nil, tracerr.Wrap(
fmt.Errorf("L1UserTx + L1CoordinatorTx + L2Tx (%d) can not be bigger than MaxTx (%d)",
nTx, tp.config.MaxTx))
}
if len(l1usertxs)+len(l1coordinatortxs) > int(tp.config.MaxL1Tx) {
return nil,
tracerr.Wrap(fmt.Errorf("L1UserTx + L1CoordinatorTx (%d) can not be bigger than MaxL1Tx (%d)",
len(l1usertxs)+len(l1coordinatortxs), tp.config.MaxTx))
}
if tp.s.Type() == statedb.TypeSynchronizer {
tp.updatedAccounts = make(map[common.Idx]*common.Account)
}
exits := make([]processedExit, nTx)
if tp.s.Type() == statedb.TypeBatchBuilder {
tp.zki = common.NewZKInputs(tp.config.ChainID, tp.config.MaxTx, tp.config.MaxL1Tx,
tp.config.MaxFeeTx, tp.config.NLevels, (tp.s.CurrentBatch() + 1).BigInt())
tp.zki.OldLastIdx = tp.s.CurrentIdx().BigInt()
tp.zki.OldStateRoot = tp.s.MT.Root().BigInt()
tp.zki.Metadata.NewLastIdxRaw = tp.s.CurrentIdx()
}
// TBD if ExitTree is only in memory or stored in disk, for the moment
// is only needed in memory
if tp.s.Type() == statedb.TypeSynchronizer || tp.s.Type() == statedb.TypeBatchBuilder {
tmpDir, err := ioutil.TempDir("", "hermez-statedb-exittree")
if err != nil {
return nil, tracerr.Wrap(err)
}
defer func() {
if err := os.RemoveAll(tmpDir); err != nil {
log.Errorw("Deleting statedb temp exit tree", "err", err)
}
}()
sto, err := pebble.NewPebbleStorage(tmpDir, false)
if err != nil {
return nil, tracerr.Wrap(err)
}
defer sto.Close()
exitTree, err = merkletree.NewMerkleTree(sto, tp.s.MT.MaxLevels())
if err != nil {
return nil, tracerr.Wrap(err)
}
}
// Process L1UserTxs
for i := 0; i < len(l1usertxs); i++ {
// assumption: l1usertx are sorted by L1Tx.Position
exitIdx, exitAccount, newExit, createdAccount, err := tp.ProcessL1Tx(exitTree,
&l1usertxs[i])
if err != nil {
return nil, tracerr.Wrap(err)
}
if tp.s.Type() == statedb.TypeSynchronizer {
if createdAccount != nil {
createdAccounts = append(createdAccounts, *createdAccount)
l1usertxs[i].EffectiveFromIdx = createdAccount.Idx
} else {
l1usertxs[i].EffectiveFromIdx = l1usertxs[i].FromIdx
}
}
if tp.zki != nil {
l1TxData, err := l1usertxs[i].BytesGeneric()
if err != nil {
return nil, tracerr.Wrap(err)
}
tp.zki.Metadata.L1TxsData = append(tp.zki.Metadata.L1TxsData, l1TxData)
l1TxDataAvailability, err :=
l1usertxs[i].BytesDataAvailability(tp.zki.Metadata.NLevels)
if err != nil {
return nil, tracerr.Wrap(err)
}
tp.zki.Metadata.L1TxsDataAvailability =
append(tp.zki.Metadata.L1TxsDataAvailability, l1TxDataAvailability)
tp.zki.ISOutIdx[tp.i] = tp.s.CurrentIdx().BigInt()
tp.zki.ISStateRoot[tp.i] = tp.s.MT.Root().BigInt()
if exitIdx == nil {
tp.zki.ISExitRoot[tp.i] = exitTree.Root().BigInt()
}
}
if tp.s.Type() == statedb.TypeSynchronizer || tp.s.Type() == statedb.TypeBatchBuilder {
if exitIdx != nil && exitTree != nil && exitAccount != nil {
exits[tp.i] = processedExit{
exit: true,
newExit: newExit,
idx: *exitIdx,
acc: *exitAccount,
}
}
tp.i++
}
}
// Process L1CoordinatorTxs
for i := 0; i < len(l1coordinatortxs); i++ {
exitIdx, _, _, createdAccount, err := tp.ProcessL1Tx(exitTree, &l1coordinatortxs[i])
if err != nil {
return nil, tracerr.Wrap(err)
}
if exitIdx != nil {
log.Error("Unexpected Exit in L1CoordinatorTx")
}
if tp.s.Type() == statedb.TypeSynchronizer {
if createdAccount != nil {
createdAccounts = append(createdAccounts, *createdAccount)
l1coordinatortxs[i].EffectiveFromIdx = createdAccount.Idx
} else {
l1coordinatortxs[i].EffectiveFromIdx = l1coordinatortxs[i].FromIdx
}
}
if tp.zki != nil {
l1TxData, err := l1coordinatortxs[i].BytesGeneric()
if err != nil {
return nil, tracerr.Wrap(err)
}
tp.zki.Metadata.L1TxsData = append(tp.zki.Metadata.L1TxsData, l1TxData)
l1TxDataAvailability, err :=
l1coordinatortxs[i].BytesDataAvailability(tp.zki.Metadata.NLevels)
if err != nil {
return nil, tracerr.Wrap(err)
}
tp.zki.Metadata.L1TxsDataAvailability =
append(tp.zki.Metadata.L1TxsDataAvailability, l1TxDataAvailability)
tp.zki.ISOutIdx[tp.i] = tp.s.CurrentIdx().BigInt()
tp.zki.ISStateRoot[tp.i] = tp.s.MT.Root().BigInt()
tp.zki.ISExitRoot[tp.i] = exitTree.Root().BigInt()
tp.i++
}
}
// remove repeated CoordIdxs that are for the same TokenID (use the
// first occurrence)
usedCoordTokenIDs := make(map[common.TokenID]bool)
var filteredCoordIdxs []common.Idx
for i := 0; i < len(coordIdxs); i++ {
accCoord, err := tp.s.GetAccount(coordIdxs[i])
if err != nil {
return nil, tracerr.Wrap(err)
}
if !usedCoordTokenIDs[accCoord.TokenID] {
usedCoordTokenIDs[accCoord.TokenID] = true
filteredCoordIdxs = append(filteredCoordIdxs, coordIdxs[i])
}
}
coordIdxs = filteredCoordIdxs
tp.AccumulatedFees = make(map[common.Idx]*big.Int)
for _, idx := range coordIdxs {
tp.AccumulatedFees[idx] = big.NewInt(0)
}
// once L1UserTxs & L1CoordinatorTxs are processed, get TokenIDs of
// coordIdxs. In this way, if a coordIdx uses an Idx that is being
// created in the current batch, at this point the Idx will be created
coordIdxsMap, err := tp.s.GetTokenIDsFromIdxs(coordIdxs)
if err != nil {
return nil, tracerr.Wrap(err)
}
// collectedFees will contain the amount of fee collected for each
// TokenID
var collectedFees map[common.TokenID]*big.Int
if tp.s.Type() == statedb.TypeSynchronizer || tp.s.Type() == statedb.TypeBatchBuilder {
collectedFees = make(map[common.TokenID]*big.Int)
for tokenID := range coordIdxsMap {
collectedFees[tokenID] = big.NewInt(0)
}
}
if tp.zki != nil {
// get the feePlanTokens
feePlanTokens, err := tp.getFeePlanTokens(coordIdxs)
if err != nil {
log.Error(err)
return nil, tracerr.Wrap(err)
}
copy(tp.zki.FeePlanTokens, feePlanTokens)
}
// Process L2Txs
for i := 0; i < len(l2txs); i++ {
exitIdx, exitAccount, newExit, err := tp.ProcessL2Tx(coordIdxsMap, collectedFees,
exitTree, &l2txs[i])
if err != nil {
return nil, tracerr.Wrap(err)
}
if tp.zki != nil {
l2TxData, err := l2txs[i].L2Tx().BytesDataAvailability(tp.zki.Metadata.NLevels)
if err != nil {
return nil, tracerr.Wrap(err)
}
tp.zki.Metadata.L2TxsData = append(tp.zki.Metadata.L2TxsData, l2TxData)
// Intermediate States
if tp.i < nTx-1 {
tp.zki.ISOutIdx[tp.i] = tp.s.CurrentIdx().BigInt()
tp.zki.ISStateRoot[tp.i] = tp.s.MT.Root().BigInt()
tp.zki.ISAccFeeOut[tp.i] = formatAccumulatedFees(collectedFees, tp.zki.FeePlanTokens, coordIdxs)
if exitIdx == nil {
tp.zki.ISExitRoot[tp.i] = exitTree.Root().BigInt()
}
}
}
if tp.s.Type() == statedb.TypeSynchronizer || tp.s.Type() == statedb.TypeBatchBuilder {
if exitIdx != nil && exitTree != nil {
exits[tp.i] = processedExit{
exit: true,
newExit: newExit,
idx: *exitIdx,
acc: *exitAccount,
}
}
tp.i++
}
}
if tp.zki != nil {
// Fill the empty slots in the ZKInputs remaining after
// processing all L1 & L2 txs
txCompressedDataEmpty := common.TxCompressedDataEmpty(tp.config.ChainID)
last := tp.i - 1
if tp.i == 0 {
last = 0
}
for i := last; i < int(tp.config.MaxTx); i++ {
if i < int(tp.config.MaxTx)-1 {
tp.zki.ISOutIdx[i] = tp.s.CurrentIdx().BigInt()
tp.zki.ISStateRoot[i] = tp.s.MT.Root().BigInt()
tp.zki.ISAccFeeOut[i] = formatAccumulatedFees(collectedFees,
tp.zki.FeePlanTokens, coordIdxs)
tp.zki.ISExitRoot[i] = exitTree.Root().BigInt()
}
if i >= tp.i {
tp.zki.TxCompressedData[i] = txCompressedDataEmpty
}
}
isFinalAccFee := formatAccumulatedFees(collectedFees, tp.zki.FeePlanTokens, coordIdxs)
copy(tp.zki.ISFinalAccFee, isFinalAccFee)
// before computing the Fees txs, set the ISInitStateRootFee
tp.zki.ISInitStateRootFee = tp.s.MT.Root().BigInt()
}
// distribute the AccumulatedFees from the processed L2Txs into the
// Coordinator Idxs
iFee := 0
for _, idx := range coordIdxs {
accumulatedFee := tp.AccumulatedFees[idx]
// send the fee to the Idx of the Coordinator for the TokenID
// (even if the AccumulatedFee==0, as is how the zk circuit
// works)
accCoord, err := tp.s.GetAccount(idx)
if err != nil {
log.Errorw("Can not distribute accumulated fees to coordinator account: "+
"No coord Idx to receive fee", "idx", idx)
return nil, tracerr.Wrap(err)
}
if tp.zki != nil {
tp.zki.TokenID3[iFee] = accCoord.TokenID.BigInt()
tp.zki.Nonce3[iFee] = accCoord.Nonce.BigInt()
coordBJJSign, coordBJJY := babyjub.UnpackSignY(accCoord.BJJ)
if coordBJJSign {
tp.zki.Sign3[iFee] = big.NewInt(1)
}
tp.zki.Ay3[iFee] = coordBJJY
tp.zki.Balance3[iFee] = accCoord.Balance
tp.zki.EthAddr3[iFee] = common.EthAddrToBigInt(accCoord.EthAddr)
}
accCoord.Balance = new(big.Int).Add(accCoord.Balance, accumulatedFee)
pFee, err := tp.updateAccount(idx, accCoord)
if err != nil {
log.Error(err)
return nil, tracerr.Wrap(err)
}
if tp.zki != nil {
tp.zki.Siblings3[iFee] = siblingsToZKInputFormat(pFee.Siblings)
tp.zki.ISStateRootFee[iFee] = tp.s.MT.Root().BigInt()
}
iFee++
}
if tp.zki != nil {
for i := len(tp.AccumulatedFees); i < int(tp.config.MaxFeeTx)-1; i++ {
tp.zki.ISStateRootFee[i] = tp.s.MT.Root().BigInt()
}
// add Coord Idx to ZKInputs.FeeTxsData
for i := 0; i < len(coordIdxs); i++ {
tp.zki.FeeIdxs[i] = coordIdxs[i].BigInt()
}
}
if tp.s.Type() == statedb.TypeTxSelector {
return nil, nil
}
if tp.s.Type() == statedb.TypeSynchronizer {
// once all txs processed (exitTree root frozen), for each Exit,
// generate common.ExitInfo data
var exitInfos []common.ExitInfo
exitInfosByIdx := make(map[common.Idx]*common.ExitInfo)
for i := 0; i < nTx; i++ {
if !exits[i].exit {
continue
}
exitIdx := exits[i].idx
exitAccount := exits[i].acc
// 0. generate MerkleProof
p, err := exitTree.GenerateSCVerifierProof(exitIdx.BigInt(), nil)
if err != nil {
return nil, tracerr.Wrap(err)
}
// 1. generate common.ExitInfo
ei := common.ExitInfo{
AccountIdx: exitIdx,
MerkleProof: p,
Balance: exitAccount.Balance,
}
if prevExit, ok := exitInfosByIdx[exitIdx]; !ok {
exitInfos = append(exitInfos, ei)
exitInfosByIdx[exitIdx] = &exitInfos[len(exitInfos)-1]
} else {
*prevExit = ei
}
}
// retun exitInfos, createdAccounts and collectedFees, so Synchronizer will
// be able to store it into HistoryDB for the concrete BatchNum
return &ProcessTxOutput{
ZKInputs: nil,
ExitInfos: exitInfos,
CreatedAccounts: createdAccounts,
CoordinatorIdxsMap: coordIdxsMap,
CollectedFees: collectedFees,
UpdatedAccounts: tp.updatedAccounts,
}, nil
}
// compute last ZKInputs parameters
tp.zki.GlobalChainID = big.NewInt(int64(tp.config.ChainID))
tp.zki.Metadata.NewStateRootRaw = tp.s.MT.Root()
tp.zki.Metadata.NewExitRootRaw = exitTree.Root()
// return ZKInputs as the BatchBuilder will return it to forge the Batch
return &ProcessTxOutput{
ZKInputs: tp.zki,
ExitInfos: nil,
CreatedAccounts: nil,
CoordinatorIdxsMap: coordIdxsMap,
CollectedFees: nil,
}, nil
}
// getFeePlanTokens returns an array of *big.Int containing a list of tokenIDs
// corresponding to the given CoordIdxs and the processed L2Txs
func (tp *TxProcessor) getFeePlanTokens(coordIdxs []common.Idx) ([]*big.Int, error) {
var tBI []*big.Int
for i := 0; i < len(coordIdxs); i++ {
acc, err := tp.s.GetAccount(coordIdxs[i])
if err != nil {
log.Errorf("could not get account to determine TokenID of CoordIdx %d not found: %s",
coordIdxs[i], err.Error())
return nil, tracerr.Wrap(err)
}
tBI = append(tBI, acc.TokenID.BigInt())
}
return tBI, nil
}
// ProcessL1Tx process the given L1Tx applying the needed updates to the
// StateDB depending on the transaction Type. It returns the 3 parameters
// related to the Exit (in case of): Idx, ExitAccount, boolean determining if
// the Exit created a new Leaf in the ExitTree.
// And another *common.Account parameter which contains the created account in
// case that has been a new created account and that the StateDB is of type
// TypeSynchronizer.
func (tp *TxProcessor) ProcessL1Tx(exitTree *merkletree.MerkleTree, tx *common.L1Tx) (*common.Idx,
*common.Account, bool, *common.Account, error) {
// ZKInputs
if tp.zki != nil {
// Txs
var err error
tp.zki.TxCompressedData[tp.i], err = tx.TxCompressedData(tp.config.ChainID)
if err != nil {
log.Error(err)
return nil, nil, false, nil, tracerr.Wrap(err)
}
tp.zki.FromIdx[tp.i] = tx.FromIdx.BigInt()
tp.zki.ToIdx[tp.i] = tx.ToIdx.BigInt()
tp.zki.OnChain[tp.i] = big.NewInt(1)
// L1Txs
depositAmountF40, err := common.NewFloat40(tx.DepositAmount)
if err != nil {
return nil, nil, false, nil, tracerr.Wrap(err)
}
tp.zki.DepositAmountF[tp.i] = big.NewInt(int64(depositAmountF40))
tp.zki.FromEthAddr[tp.i] = common.EthAddrToBigInt(tx.FromEthAddr)
if tx.FromBJJ != common.EmptyBJJComp {
tp.zki.FromBJJCompressed[tp.i] = BJJCompressedTo256BigInts(tx.FromBJJ)
}
// Intermediate States, for all the transactions except for the last one
if tp.i < len(tp.zki.ISOnChain) { // len(tp.zki.ISOnChain) == nTx
tp.zki.ISOnChain[tp.i] = big.NewInt(1)
}
if tx.Type == common.TxTypeForceTransfer ||
tx.Type == common.TxTypeDepositTransfer ||
tx.Type == common.TxTypeCreateAccountDepositTransfer ||
tx.Type == common.TxTypeForceExit {
// in the cases where at L1Tx there is usage of the
// Amount parameter, add it at the ZKInputs.AmountF
// slot
amountF40, err := common.NewFloat40(tx.Amount)
if err != nil {
return nil, nil, false, nil, tracerr.Wrap(err)
}
tp.zki.AmountF[tp.i] = big.NewInt(int64(amountF40))
}
}
switch tx.Type {
case common.TxTypeForceTransfer:
tp.computeEffectiveAmounts(tx)
// go to the MT account of sender and receiver, and update balance
// & nonce
// coordIdxsMap is 'nil', as at L1Txs there is no L2 fees.
// 0 for the parameter toIdx, as at L1Tx ToIdx can only be 0 in
// the Deposit type case.
err := tp.applyTransfer(nil, nil, tx.Tx(), 0)
if err != nil {
log.Error(err)
return nil, nil, false, nil, tracerr.Wrap(err)
}
case common.TxTypeCreateAccountDeposit:
tp.computeEffectiveAmounts(tx)
// add new account to the MT, update balance of the MT account
err := tp.applyCreateAccount(tx)
if err != nil {
log.Error(err)
return nil, nil, false, nil, tracerr.Wrap(err)
}
// TODO applyCreateAccount will return the created account,
// which in the case type==TypeSynchronizer will be added to an
// array of created accounts that will be returned
case common.TxTypeDeposit:
tp.computeEffectiveAmounts(tx)
// update balance of the MT account
err := tp.applyDeposit(tx, false)
if err != nil {
log.Error(err)
return nil, nil, false, nil, tracerr.Wrap(err)
}
case common.TxTypeDepositTransfer:
tp.computeEffectiveAmounts(tx)
// update balance in MT account, update balance & nonce of sender
// & receiver
err := tp.applyDeposit(tx, true)
if err != nil {
log.Error(err)
return nil, nil, false, nil, tracerr.Wrap(err)
}
case common.TxTypeCreateAccountDepositTransfer:
tp.computeEffectiveAmounts(tx)
// add new account to the merkletree, update balance in MT account,
// update balance & nonce of sender & receiver
err := tp.applyCreateAccountDepositTransfer(tx)
if err != nil {
log.Error(err)
return nil, nil, false, nil, tracerr.Wrap(err)
}
case common.TxTypeForceExit:
tp.computeEffectiveAmounts(tx)
// execute exit flow
// coordIdxsMap is 'nil', as at L1Txs there is no L2 fees
exitAccount, newExit, err := tp.applyExit(nil, nil, exitTree, tx.Tx(), tx.Amount)
if err != nil {
log.Error(err)
return nil, nil, false, nil, tracerr.Wrap(err)
}
return &tx.FromIdx, exitAccount, newExit, nil, nil
default:
}
var createdAccount *common.Account
if tp.s.Type() == statedb.TypeSynchronizer &&
(tx.Type == common.TxTypeCreateAccountDeposit ||
tx.Type == common.TxTypeCreateAccountDepositTransfer) {
var err error
createdAccount, err = tp.s.GetAccount(tp.s.CurrentIdx())
if err != nil {
log.Error(err)
return nil, nil, false, nil, tracerr.Wrap(err)
}
}
return nil, nil, false, createdAccount, nil
}
// ProcessL2Tx process the given L2Tx applying the needed updates to the
// StateDB depending on the transaction Type. It returns the 3 parameters
// related to the Exit (in case of): Idx, ExitAccount, boolean determining if
// the Exit created a new Leaf in the ExitTree.
func (tp *TxProcessor) ProcessL2Tx(coordIdxsMap map[common.TokenID]common.Idx,
collectedFees map[common.TokenID]*big.Int, exitTree *merkletree.MerkleTree,
tx *common.PoolL2Tx) (*common.Idx, *common.Account, bool, error) {
var err error
// if tx.ToIdx==0, get toIdx by ToEthAddr or ToBJJ
if tx.ToIdx == common.Idx(0) && tx.AuxToIdx == common.Idx(0) {
if tp.s.Type() == statedb.TypeSynchronizer {
// this in TypeSynchronizer should never be reached
log.Error("WARNING: In StateDB with Synchronizer mode L2.ToIdx can't be 0")
return nil, nil, false,
tracerr.Wrap(fmt.Errorf("In StateDB with Synchronizer mode L2.ToIdx can't be 0"))
}
// case when tx.Type == common.TxTypeTransferToEthAddr or
// common.TxTypeTransferToBJJ:
accSender, err := tp.s.GetAccount(tx.FromIdx)
if err != nil {
return nil, nil, false, tracerr.Wrap(err)
}
tx.AuxToIdx, err = tp.s.GetIdxByEthAddrBJJ(tx.ToEthAddr, tx.ToBJJ, accSender.TokenID)
if err != nil {
return nil, nil, false, tracerr.Wrap(err)
}
}
// ZKInputs
if tp.zki != nil {
// Txs
tp.zki.TxCompressedData[tp.i], err = tx.TxCompressedData(tp.config.ChainID)
if err != nil {
return nil, nil, false, tracerr.Wrap(err)
}
tp.zki.TxCompressedDataV2[tp.i], err = tx.TxCompressedDataV2()
if err != nil {
return nil, nil, false, tracerr.Wrap(err)
}
tp.zki.FromIdx[tp.i] = tx.FromIdx.BigInt()
tp.zki.ToIdx[tp.i] = tx.ToIdx.BigInt()
// fill AuxToIdx if needed
if tx.ToIdx == 0 {
// use toIdx that can have been filled by tx.ToIdx or
// if tx.Idx==0 (this case), toIdx is filled by the Idx
// from db by ToEthAddr&ToBJJ
tp.zki.AuxToIdx[tp.i] = tx.AuxToIdx.BigInt()
}
if tx.ToBJJ != common.EmptyBJJComp {
_, tp.zki.ToBJJAy[tp.i] = babyjub.UnpackSignY(tx.ToBJJ)
}
tp.zki.ToEthAddr[tp.i] = common.EthAddrToBigInt(tx.ToEthAddr)
tp.zki.OnChain[tp.i] = big.NewInt(0)
amountF40, err := common.NewFloat40(tx.Amount)
if err != nil {
return nil, nil, false, tracerr.Wrap(err)
}
tp.zki.AmountF[tp.i] = big.NewInt(int64(amountF40))
tp.zki.NewAccount[tp.i] = big.NewInt(0)
// L2Txs
// tp.zki.RqOffset[tp.i] = // TODO Rq once TxSelector is ready
// tp.zki.RqTxCompressedDataV2[tp.i] = // TODO
// tp.zki.RqToEthAddr[tp.i] = common.EthAddrToBigInt(tx.RqToEthAddr) // TODO
// tp.zki.RqToBJJAy[tp.i] = tx.ToBJJ.Y // TODO
signature, err := tx.Signature.Decompress()
if err != nil {
log.Error(err)
return nil, nil, false, tracerr.Wrap(err)
}
tp.zki.S[tp.i] = signature.S
tp.zki.R8x[tp.i] = signature.R8.X
tp.zki.R8y[tp.i] = signature.R8.Y
}
// if StateDB type==TypeSynchronizer, will need to add Nonce
if tp.s.Type() == statedb.TypeSynchronizer {
// as tType==TypeSynchronizer, always tx.ToIdx!=0
acc, err := tp.s.GetAccount(tx.FromIdx)
if err != nil {
log.Errorw("GetAccount", "fromIdx", tx.FromIdx, "err", err)
return nil, nil, false, tracerr.Wrap(err)
}
tx.Nonce = acc.Nonce
tx.TokenID = acc.TokenID
}
switch tx.Type {
case common.TxTypeTransfer, common.TxTypeTransferToEthAddr, common.TxTypeTransferToBJJ:
// go to the MT account of sender and receiver, and update
// balance & nonce
err = tp.applyTransfer(coordIdxsMap, collectedFees, tx.Tx(), tx.AuxToIdx)
if err != nil {
log.Error(err)
return nil, nil, false, tracerr.Wrap(err)
}
case common.TxTypeExit:
// execute exit flow
exitAccount, newExit, err := tp.applyExit(coordIdxsMap, collectedFees, exitTree,
tx.Tx(), tx.Amount)
if err != nil {
log.Error(err)
return nil, nil, false, tracerr.Wrap(err)
}
return &tx.FromIdx, exitAccount, newExit, nil
default:
}
return nil, nil, false, nil
}
// applyCreateAccount creates a new account in the account of the depositer, it
// stores the deposit value
func (tp *TxProcessor) applyCreateAccount(tx *common.L1Tx) error {
account := &common.Account{
TokenID: tx.TokenID,
Nonce: 0,
Balance: tx.EffectiveDepositAmount,
BJJ: tx.FromBJJ,
EthAddr: tx.FromEthAddr,
}
p, err := tp.createAccount(common.Idx(tp.s.CurrentIdx()+1), account)
if err != nil {
return tracerr.Wrap(err)
}
if tp.zki != nil {
tp.zki.TokenID1[tp.i] = tx.TokenID.BigInt()
tp.zki.Nonce1[tp.i] = big.NewInt(0)
fromBJJSign, fromBJJY := babyjub.UnpackSignY(tx.FromBJJ)
if fromBJJSign {
tp.zki.Sign1[tp.i] = big.NewInt(1)
}
tp.zki.Ay1[tp.i] = fromBJJY
tp.zki.Balance1[tp.i] = tx.EffectiveDepositAmount
tp.zki.EthAddr1[tp.i] = common.EthAddrToBigInt(tx.FromEthAddr)
tp.zki.Siblings1[tp.i] = siblingsToZKInputFormat(p.Siblings)
if p.IsOld0 {
tp.zki.IsOld0_1[tp.i] = big.NewInt(1)
}
tp.zki.OldKey1[tp.i] = p.OldKey.BigInt()
tp.zki.OldValue1[tp.i] = p.OldValue.BigInt()
tp.zki.Metadata.NewLastIdxRaw = tp.s.CurrentIdx() + 1
tp.zki.AuxFromIdx[tp.i] = common.Idx(tp.s.CurrentIdx() + 1).BigInt()
tp.zki.NewAccount[tp.i] = big.NewInt(1)
if tp.i < len(tp.zki.ISOnChain) { // len(tp.zki.ISOnChain) == nTx
// intermediate states
tp.zki.ISOnChain[tp.i] = big.NewInt(1)
}
}
return tp.s.SetCurrentIdx(tp.s.CurrentIdx() + 1)
}
// createAccount is a wrapper over the StateDB.CreateAccount method that also
// stores the created account in the updatedAccounts map in case the StateDB is
// of TypeSynchronizer
func (tp *TxProcessor) createAccount(idx common.Idx, account *common.Account) (
*merkletree.CircomProcessorProof, error) {
if tp.s.Type() == statedb.TypeSynchronizer {
account.Idx = idx
tp.updatedAccounts[idx] = account
}
return tp.s.CreateAccount(idx, account)
}
// updateAccount is a wrapper over the StateDB.UpdateAccount method that also
// stores the updated account in the updatedAccounts map in case the StateDB is
// of TypeSynchronizer
func (tp *TxProcessor) updateAccount(idx common.Idx, account *common.Account) (
*merkletree.CircomProcessorProof, error) {
if tp.s.Type() == statedb.TypeSynchronizer {
account.Idx = idx
tp.updatedAccounts[idx] = account
}
return tp.s.UpdateAccount(idx, account)
}
// applyDeposit updates the balance in the account of the depositer, if
// andTransfer parameter is set to true, the method will also apply the
// Transfer of the L1Tx/DepositTransfer
func (tp *TxProcessor) applyDeposit(tx *common.L1Tx, transfer bool) error {
accSender, err := tp.s.GetAccount(tx.FromIdx)
if err != nil {
return tracerr.Wrap(err)
}
if tp.zki != nil {
tp.zki.TokenID1[tp.i] = accSender.TokenID.BigInt()
tp.zki.Nonce1[tp.i] = accSender.Nonce.BigInt()
senderBJJSign, senderBJJY := babyjub.UnpackSignY(accSender.BJJ)
if senderBJJSign {
tp.zki.Sign1[tp.i] = big.NewInt(1)
}
tp.zki.Ay1[tp.i] = senderBJJY
tp.zki.Balance1[tp.i] = accSender.Balance
tp.zki.EthAddr1[tp.i] = common.EthAddrToBigInt(accSender.EthAddr)
}
// add the deposit to the sender
accSender.Balance = new(big.Int).Add(accSender.Balance, tx.EffectiveDepositAmount)
// subtract amount to the sender
accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.EffectiveAmount)
if accSender.Balance.Cmp(big.NewInt(0)) == -1 { // balance<0
return newErrorNotEnoughBalance(tx.Tx())
}
// update sender account in localStateDB
p, err := tp.updateAccount(tx.FromIdx, accSender)
if err != nil {
return tracerr.Wrap(err)
}
if tp.zki != nil {
tp.zki.Siblings1[tp.i] = siblingsToZKInputFormat(p.Siblings)
// IsOld0_1, OldKey1, OldValue1 not needed as this is not an insert
}
// in case that the tx is a L1Tx>DepositTransfer
var accReceiver *common.Account
if transfer {
if tx.ToIdx == tx.FromIdx {
accReceiver = accSender
} else {
accReceiver, err = tp.s.GetAccount(tx.ToIdx)
if err != nil {
return tracerr.Wrap(err)
}
}
if tp.zki != nil {
tp.zki.TokenID2[tp.i] = accReceiver.TokenID.BigInt()
tp.zki.Nonce2[tp.i] = accReceiver.Nonce.BigInt()
receiverBJJSign, receiverBJJY := babyjub.UnpackSignY(accReceiver.BJJ)
if receiverBJJSign {
tp.zki.Sign2[tp.i] = big.NewInt(1)
}
tp.zki.Ay2[tp.i] = receiverBJJY
tp.zki.Balance2[tp.i] = accReceiver.Balance
tp.zki.EthAddr2[tp.i] = common.EthAddrToBigInt(accReceiver.EthAddr)
}
// add amount to the receiver
accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.EffectiveAmount)
// update receiver account in localStateDB
p, err := tp.updateAccount(tx.ToIdx, accReceiver)
if err != nil {
return tracerr.Wrap(err)
}
if tp.zki != nil {
tp.zki.Siblings2[tp.i] = siblingsToZKInputFormat(p.Siblings)
// IsOld0_2, OldKey2, OldValue2 not needed as this is not an insert
}
}
return nil
}
// applyTransfer updates the balance & nonce in the account of the sender, and
// the balance in the account of the receiver.
// Parameter 'toIdx' should be at 0 if the tx already has tx.ToIdx!=0, if
// tx.ToIdx==0, then toIdx!=0, and will be used the toIdx parameter as Idx of
// the receiver. This parameter is used when the tx.ToIdx is not specified and
// the real ToIdx is found trhrough the ToEthAddr or ToBJJ.
func (tp *TxProcessor) applyTransfer(coordIdxsMap map[common.TokenID]common.Idx,
collectedFees map[common.TokenID]*big.Int, tx common.Tx, auxToIdx common.Idx) error {
if auxToIdx == common.Idx(0) {
auxToIdx = tx.ToIdx
}
// get sender and receiver accounts from localStateDB
accSender, err := tp.s.GetAccount(tx.FromIdx)
if err != nil {
log.Error(err)
return tracerr.Wrap(err)
}
if tp.zki != nil {
// Set the State1 before updating the Sender leaf
tp.zki.TokenID1[tp.i] = accSender.TokenID.BigInt()
tp.zki.Nonce1[tp.i] = accSender.Nonce.BigInt()
senderBJJSign, senderBJJY := babyjub.UnpackSignY(accSender.BJJ)
if senderBJJSign {
tp.zki.Sign1[tp.i] = big.NewInt(1)
}
tp.zki.Ay1[tp.i] = senderBJJY
tp.zki.Balance1[tp.i] = accSender.Balance
tp.zki.EthAddr1[tp.i] = common.EthAddrToBigInt(accSender.EthAddr)
}
if !tx.IsL1 { // L2
// increment nonce
accSender.Nonce++
// compute fee and subtract it from the accSender
fee, err := common.CalcFeeAmount(tx.Amount, *tx.Fee)
if err != nil {
return tracerr.Wrap(err)
}
feeAndAmount := new(big.Int).Add(tx.Amount, fee)
accSender.Balance = new(big.Int).Sub(accSender.Balance, feeAndAmount)
if accSender.Balance.Cmp(big.NewInt(0)) == -1 { // balance<0
return newErrorNotEnoughBalance(tx)
}
if _, ok := coordIdxsMap[accSender.TokenID]; ok {
accCoord, err := tp.s.GetAccount(coordIdxsMap[accSender.TokenID])
if err != nil {
return tracerr.Wrap(
fmt.Errorf("Can not use CoordIdx that does not exist in the tree. TokenID: %d, CoordIdx: %d",
accSender.TokenID, coordIdxsMap[accSender.TokenID]))
}
// accumulate the fee for the Coord account
accumulated := tp.AccumulatedFees[accCoord.Idx]
accumulated.Add(accumulated, fee)
if tp.s.Type() == statedb.TypeSynchronizer ||
tp.s.Type() == statedb.TypeBatchBuilder {
collected := collectedFees[accCoord.TokenID]
collected.Add(collected, fee)
}
} else {
log.Debugw("No coord Idx to receive fee", "tx", tx)
}
} else {
accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.Amount)
if accSender.Balance.Cmp(big.NewInt(0)) == -1 { // balance<0
return newErrorNotEnoughBalance(tx)
}
}
// update sender account in localStateDB
pSender, err := tp.updateAccount(tx.FromIdx, accSender)
if err != nil {
log.Error(err)
return tracerr.Wrap(err)
}
if tp.zki != nil {
tp.zki.Siblings1[tp.i] = siblingsToZKInputFormat(pSender.Siblings)
}
var accReceiver *common.Account
if auxToIdx == tx.FromIdx {
// if Sender is the Receiver, reuse 'accSender' pointer,
// because in the DB the account for 'auxToIdx' won't be
// updated yet
accReceiver = accSender
} else {
accReceiver, err = tp.s.GetAccount(auxToIdx)
if err != nil {
log.Error(err, auxToIdx)
return tracerr.Wrap(err)
}
}
if tp.zki != nil {
// Set the State2 before updating the Receiver leaf
tp.zki.TokenID2[tp.i] = accReceiver.TokenID.BigInt()
tp.zki.Nonce2[tp.i] = accReceiver.Nonce.BigInt()
receiverBJJSign, receiverBJJY := babyjub.UnpackSignY(accReceiver.BJJ)
if receiverBJJSign {
tp.zki.Sign2[tp.i] = big.NewInt(1)
}
tp.zki.Ay2[tp.i] = receiverBJJY
tp.zki.Balance2[tp.i] = accReceiver.Balance
tp.zki.EthAddr2[tp.i] = common.EthAddrToBigInt(accReceiver.EthAddr)
}
// add amount-feeAmount to the receiver
accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.Amount)
// update receiver account in localStateDB
pReceiver, err := tp.updateAccount(auxToIdx, accReceiver)
if err != nil {
return tracerr.Wrap(err)
}
if tp.zki != nil {
tp.zki.Siblings2[tp.i] = siblingsToZKInputFormat(pReceiver.Siblings)
}
return nil
}
// applyCreateAccountDepositTransfer, in a single tx, creates a new account,
// makes a deposit, and performs a transfer to another account
func (tp *TxProcessor) applyCreateAccountDepositTransfer(tx *common.L1Tx) error {
auxFromIdx := common.Idx(tp.s.CurrentIdx() + 1)
accSender := &common.Account{
TokenID: tx.TokenID,
Nonce: 0,
Balance: tx.EffectiveDepositAmount,
BJJ: tx.FromBJJ,
EthAddr: tx.FromEthAddr,
}
if tp.zki != nil {
// Set the State1 before updating the Sender leaf
tp.zki.TokenID1[tp.i] = tx.TokenID.BigInt()
tp.zki.Nonce1[tp.i] = big.NewInt(0)
fromBJJSign, fromBJJY := babyjub.UnpackSignY(tx.FromBJJ)
if fromBJJSign {
tp.zki.Sign1[tp.i] = big.NewInt(1)
}
tp.zki.Ay1[tp.i] = fromBJJY
tp.zki.Balance1[tp.i] = tx.EffectiveDepositAmount
tp.zki.EthAddr1[tp.i] = common.EthAddrToBigInt(tx.FromEthAddr)
}
// subtract amount to the sender
accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.EffectiveAmount)
if accSender.Balance.Cmp(big.NewInt(0)) == -1 { // balance<0
return newErrorNotEnoughBalance(tx.Tx())
}
// create Account of the Sender
p, err := tp.createAccount(common.Idx(tp.s.CurrentIdx()+1), accSender)
if err != nil {
return tracerr.Wrap(err)
}
if tp.zki != nil {
tp.zki.Siblings1[tp.i] = siblingsToZKInputFormat(p.Siblings)
if p.IsOld0 {
tp.zki.IsOld0_1[tp.i] = big.NewInt(1)
}
tp.zki.OldKey1[tp.i] = p.OldKey.BigInt()
tp.zki.OldValue1[tp.i] = p.OldValue.BigInt()
tp.zki.Metadata.NewLastIdxRaw = tp.s.CurrentIdx() + 1
tp.zki.AuxFromIdx[tp.i] = auxFromIdx.BigInt()
tp.zki.NewAccount[tp.i] = big.NewInt(1)
// intermediate states
tp.zki.ISOnChain[tp.i] = big.NewInt(1)
}
var accReceiver *common.Account
if tx.ToIdx == auxFromIdx {
accReceiver = accSender
} else {
accReceiver, err = tp.s.GetAccount(tx.ToIdx)
if err != nil {
log.Error(err)
return tracerr.Wrap(err)
}
}
if tp.zki != nil {
// Set the State2 before updating the Receiver leaf
tp.zki.TokenID2[tp.i] = accReceiver.TokenID.BigInt()
tp.zki.Nonce2[tp.i] = accReceiver.Nonce.BigInt()
receiverBJJSign, receiverBJJY := babyjub.UnpackSignY(accReceiver.BJJ)
if receiverBJJSign {
tp.zki.Sign2[tp.i] = big.NewInt(1)
}
tp.zki.Ay2[tp.i] = receiverBJJY
tp.zki.Balance2[tp.i] = accReceiver.Balance
tp.zki.EthAddr2[tp.i] = common.EthAddrToBigInt(accReceiver.EthAddr)
}
// add amount to the receiver
accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.EffectiveAmount)
// update receiver account in localStateDB
p, err = tp.updateAccount(tx.ToIdx, accReceiver)
if err != nil {
return tracerr.Wrap(err)
}
if tp.zki != nil {
tp.zki.Siblings2[tp.i] = siblingsToZKInputFormat(p.Siblings)
}
return tp.s.SetCurrentIdx(tp.s.CurrentIdx() + 1)
}
// It returns the ExitAccount and a boolean determining if the Exit created a
// new Leaf in the ExitTree.
func (tp *TxProcessor) applyExit(coordIdxsMap map[common.TokenID]common.Idx,
collectedFees map[common.TokenID]*big.Int, exitTree *merkletree.MerkleTree,
tx common.Tx, originalAmount *big.Int) (*common.Account, bool, error) {
// 0. subtract tx.Amount from current Account in StateMT
// add the tx.Amount into the Account (tx.FromIdx) in the ExitMT
acc, err := tp.s.GetAccount(tx.FromIdx)
if err != nil {
return nil, false, tracerr.Wrap(err)
}
if tp.zki != nil {
tp.zki.TokenID1[tp.i] = acc.TokenID.BigInt()
tp.zki.Nonce1[tp.i] = acc.Nonce.BigInt()
accBJJSign, accBJJY := babyjub.UnpackSignY(acc.BJJ)
if accBJJSign {
tp.zki.Sign1[tp.i] = big.NewInt(1)
}
tp.zki.Ay1[tp.i] = accBJJY
tp.zki.Balance1[tp.i] = acc.Balance
tp.zki.EthAddr1[tp.i] = common.EthAddrToBigInt(acc.EthAddr)
}
if !tx.IsL1 {
// increment nonce
acc.Nonce++
// compute fee and subtract it from the accSender
fee, err := common.CalcFeeAmount(tx.Amount, *tx.Fee)
if err != nil {
return nil, false, tracerr.Wrap(err)
}
feeAndAmount := new(big.Int).Add(tx.Amount, fee)
acc.Balance = new(big.Int).Sub(acc.Balance, feeAndAmount)
if acc.Balance.Cmp(big.NewInt(0)) == -1 { // balance<0
return nil, false, newErrorNotEnoughBalance(tx)
}
if _, ok := coordIdxsMap[acc.TokenID]; ok {
accCoord, err := tp.s.GetAccount(coordIdxsMap[acc.TokenID])
if err != nil {
return nil, false, tracerr.Wrap(
fmt.Errorf("Can not use CoordIdx that does not exist in the tree. TokenID: %d, CoordIdx: %d",
acc.TokenID, coordIdxsMap[acc.TokenID]))
}
// accumulate the fee for the Coord account
accumulated := tp.AccumulatedFees[accCoord.Idx]
accumulated.Add(accumulated, fee)
if tp.s.Type() == statedb.TypeSynchronizer ||
tp.s.Type() == statedb.TypeBatchBuilder {
collected := collectedFees[accCoord.TokenID]
collected.Add(collected, fee)
}
} else {
log.Debugw("No coord Idx to receive fee", "tx", tx)
}
} else {
acc.Balance = new(big.Int).Sub(acc.Balance, tx.Amount)
if acc.Balance.Cmp(big.NewInt(0)) == -1 { // balance<0
return nil, false, newErrorNotEnoughBalance(tx)
}
}
p, err := tp.updateAccount(tx.FromIdx, acc)
if err != nil {
return nil, false, tracerr.Wrap(err)
}
if tp.zki != nil {
tp.zki.Siblings1[tp.i] = siblingsToZKInputFormat(p.Siblings)
}
if exitTree == nil {
return nil, false, nil
}
// Do not add the Exit when Amount=0, not EffectiveAmount=0. In
// txprocessor.applyExit function, the tx.Amount is in reality the
// EffectiveAmount, that's why is used here the originalAmount
// parameter, which contains the real value of the tx.Amount (not
// tx.EffectiveAmount). This is a particularity of the approach of the
// circuit, the idea will be in the future to update the circuit and
// when Amount>0 but EffectiveAmount=0, to not add the Exit in the
// Exits MerkleTree, but for the moment the Go code is adapted to the
// circuit.
if originalAmount.Cmp(big.NewInt(0)) == 0 { // Amount == 0
// if the Exit Amount==0, the Exit is not added to the ExitTree
return nil, false, nil
}
exitAccount, err := statedb.GetAccountInTreeDB(exitTree.DB(), tx.FromIdx)
if tracerr.Unwrap(err) == db.ErrNotFound {
// 1a. if idx does not exist in exitTree:
// add new leaf 'ExitTreeLeaf', where ExitTreeLeaf.Balance =
// exitAmount (exitAmount=tx.Amount)
exitAccount := &common.Account{
TokenID: acc.TokenID,
Nonce: common.Nonce(0),
// as is a common.Tx, the tx.Amount is already an
// EffectiveAmount
Balance: tx.Amount,
BJJ: acc.BJJ,
EthAddr: acc.EthAddr,
}
if tp.zki != nil {
// Set the State2 before creating the Exit leaf
tp.zki.TokenID2[tp.i] = acc.TokenID.BigInt()
tp.zki.Nonce2[tp.i] = big.NewInt(0)
accBJJSign, accBJJY := babyjub.UnpackSignY(acc.BJJ)
if accBJJSign {
tp.zki.Sign2[tp.i] = big.NewInt(1)
}
tp.zki.Ay2[tp.i] = accBJJY
// Balance2 contains the ExitLeaf Balance before the
// leaf update, which is 0
tp.zki.Balance2[tp.i] = big.NewInt(0)
tp.zki.EthAddr2[tp.i] = common.EthAddrToBigInt(acc.EthAddr)
// as Leaf didn't exist in the ExitTree, set NewExit[i]=1
tp.zki.NewExit[tp.i] = big.NewInt(1)
}
p, err = statedb.CreateAccountInTreeDB(exitTree.DB(), exitTree, tx.FromIdx, exitAccount)
if err != nil {
return nil, false, tracerr.Wrap(err)
}
if tp.zki != nil {
tp.zki.Siblings2[tp.i] = siblingsToZKInputFormat(p.Siblings)
if p.IsOld0 {
tp.zki.IsOld0_2[tp.i] = big.NewInt(1)
}
tp.zki.OldKey2[tp.i] = p.OldKey.BigInt()
tp.zki.OldValue2[tp.i] = p.OldValue.BigInt()
tp.zki.ISExitRoot[tp.i] = exitTree.Root().BigInt()
}
return exitAccount, true, nil
} else if err != nil {
return nil, false, tracerr.Wrap(err)
}
// 1b. if idx already exist in exitTree:
if tp.zki != nil {
// Set the State2 before updating the Exit leaf
tp.zki.TokenID2[tp.i] = acc.TokenID.BigInt()
// increment nonce from existing ExitLeaf
tp.zki.Nonce2[tp.i] = exitAccount.Nonce.BigInt()
accBJJSign, accBJJY := babyjub.UnpackSignY(acc.BJJ)
if accBJJSign {
tp.zki.Sign2[tp.i] = big.NewInt(1)
}
tp.zki.Ay2[tp.i] = accBJJY
// Balance2 contains the ExitLeaf Balance before the leaf
// update
tp.zki.Balance2[tp.i] = exitAccount.Balance
tp.zki.EthAddr2[tp.i] = common.EthAddrToBigInt(acc.EthAddr)
}
// update account, where account.Balance += exitAmount
exitAccount.Balance = new(big.Int).Add(exitAccount.Balance, tx.Amount)
p, err = statedb.UpdateAccountInTreeDB(exitTree.DB(), exitTree, tx.FromIdx, exitAccount)
if err != nil {
return nil, false, tracerr.Wrap(err)
}
if tp.zki != nil {
tp.zki.Siblings2[tp.i] = siblingsToZKInputFormat(p.Siblings)
if p.IsOld0 {
tp.zki.IsOld0_2[tp.i] = big.NewInt(1)
}
tp.zki.OldKey2[tp.i] = p.OldKey.BigInt()
tp.zki.OldValue2[tp.i] = p.OldValue.BigInt()
tp.zki.ISExitRoot[tp.i] = exitTree.Root().BigInt()
}
return exitAccount, false, nil
}
// computeEffectiveAmounts checks that the L1Tx data is correct
func (tp *TxProcessor) computeEffectiveAmounts(tx *common.L1Tx) {
tx.EffectiveAmount = tx.Amount
tx.EffectiveDepositAmount = tx.DepositAmount
if !tx.UserOrigin {
// case where the L1Tx is generated by the Coordinator
tx.EffectiveAmount = big.NewInt(0)
tx.EffectiveDepositAmount = big.NewInt(0)
return
}
if tx.Type == common.TxTypeCreateAccountDeposit {
return
}
if tx.ToIdx >= common.UserThreshold && tx.FromIdx == common.Idx(0) {
// CreateAccountDepositTransfer case
cmp := tx.DepositAmount.Cmp(tx.Amount)
if cmp == -1 { // DepositAmount<Amount
tx.EffectiveAmount = big.NewInt(0)
return
}
// check if tx.TokenID==receiver.TokenID
accReceiver, err := tp.s.GetAccount(tx.ToIdx)
if err != nil {
log.Debugf("EffectiveAmount & EffectiveDepositAmount = 0: can not get account for tx.ToIdx: %d",
tx.ToIdx)
tx.EffectiveDepositAmount = big.NewInt(0)
tx.EffectiveAmount = big.NewInt(0)
return
}
if tx.TokenID != accReceiver.TokenID {
log.Debugf("EffectiveAmount = 0: tx TokenID (%d) != receiver account TokenID (%d)",
tx.TokenID, accReceiver.TokenID)
tx.EffectiveAmount = big.NewInt(0)
return
}
return
}
accSender, err := tp.s.GetAccount(tx.FromIdx)
if err != nil {
log.Debugf("EffectiveAmount & EffectiveDepositAmount = 0: can not get account for tx.FromIdx: %d",
tx.FromIdx)
tx.EffectiveDepositAmount = big.NewInt(0)
tx.EffectiveAmount = big.NewInt(0)
return
}
// check that tx.TokenID corresponds to the Sender account TokenID
if tx.TokenID != accSender.TokenID {
log.Debugf("EffectiveAmount & EffectiveDepositAmount = 0: "+
"tx.TokenID (%d) !=sender account TokenID (%d)",
tx.TokenID, accSender.TokenID)
tx.EffectiveDepositAmount = big.NewInt(0)
tx.EffectiveAmount = big.NewInt(0)
return
}
// check that Sender has enough balance
bal := accSender.Balance
if tx.DepositAmount != nil {
bal = new(big.Int).Add(bal, tx.EffectiveDepositAmount)
}
cmp := bal.Cmp(tx.Amount)
if cmp == -1 {
log.Debugf("EffectiveAmount = 0: Not enough funds (%s<%s)", bal.String(), tx.Amount.String())
tx.EffectiveAmount = big.NewInt(0)
return
}
// check that the tx.FromEthAddr is the same than the EthAddress of the
// Sender
if !bytes.Equal(tx.FromEthAddr.Bytes(), accSender.EthAddr.Bytes()) {
log.Debugf("EffectiveAmount = 0: tx.FromEthAddr (%s) must be the same EthAddr of "+
"the sender account by the Idx (%s)",
tx.FromEthAddr.Hex(), accSender.EthAddr.Hex())
tx.EffectiveAmount = big.NewInt(0)
}
if tx.ToIdx == common.Idx(1) || tx.ToIdx == common.Idx(0) {
// if transfer is Exit type, there are no more checks
return
}
// check that TokenID is the same for Sender & Receiver account
accReceiver, err := tp.s.GetAccount(tx.ToIdx)
if err != nil {
log.Debugf("EffectiveAmount & EffectiveDepositAmount = 0: can not get account for tx.ToIdx: %d",
tx.ToIdx)
tx.EffectiveDepositAmount = big.NewInt(0)
tx.EffectiveAmount = big.NewInt(0)
return
}
if accSender.TokenID != accReceiver.TokenID {
log.Debugf("EffectiveAmount = 0: sender account TokenID (%d) != receiver account TokenID (%d)",
accSender.TokenID, accReceiver.TokenID)
tx.EffectiveAmount = big.NewInt(0)
return
}
if tx.TokenID != accReceiver.TokenID {
log.Debugf("EffectiveAmount & EffectiveDepositAmount = 0: "+
"tx TokenID (%d) != receiver account TokenID (%d)",
tx.TokenID, accReceiver.TokenID)
tx.EffectiveAmount = big.NewInt(0)
return
}
}
// CheckEnoughBalance returns true if the sender of the transaction has enough
// balance in the account to send the Amount+Fee, and also returns the account
// Balance and the Fee+Amount (which is used to give information about why the
// transaction is not selected in case that this method returns false.
func (tp *TxProcessor) CheckEnoughBalance(tx common.PoolL2Tx) (bool, *big.Int, *big.Int) {
acc, err := tp.s.GetAccount(tx.FromIdx)
if err != nil {
return false, nil, nil
}
fee, err := common.CalcFeeAmount(tx.Amount, tx.Fee)
if err != nil {
return false, nil, nil
}
feeAndAmount := new(big.Int).Add(tx.Amount, fee)
return acc.Balance.Cmp(feeAndAmount) != -1, // !=-1 balance<amount
acc.Balance, feeAndAmount
}