You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

294 lines
10 KiB

// Package common contains all the common data structures used at the
// hermez-node, zk.go contains the zkSnark inputs used to generate the proof
//nolint:deadcode,structcheck,unused
package common
import "math/big"
// circuit parameters
// absolute maximum of L1 or L2 transactions allowed
type nTx uint32
// merkle tree depth
type nLevels uint32
// absolute maximum of L1 transaction allowed
type maxL1Tx uint32
//absolute maximum of fee transactions allowed
type maxFeeTx uint32
// ZKInputs represents the inputs that will be used to generate the zkSNARK proof
type ZKInputs struct {
//
// General
//
// inputs for final `hashGlobalInputs`
// OldLastIdx is the last index assigned to an account
OldLastIdx *big.Int // uint64 (max nLevels bits)
// OldStateRoot is the current state merkle tree root
OldStateRoot *big.Int // Hash
// GlobalChainID is the blockchain ID (0 for Ethereum mainnet). This value can be get from the smart contract.
GlobalChainID *big.Int // uint16
// FeeIdxs is an array of merkle tree indexes where the coordinator will receive the accumulated fees
FeeIdxs []*big.Int // uint64 (max nLevels bits), len: [maxFeeTx]
// accumulate fees
// FeePlanTokens contains all the tokenIDs for which the fees are being accumulated
FeePlanTokens []*big.Int // uint32 (max 32 bits), len: [maxFeeTx]
//
// Txs (L1&L2)
//
// transaction L1-L2
// TxCompressedData
TxCompressedData []*big.Int // big.Int (max 251 bits), len: [nTx]
// TxCompressedDataV2, only used in L2Txs, in L1Txs is set to 0
TxCompressedDataV2 []*big.Int // big.Int (max 193 bits), len: [nTx]
// FromIdx
FromIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
// AuxFromIdx is the Idx of the new created account which is consequence of a L1CreateAccountTx
AuxFromIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
// ToIdx
ToIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
// AuxToIdx is the Idx of the Tx that has 'toIdx==0', is the coordinator who will find which Idx corresponds to the 'toBJJAy' or 'toEthAddr'
AuxToIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
// ToBJJAy
ToBJJAy []*big.Int // big.Int, len: [nTx]
// ToEthAddr
ToEthAddr []*big.Int // ethCommon.Address, len: [nTx]
// OnChain determines if is L1 (1/true) or L2 (0/false)
OnChain []*big.Int // bool, len: [nTx]
//
// Txs/L1Txs
//
// NewAccount boolean (0/1) flag set 'true' when L1 tx creates a new account (fromIdx==0)
NewAccount []*big.Int // bool, len: [nTx]
// LoadAmountF encoded as float16
LoadAmountF []*big.Int // uint16, len: [nTx]
// FromEthAddr
FromEthAddr []*big.Int // ethCommon.Address, len: [nTx]
// FromBJJCompressed boolean encoded where each value is a *big.Int
FromBJJCompressed [][256]*big.Int // bool array, len: [nTx][256]
//
// Txs/L2Txs
//
// RqOffset relative transaction position to be linked. Used to perform atomic transactions.
RqOffset []*big.Int // uint8 (max 3 bits), len: [nTx]
// transaction L2 request data
// RqTxCompressedDataV2
RqTxCompressedDataV2 []*big.Int // big.Int (max 251 bits), len: [nTx]
// RqToEthAddr
RqToEthAddr []*big.Int // ethCommon.Address, len: [nTx]
// RqToBJJAy
RqToBJJAy []*big.Int // big.Int, len: [nTx]
// transaction L2 signature
// S
S []*big.Int // big.Int, len: [nTx]
// R8x
R8x []*big.Int // big.Int, len: [nTx]
// R8y
R8y []*big.Int // big.Int, len: [nTx]
//
// State MerkleTree Leafs transitions
//
// state 1, value of the sender (from) account leaf
TokenID1 []*big.Int // uint32, len: [nTx]
Nonce1 []*big.Int // uint64 (max 40 bits), len: [nTx]
Sign1 []*big.Int // bool, len: [nTx]
Ay1 []*big.Int // big.Int, len: [nTx]
Balance1 []*big.Int // big.Int (max 192 bits), len: [nTx]
EthAddr1 []*big.Int // ethCommon.Address, len: [nTx]
Siblings1 [][]*big.Int // big.Int, len: [nTx][nLevels + 1]
// Required for inserts and deletes, values of the CircomProcessorProof (smt insert proof)
IsOld0_1 []*big.Int // bool, len: [nTx]
OldKey1 []*big.Int // uint64 (max 40 bits), len: [nTx]
OldValue1 []*big.Int // Hash, len: [nTx]
// state 2, value of the receiver (to) account leaf
// if Tx is an Exit, state 2 is used for the Exit Merkle Proof
TokenID2 []*big.Int // uint32, len: [nTx]
Nonce2 []*big.Int // uint64 (max 40 bits), len: [nTx]
Sign2 []*big.Int // bool, len: [nTx]
Ay2 []*big.Int // big.Int, len: [nTx]
Balance2 []*big.Int // big.Int (max 192 bits), len: [nTx]
EthAddr2 []*big.Int // ethCommon.Address, len: [nTx]
Siblings2 [][]*big.Int // big.Int, len: [nTx][nLevels + 1]
// newExit determines if an exit transaction has to create a new leaf in the exit tree
NewExit []*big.Int // bool, len: [nTx]
// Required for inserts and deletes, values of the CircomProcessorProof (smt insert proof)
IsOld0_2 []*big.Int // bool, len: [nTx]
OldKey2 []*big.Int // uint64 (max 40 bits), len: [nTx]
OldValue2 []*big.Int // Hash, len: [nTx]
// state 3, value of the account leaf receiver of the Fees
// fee tx
// State fees
TokenID3 []*big.Int // uint32, len: [maxFeeTx]
Nonce3 []*big.Int // uint64 (max 40 bits), len: [maxFeeTx]
Sign3 []*big.Int // bool, len: [maxFeeTx]
Ay3 []*big.Int // big.Int, len: [maxFeeTx]
Balance3 []*big.Int // big.Int (max 192 bits), len: [maxFeeTx]
EthAddr3 []*big.Int // ethCommon.Address, len: [maxFeeTx]
Siblings3 [][]*big.Int // Hash, len: [maxFeeTx][nLevels + 1]
//
// Intermediate States
//
// Intermediate States to parallelize witness computation
// Note: the Intermediate States (IS) of the last transaction does not
// exist. Meaning that transaction 3 (4th) will fill the parameters
// FromIdx[3] and ISOnChain[3], but last transaction (nTx-1) will fill
// FromIdx[nTx-1] but will not fill ISOnChain. That's why IS have
// length of nTx-1, while the other parameters have length of nTx.
// Last transaction does not need intermediate state since its output
// will not be used.
// decode-tx
// ISOnChain indicates if tx is L1 (true) or L2 (false)
ISOnChain []*big.Int // bool, len: [nTx - 1]
// ISOutIdx current index account for each Tx
ISOutIdx []*big.Int // uint64 (max nLevels bits), len: [nTx - 1]
// rollup-tx
// ISStateRoot root at the moment of the Tx, the state root value once the Tx is processed into the state tree
ISStateRoot []*big.Int // Hash, len: [nTx - 1]
// ISExitTree root at the moment of the Tx the value once the Tx is processed into the exit tree
ISExitRoot []*big.Int // Hash, len: [nTx - 1]
// ISAccFeeOut accumulated fees once the Tx is processed
ISAccFeeOut [][]*big.Int // big.Int, len: [nTx - 1][maxFeeTx]
// fee-tx
// ISStateRootFee root at the moment of the Tx, the state root value once the Tx is processed into the state tree
ISStateRootFee []*big.Int // Hash, len: [maxFeeTx - 1]
// ISInitStateRootFee state root once all L1-L2 tx are processed (before computing the fees-tx)
ISInitStateRootFee *big.Int // Hash
// ISFinalAccFee final accumulated fees (before computing the fees-tx)
ISFinalAccFee []*big.Int // big.Int, len: [maxFeeTx - 1]
}
// NewZKInputs returns a pointer to an initialized struct of ZKInputs
func NewZKInputs(nTx, maxFeeTx, nLevels int) *ZKInputs {
zki := &ZKInputs{}
// General
zki.OldLastIdx = big.NewInt(0)
zki.OldStateRoot = big.NewInt(0)
zki.GlobalChainID = big.NewInt(0)
zki.FeeIdxs = newSlice(maxFeeTx)
zki.FeePlanTokens = newSlice(maxFeeTx)
// Txs
zki.TxCompressedData = newSlice(nTx)
zki.TxCompressedDataV2 = newSlice(nTx)
zki.FromIdx = newSlice(nTx)
zki.AuxFromIdx = newSlice(nTx)
zki.ToIdx = newSlice(nTx)
zki.AuxToIdx = newSlice(nTx)
zki.ToBJJAy = newSlice(nTx)
zki.ToEthAddr = newSlice(nTx)
zki.OnChain = newSlice(nTx)
zki.NewAccount = newSlice(nTx)
// L1
zki.LoadAmountF = newSlice(nTx)
zki.FromEthAddr = newSlice(nTx)
zki.FromBJJCompressed = make([][256]*big.Int, nTx)
for i := 0; i < len(zki.FromBJJCompressed); i++ {
// zki.FromBJJCompressed[i] = newSlice(256)
for j := 0; j < 256; j++ {
zki.FromBJJCompressed[i][j] = big.NewInt(0)
}
}
// L2
zki.RqOffset = newSlice(nTx)
zki.RqTxCompressedDataV2 = newSlice(nTx)
zki.RqToEthAddr = newSlice(nTx)
zki.RqToBJJAy = newSlice(nTx)
zki.S = newSlice(nTx)
zki.R8x = newSlice(nTx)
zki.R8y = newSlice(nTx)
// State MerkleTree Leafs transitions
zki.TokenID1 = newSlice(nTx)
zki.Nonce1 = newSlice(nTx)
zki.Sign1 = newSlice(nTx)
zki.Ay1 = newSlice(nTx)
zki.Balance1 = newSlice(nTx)
zki.EthAddr1 = newSlice(nTx)
zki.Siblings1 = make([][]*big.Int, nTx)
for i := 0; i < len(zki.Siblings1); i++ {
zki.Siblings1[i] = newSlice(nLevels + 1)
}
zki.IsOld0_1 = newSlice(nTx)
zki.OldKey1 = newSlice(nTx)
zki.OldValue1 = newSlice(nTx)
zki.TokenID2 = newSlice(nTx)
zki.Nonce2 = newSlice(nTx)
zki.Sign2 = newSlice(nTx)
zki.Ay2 = newSlice(nTx)
zki.Balance2 = newSlice(nTx)
zki.EthAddr2 = newSlice(nTx)
zki.Siblings2 = make([][]*big.Int, nTx)
for i := 0; i < len(zki.Siblings2); i++ {
zki.Siblings2[i] = newSlice(nLevels + 1)
}
zki.NewExit = newSlice(nTx)
zki.IsOld0_2 = newSlice(nTx)
zki.OldKey2 = newSlice(nTx)
zki.OldValue2 = newSlice(nTx)
zki.TokenID3 = newSlice(maxFeeTx)
zki.Nonce3 = newSlice(maxFeeTx)
zki.Sign3 = newSlice(maxFeeTx)
zki.Ay3 = newSlice(maxFeeTx)
zki.Balance3 = newSlice(maxFeeTx)
zki.EthAddr3 = newSlice(maxFeeTx)
zki.Siblings3 = make([][]*big.Int, maxFeeTx)
for i := 0; i < len(zki.Siblings3); i++ {
zki.Siblings3[i] = newSlice(nLevels + 1)
}
// Intermediate States
zki.ISOnChain = newSlice(nTx - 1)
zki.ISOutIdx = newSlice(nTx - 1)
zki.ISStateRoot = newSlice(nTx - 1)
zki.ISExitRoot = newSlice(nTx - 1)
zki.ISAccFeeOut = make([][]*big.Int, nTx-1)
for i := 0; i < len(zki.ISAccFeeOut); i++ {
zki.ISAccFeeOut[i] = newSlice(maxFeeTx)
}
zki.ISStateRootFee = newSlice(maxFeeTx - 1)
zki.ISInitStateRootFee = big.NewInt(0)
zki.ISFinalAccFee = newSlice(maxFeeTx - 1)
return zki
}
// newSlice returns a []*big.Int slice of length n with values initialized at
// 0.
// Is used to initialize all *big.Ints of the ZKInputs data structure, so when
// the transactions are processed and the ZKInputs filled, there is no need to
// set all the elements, and if a transaction does not use a parameter, can be
// leaved as it is in the ZKInputs, as will be 0, so later when using the
// ZKInputs to generate the zkSnark proof there is no 'nil'/'null' values.
func newSlice(n int) []*big.Int {
s := make([]*big.Int, n)
for i := 0; i < len(s); i++ {
s[i] = big.NewInt(0)
}
return s
}