|
// Package common contains all the common data structures used at the
|
|
// hermez-node, zk.go contains the zkSnark inputs used to generate the proof
|
|
//nolint:deadcode,structcheck,unused
|
|
package common
|
|
|
|
import "math/big"
|
|
|
|
// circuit parameters
|
|
// absolute maximum of L1 or L2 transactions allowed
|
|
type nTx uint32
|
|
|
|
// merkle tree depth
|
|
type nLevels uint32
|
|
|
|
// absolute maximum of L1 transaction allowed
|
|
type maxL1Tx uint32
|
|
|
|
//absolute maximum of fee transactions allowed
|
|
type maxFeeTx uint32
|
|
|
|
// ZKInputs represents the inputs that will be used to generate the zkSNARK proof
|
|
type ZKInputs struct {
|
|
//
|
|
// General
|
|
//
|
|
|
|
// inputs for final `hashGlobalInputs`
|
|
// OldLastIdx is the last index assigned to an account
|
|
OldLastIdx *big.Int // uint64 (max nLevels bits)
|
|
// OldStateRoot is the current state merkle tree root
|
|
OldStateRoot *big.Int // Hash
|
|
// GlobalChainID is the blockchain ID (0 for Ethereum mainnet). This value can be get from the smart contract.
|
|
GlobalChainID *big.Int // uint16
|
|
// FeeIdxs is an array of merkle tree indexes where the coordinator will receive the accumulated fees
|
|
FeeIdxs []*big.Int // uint64 (max nLevels bits), len: [maxFeeTx]
|
|
|
|
// accumulate fees
|
|
// FeePlanTokens contains all the tokenIDs for which the fees are being accumulated
|
|
FeePlanTokens []*big.Int // uint32 (max 32 bits), len: [maxFeeTx]
|
|
|
|
//
|
|
// Txs (L1&L2)
|
|
//
|
|
|
|
// transaction L1-L2
|
|
// TxCompressedData
|
|
TxCompressedData []*big.Int // big.Int (max 251 bits), len: [nTx]
|
|
// TxCompressedDataV2, only used in L2Txs, in L1Txs is set to 0
|
|
TxCompressedDataV2 []*big.Int // big.Int (max 193 bits), len: [nTx]
|
|
|
|
// FromIdx
|
|
FromIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
|
|
// AuxFromIdx is the Idx of the new created account which is consequence of a L1CreateAccountTx
|
|
AuxFromIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
|
|
|
|
// ToIdx
|
|
ToIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
|
|
// AuxToIdx is the Idx of the Tx that has 'toIdx==0', is the coordinator who will find which Idx corresponds to the 'toBJJAy' or 'toEthAddr'
|
|
AuxToIdx []*big.Int // uint64 (max nLevels bits), len: [nTx]
|
|
// ToBJJAy
|
|
ToBJJAy []*big.Int // big.Int, len: [nTx]
|
|
// ToEthAddr
|
|
ToEthAddr []*big.Int // ethCommon.Address, len: [nTx]
|
|
|
|
// OnChain determines if is L1 (1/true) or L2 (0/false)
|
|
OnChain []*big.Int // bool, len: [nTx]
|
|
|
|
//
|
|
// Txs/L1Txs
|
|
//
|
|
// NewAccount boolean (0/1) flag set 'true' when L1 tx creates a new account (fromIdx==0)
|
|
NewAccount []*big.Int // bool, len: [nTx]
|
|
// LoadAmountF encoded as float16
|
|
LoadAmountF []*big.Int // uint16, len: [nTx]
|
|
// FromEthAddr
|
|
FromEthAddr []*big.Int // ethCommon.Address, len: [nTx]
|
|
// FromBJJCompressed boolean encoded where each value is a *big.Int
|
|
FromBJJCompressed [][256]*big.Int // bool array, len: [nTx][256]
|
|
|
|
//
|
|
// Txs/L2Txs
|
|
//
|
|
|
|
// RqOffset relative transaction position to be linked. Used to perform atomic transactions.
|
|
RqOffset []*big.Int // uint8 (max 3 bits), len: [nTx]
|
|
|
|
// transaction L2 request data
|
|
// RqTxCompressedDataV2
|
|
RqTxCompressedDataV2 []*big.Int // big.Int (max 251 bits), len: [nTx]
|
|
// RqToEthAddr
|
|
RqToEthAddr []*big.Int // ethCommon.Address, len: [nTx]
|
|
// RqToBJJAy
|
|
RqToBJJAy []*big.Int // big.Int, len: [nTx]
|
|
|
|
// transaction L2 signature
|
|
// S
|
|
S []*big.Int // big.Int, len: [nTx]
|
|
// R8x
|
|
R8x []*big.Int // big.Int, len: [nTx]
|
|
// R8y
|
|
R8y []*big.Int // big.Int, len: [nTx]
|
|
|
|
//
|
|
// State MerkleTree Leafs transitions
|
|
//
|
|
|
|
// state 1, value of the sender (from) account leaf
|
|
TokenID1 []*big.Int // uint32, len: [nTx]
|
|
Nonce1 []*big.Int // uint64 (max 40 bits), len: [nTx]
|
|
Sign1 []*big.Int // bool, len: [nTx]
|
|
Ay1 []*big.Int // big.Int, len: [nTx]
|
|
Balance1 []*big.Int // big.Int (max 192 bits), len: [nTx]
|
|
EthAddr1 []*big.Int // ethCommon.Address, len: [nTx]
|
|
Siblings1 [][]*big.Int // big.Int, len: [nTx][nLevels + 1]
|
|
// Required for inserts and deletes, values of the CircomProcessorProof (smt insert proof)
|
|
IsOld0_1 []*big.Int // bool, len: [nTx]
|
|
OldKey1 []*big.Int // uint64 (max 40 bits), len: [nTx]
|
|
OldValue1 []*big.Int // Hash, len: [nTx]
|
|
|
|
// state 2, value of the receiver (to) account leaf
|
|
// if Tx is an Exit, state 2 is used for the Exit Merkle Proof
|
|
TokenID2 []*big.Int // uint32, len: [nTx]
|
|
Nonce2 []*big.Int // uint64 (max 40 bits), len: [nTx]
|
|
Sign2 []*big.Int // bool, len: [nTx]
|
|
Ay2 []*big.Int // big.Int, len: [nTx]
|
|
Balance2 []*big.Int // big.Int (max 192 bits), len: [nTx]
|
|
EthAddr2 []*big.Int // ethCommon.Address, len: [nTx]
|
|
Siblings2 [][]*big.Int // big.Int, len: [nTx][nLevels + 1]
|
|
// newExit determines if an exit transaction has to create a new leaf in the exit tree
|
|
NewExit []*big.Int // bool, len: [nTx]
|
|
// Required for inserts and deletes, values of the CircomProcessorProof (smt insert proof)
|
|
IsOld0_2 []*big.Int // bool, len: [nTx]
|
|
OldKey2 []*big.Int // uint64 (max 40 bits), len: [nTx]
|
|
OldValue2 []*big.Int // Hash, len: [nTx]
|
|
|
|
// state 3, value of the account leaf receiver of the Fees
|
|
// fee tx
|
|
// State fees
|
|
TokenID3 []*big.Int // uint32, len: [maxFeeTx]
|
|
Nonce3 []*big.Int // uint64 (max 40 bits), len: [maxFeeTx]
|
|
Sign3 []*big.Int // bool, len: [maxFeeTx]
|
|
Ay3 []*big.Int // big.Int, len: [maxFeeTx]
|
|
Balance3 []*big.Int // big.Int (max 192 bits), len: [maxFeeTx]
|
|
EthAddr3 []*big.Int // ethCommon.Address, len: [maxFeeTx]
|
|
Siblings3 [][]*big.Int // Hash, len: [maxFeeTx][nLevels + 1]
|
|
|
|
//
|
|
// Intermediate States
|
|
//
|
|
|
|
// Intermediate States to parallelize witness computation
|
|
// decode-tx
|
|
// ISOnChain indicates if tx is L1 (true) or L2 (false)
|
|
ISOnChain []*big.Int // bool, len: [nTx - 1]
|
|
// ISOutIdx current index account for each Tx
|
|
ISOutIdx []*big.Int // uint64 (max nLevels bits), len: [nTx - 1]
|
|
// rollup-tx
|
|
// ISStateRoot root at the moment of the Tx, the state root value once the Tx is processed into the state tree
|
|
ISStateRoot []*big.Int // Hash, len: [nTx - 1]
|
|
// ISExitTree root at the moment of the Tx the value once the Tx is processed into the exit tree
|
|
ISExitRoot []*big.Int // Hash, len: [nTx - 1]
|
|
// ISAccFeeOut accumulated fees once the Tx is processed
|
|
ISAccFeeOut [][]*big.Int // big.Int, len: [nTx - 1][maxFeeTx]
|
|
// fee-tx
|
|
// ISStateRootFee root at the moment of the Tx, the state root value once the Tx is processed into the state tree
|
|
ISStateRootFee []*big.Int // Hash, len: [maxFeeTx - 1]
|
|
// ISInitStateRootFee state root once all L1-L2 tx are processed (before computing the fees-tx)
|
|
ISInitStateRootFee *big.Int // Hash
|
|
// ISFinalAccFee final accumulated fees (before computing the fees-tx)
|
|
ISFinalAccFee []*big.Int // big.Int, len: [maxFeeTx - 1]
|
|
}
|
|
|
|
// NewZKInputs returns a pointer to an initialized struct of ZKInputs
|
|
func NewZKInputs(nTx, maxFeeTx, nLevels int) *ZKInputs {
|
|
zki := &ZKInputs{}
|
|
|
|
// General
|
|
zki.OldLastIdx = big.NewInt(0)
|
|
zki.OldStateRoot = big.NewInt(0)
|
|
zki.GlobalChainID = big.NewInt(0)
|
|
zki.FeeIdxs = newSlice(maxFeeTx)
|
|
zki.FeePlanTokens = newSlice(maxFeeTx)
|
|
|
|
// Txs
|
|
zki.TxCompressedData = newSlice(nTx)
|
|
zki.TxCompressedDataV2 = newSlice(nTx)
|
|
zki.FromIdx = newSlice(nTx)
|
|
zki.AuxFromIdx = newSlice(nTx)
|
|
zki.ToIdx = newSlice(nTx)
|
|
zki.AuxToIdx = newSlice(nTx)
|
|
zki.ToBJJAy = newSlice(nTx)
|
|
zki.ToEthAddr = newSlice(nTx)
|
|
zki.OnChain = newSlice(nTx)
|
|
zki.NewAccount = newSlice(nTx)
|
|
|
|
// L1
|
|
zki.LoadAmountF = newSlice(nTx)
|
|
zki.FromEthAddr = newSlice(nTx)
|
|
zki.FromBJJCompressed = make([][256]*big.Int, nTx)
|
|
for i := 0; i < len(zki.FromBJJCompressed); i++ {
|
|
// zki.FromBJJCompressed[i] = newSlice(256)
|
|
for j := 0; j < 256; j++ {
|
|
zki.FromBJJCompressed[i][j] = big.NewInt(0)
|
|
}
|
|
}
|
|
|
|
// L2
|
|
zki.RqOffset = newSlice(nTx)
|
|
zki.RqTxCompressedDataV2 = newSlice(nTx)
|
|
zki.RqToEthAddr = newSlice(nTx)
|
|
zki.RqToBJJAy = newSlice(nTx)
|
|
zki.S = newSlice(nTx)
|
|
zki.R8x = newSlice(nTx)
|
|
zki.R8y = newSlice(nTx)
|
|
|
|
// State MerkleTree Leafs transitions
|
|
zki.TokenID1 = newSlice(nTx)
|
|
zki.Nonce1 = newSlice(nTx)
|
|
zki.Sign1 = newSlice(nTx)
|
|
zki.Ay1 = newSlice(nTx)
|
|
zki.Balance1 = newSlice(nTx)
|
|
zki.EthAddr1 = newSlice(nTx)
|
|
zki.Siblings1 = make([][]*big.Int, nTx)
|
|
for i := 0; i < len(zki.Siblings1); i++ {
|
|
zki.Siblings1[i] = newSlice(nLevels + 1)
|
|
}
|
|
zki.IsOld0_1 = newSlice(nTx)
|
|
zki.OldKey1 = newSlice(nTx)
|
|
zki.OldValue1 = newSlice(nTx)
|
|
|
|
zki.TokenID2 = newSlice(nTx)
|
|
zki.Nonce2 = newSlice(nTx)
|
|
zki.Sign2 = newSlice(nTx)
|
|
zki.Ay2 = newSlice(nTx)
|
|
zki.Balance2 = newSlice(nTx)
|
|
zki.EthAddr2 = newSlice(nTx)
|
|
zki.Siblings2 = make([][]*big.Int, nTx)
|
|
for i := 0; i < len(zki.Siblings2); i++ {
|
|
zki.Siblings2[i] = newSlice(nLevels + 1)
|
|
}
|
|
zki.NewExit = newSlice(nTx)
|
|
zki.IsOld0_2 = newSlice(nTx)
|
|
zki.OldKey2 = newSlice(nTx)
|
|
zki.OldValue2 = newSlice(nTx)
|
|
|
|
zki.TokenID3 = newSlice(maxFeeTx)
|
|
zki.Nonce3 = newSlice(maxFeeTx)
|
|
zki.Sign3 = newSlice(maxFeeTx)
|
|
zki.Ay3 = newSlice(maxFeeTx)
|
|
zki.Balance3 = newSlice(maxFeeTx)
|
|
zki.EthAddr3 = newSlice(maxFeeTx)
|
|
zki.Siblings3 = make([][]*big.Int, maxFeeTx)
|
|
for i := 0; i < len(zki.Siblings3); i++ {
|
|
zki.Siblings3[i] = newSlice(nLevels + 1)
|
|
}
|
|
|
|
// Intermediate States
|
|
zki.ISOnChain = newSlice(nTx - 1)
|
|
zki.ISOutIdx = newSlice(nTx - 1)
|
|
zki.ISStateRoot = newSlice(nTx - 1)
|
|
zki.ISExitRoot = newSlice(nTx - 1)
|
|
zki.ISAccFeeOut = make([][]*big.Int, nTx-1)
|
|
for i := 0; i < len(zki.ISAccFeeOut); i++ {
|
|
zki.ISAccFeeOut[i] = newSlice(maxFeeTx)
|
|
}
|
|
zki.ISStateRootFee = newSlice(maxFeeTx - 1)
|
|
zki.ISInitStateRootFee = big.NewInt(0)
|
|
zki.ISFinalAccFee = newSlice(maxFeeTx - 1)
|
|
|
|
return zki
|
|
}
|
|
|
|
// newSlice returns a []*big.Int slice of length n with values initialized at
|
|
// 0.
|
|
// Is used to initialize all *big.Ints of the ZKInputs data structure, so when
|
|
// the transactions are processed and the ZKInputs filled, there is no need to
|
|
// set all the elements, and if a transaction does not use a parameter, can be
|
|
// leaved as it is in the ZKInputs, as will be 0, so later when using the
|
|
// ZKInputs to generate the zkSnark proof there is no 'nil'/'null' values.
|
|
func newSlice(n int) []*big.Int {
|
|
s := make([]*big.Int, n)
|
|
for i := 0; i < len(s); i++ {
|
|
s[i] = big.NewInt(0)
|
|
}
|
|
return s
|
|
}
|