You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

1114 lines
34 KiB

package statedb
import (
"bytes"
"errors"
"fmt"
"io/ioutil"
"math/big"
"os"
"github.com/hermeznetwork/hermez-node/common"
"github.com/hermeznetwork/hermez-node/log"
"github.com/iden3/go-iden3-crypto/babyjub"
"github.com/iden3/go-merkletree"
"github.com/iden3/go-merkletree/db"
"github.com/iden3/go-merkletree/db/pebble"
)
var (
// keyidx is used as key in the db to store the current Idx
keyidx = []byte("k:idx")
)
func (s *StateDB) resetZKInputs() {
s.zki = nil
s.i = 0 // initialize current transaction index in the ZKInputs generation
}
type processedExit struct {
exit bool
newExit bool
idx common.Idx
acc common.Account
}
// ProcessTxOutput contains the output of the ProcessTxs method
type ProcessTxOutput struct {
ZKInputs *common.ZKInputs
ExitInfos []common.ExitInfo
CreatedAccounts []common.Account
CoordinatorIdxsMap map[common.TokenID]common.Idx
CollectedFees map[common.TokenID]*big.Int
}
// ProcessTxsConfig contains the config for ProcessTxs
type ProcessTxsConfig struct {
NLevels uint32
MaxFeeTx uint32
MaxTx uint32
MaxL1Tx uint32
}
// ProcessTxs process the given L1Txs & L2Txs applying the needed updates to
// the StateDB depending on the transaction Type. If StateDB
// type==TypeBatchBuilder, returns the common.ZKInputs to generate the
// SnarkProof later used by the BatchBuilder. If StateDB
// type==TypeSynchronizer, assumes that the call is done from the Synchronizer,
// returns common.ExitTreeLeaf that is later used by the Synchronizer to update
// the HistoryDB, and adds Nonce & TokenID to the L2Txs.
// And if TypeSynchronizer returns an array of common.Account with all the
// created accounts.
func (s *StateDB) ProcessTxs(ptc ProcessTxsConfig, coordIdxs []common.Idx, l1usertxs, l1coordinatortxs []common.L1Tx, l2txs []common.PoolL2Tx) (ptOut *ProcessTxOutput, err error) {
defer func() {
if err == nil {
err = s.MakeCheckpoint()
}
}()
var exitTree *merkletree.MerkleTree
var createdAccounts []common.Account
if s.zki != nil {
return nil, errors.New("Expected StateDB.zki==nil, something went wrong and it's not empty")
}
defer s.resetZKInputs()
if len(coordIdxs) >= int(ptc.MaxFeeTx) {
return nil, fmt.Errorf("CoordIdxs (%d) length must be smaller than MaxFeeTx (%d)", len(coordIdxs), ptc.MaxFeeTx)
}
s.accumulatedFees = make(map[common.Idx]*big.Int)
nTx := len(l1usertxs) + len(l1coordinatortxs) + len(l2txs)
if nTx == 0 {
// TODO return ZKInputs of batch without txs
return &ProcessTxOutput{
ZKInputs: nil,
ExitInfos: nil,
CreatedAccounts: nil,
CoordinatorIdxsMap: nil,
CollectedFees: nil,
}, nil
}
exits := make([]processedExit, nTx)
if s.typ == TypeBatchBuilder {
s.zki = common.NewZKInputs(uint32(nTx), ptc.MaxL1Tx, ptc.MaxTx, ptc.MaxFeeTx, ptc.NLevels, s.currentBatch.BigInt())
s.zki.OldLastIdx = s.idx.BigInt()
s.zki.OldStateRoot = s.mt.Root().BigInt()
}
// TBD if ExitTree is only in memory or stored in disk, for the moment
// is only needed in memory
if s.typ == TypeSynchronizer || s.typ == TypeBatchBuilder {
tmpDir, err := ioutil.TempDir("", "hermez-statedb-exittree")
if err != nil {
return nil, err
}
defer func() {
if err := os.RemoveAll(tmpDir); err != nil {
log.Errorw("Deleting statedb temp exit tree", "err", err)
}
}()
sto, err := pebble.NewPebbleStorage(tmpDir, false)
if err != nil {
return nil, err
}
exitTree, err = merkletree.NewMerkleTree(sto, s.mt.MaxLevels())
if err != nil {
return nil, err
}
}
// Process L1UserTxs
for i := 0; i < len(l1usertxs); i++ {
// assumption: l1usertx are sorted by L1Tx.Position
exitIdx, exitAccount, newExit, createdAccount, err := s.processL1Tx(exitTree, &l1usertxs[i])
if err != nil {
return nil, err
}
if s.typ == TypeSynchronizer && createdAccount != nil {
createdAccounts = append(createdAccounts, *createdAccount)
}
if s.zki != nil {
l1TxData, err := l1usertxs[i].BytesGeneric()
if err != nil {
return nil, err
}
s.zki.Metadata.L1TxsData = append(s.zki.Metadata.L1TxsData, l1TxData)
l1TxDataAvailability, err := l1usertxs[i].BytesDataAvailability(s.zki.Metadata.NLevels)
if err != nil {
return nil, err
}
s.zki.Metadata.L1TxsDataAvailability = append(s.zki.Metadata.L1TxsDataAvailability, l1TxDataAvailability)
if s.i < nTx-1 {
s.zki.ISOutIdx[s.i] = s.idx.BigInt()
s.zki.ISStateRoot[s.i] = s.mt.Root().BigInt()
}
}
if s.typ == TypeSynchronizer || s.typ == TypeBatchBuilder {
if exitIdx != nil && exitTree != nil {
exits[s.i] = processedExit{
exit: true,
newExit: newExit,
idx: *exitIdx,
acc: *exitAccount,
}
}
s.i++
}
}
// Process L1CoordinatorTxs
for i := 0; i < len(l1coordinatortxs); i++ {
exitIdx, _, _, createdAccount, err := s.processL1Tx(exitTree, &l1coordinatortxs[i])
if err != nil {
return nil, err
}
if exitIdx != nil {
log.Error("Unexpected Exit in L1CoordinatorTx")
}
if s.typ == TypeSynchronizer && createdAccount != nil {
createdAccounts = append(createdAccounts, *createdAccount)
}
if s.zki != nil {
l1TxData, err := l1coordinatortxs[i].BytesGeneric()
if err != nil {
return nil, err
}
s.zki.Metadata.L1TxsData = append(s.zki.Metadata.L1TxsData, l1TxData)
if s.i < nTx-1 {
s.zki.ISOutIdx[s.i] = s.idx.BigInt()
s.zki.ISStateRoot[s.i] = s.mt.Root().BigInt()
}
s.i++
}
}
s.accumulatedFees = make(map[common.Idx]*big.Int)
for _, idx := range coordIdxs {
s.accumulatedFees[idx] = big.NewInt(0)
}
// once L1UserTxs & L1CoordinatorTxs are processed, get TokenIDs of
// coordIdxs. In this way, if a coordIdx uses an Idx that is being
// created in the current batch, at this point the Idx will be created
coordIdxsMap, err := s.getTokenIDsFromIdxs(coordIdxs)
if err != nil {
return nil, err
}
// collectedFees will contain the amount of fee collected for each
// TokenID
var collectedFees map[common.TokenID]*big.Int
if s.typ == TypeSynchronizer || s.typ == TypeBatchBuilder {
collectedFees = make(map[common.TokenID]*big.Int)
for tokenID := range coordIdxsMap {
collectedFees[tokenID] = big.NewInt(0)
}
}
if s.zki != nil {
// get the feePlanTokens
feePlanTokens, err := s.getFeePlanTokens(coordIdxs, l2txs)
if err != nil {
log.Error(err)
return nil, err
}
copy(s.zki.FeePlanTokens, feePlanTokens)
}
// Process L2Txs
for i := 0; i < len(l2txs); i++ {
exitIdx, exitAccount, newExit, err := s.processL2Tx(coordIdxsMap, collectedFees, exitTree, &l2txs[i])
if err != nil {
return nil, err
}
if s.zki != nil {
l2TxData, err := l2txs[i].L2Tx().BytesDataAvailability(s.zki.Metadata.NLevels)
if err != nil {
return nil, err
}
s.zki.Metadata.L2TxsData = append(s.zki.Metadata.L2TxsData, l2TxData)
if s.i < nTx-1 {
// Intermediate States
s.zki.ISOutIdx[s.i] = s.idx.BigInt()
s.zki.ISStateRoot[s.i] = s.mt.Root().BigInt()
s.zki.ISAccFeeOut[s.i] = formatAccumulatedFees(collectedFees, s.zki.FeePlanTokens)
}
if s.i == nTx-1 {
s.zki.ISFinalAccFee = formatAccumulatedFees(collectedFees, s.zki.FeePlanTokens)
}
}
if s.typ == TypeSynchronizer || s.typ == TypeBatchBuilder {
if exitIdx != nil && exitTree != nil {
exits[s.i] = processedExit{
exit: true,
newExit: newExit,
idx: *exitIdx,
acc: *exitAccount,
}
}
s.i++
}
}
if s.zki != nil {
// before computing the Fees txs, set the ISInitStateRootFee
s.zki.ISInitStateRootFee = s.mt.Root().BigInt()
}
// distribute the AccumulatedFees from the processed L2Txs into the
// Coordinator Idxs
iFee := 0
for idx, accumulatedFee := range s.accumulatedFees {
// send the fee to the Idx of the Coordinator for the TokenID
accCoord, err := s.GetAccount(idx)
if err != nil {
log.Errorw("Can not distribute accumulated fees to coordinator account: No coord Idx to receive fee", "idx", idx)
return nil, err
}
accCoord.Balance = new(big.Int).Add(accCoord.Balance, accumulatedFee)
pFee, err := s.UpdateAccount(idx, accCoord)
if err != nil {
log.Error(err)
return nil, err
}
if s.zki != nil {
s.zki.TokenID3[iFee] = accCoord.TokenID.BigInt()
s.zki.Nonce3[iFee] = accCoord.Nonce.BigInt()
if babyjub.PointCoordSign(accCoord.PublicKey.X) {
s.zki.Sign3[iFee] = big.NewInt(1)
}
s.zki.Ay3[iFee] = accCoord.PublicKey.Y
s.zki.Balance3[iFee] = accCoord.Balance
s.zki.EthAddr3[iFee] = common.EthAddrToBigInt(accCoord.EthAddr)
s.zki.Siblings3[iFee] = siblingsToZKInputFormat(pFee.Siblings)
// add Coord Idx to ZKInputs.FeeTxsData
s.zki.FeeIdxs[iFee] = idx.BigInt()
s.zki.ISStateRootFee[iFee] = s.mt.Root().BigInt()
}
iFee++
}
if s.typ == TypeTxSelector {
return nil, nil
}
// once all txs processed (exitTree root frozen), for each Exit,
// generate common.ExitInfo data
var exitInfos []common.ExitInfo
for i := 0; i < nTx; i++ {
if !exits[i].exit {
continue
}
exitIdx := exits[i].idx
exitAccount := exits[i].acc
// 0. generate MerkleProof
p, err := exitTree.GenerateCircomVerifierProof(exitIdx.BigInt(), nil)
if err != nil {
return nil, err
}
// 1. generate common.ExitInfo
ei := common.ExitInfo{
AccountIdx: exitIdx,
MerkleProof: p,
Balance: exitAccount.Balance,
}
exitInfos = append(exitInfos, ei)
if s.zki != nil {
s.zki.TokenID2[i] = exitAccount.TokenID.BigInt()
s.zki.Nonce2[i] = exitAccount.Nonce.BigInt()
if babyjub.PointCoordSign(exitAccount.PublicKey.X) {
s.zki.Sign2[i] = big.NewInt(1)
}
s.zki.Ay2[i] = exitAccount.PublicKey.Y
s.zki.Balance2[i] = exitAccount.Balance
s.zki.EthAddr2[i] = common.EthAddrToBigInt(exitAccount.EthAddr)
for j := 0; j < len(p.Siblings); j++ {
s.zki.Siblings2[i][j] = p.Siblings[j].BigInt()
}
if exits[i].newExit {
s.zki.NewExit[i] = big.NewInt(1)
}
if p.IsOld0 {
s.zki.IsOld0_2[i] = big.NewInt(1)
}
s.zki.OldKey2[i] = p.OldKey.BigInt()
s.zki.OldValue2[i] = p.OldValue.BigInt()
if i < nTx-1 {
s.zki.ISExitRoot[i] = exitTree.Root().BigInt()
}
}
}
if s.typ == TypeSynchronizer {
// return exitInfos, createdAccounts and collectedFees, so Synchronizer will
// be able to store it into HistoryDB for the concrete BatchNum
return &ProcessTxOutput{
ZKInputs: nil,
ExitInfos: exitInfos,
CreatedAccounts: createdAccounts,
CoordinatorIdxsMap: coordIdxsMap,
CollectedFees: collectedFees,
}, nil
}
// compute last ZKInputs parameters
s.zki.GlobalChainID = big.NewInt(0) // TODO, 0: ethereum, this will be get from config file
// zki.FeeIdxs = ? // TODO, this will be get from the config file
s.zki.Metadata.NewStateRootRaw = s.mt.Root()
s.zki.Metadata.NewExitRootRaw = exitTree.Root()
// return ZKInputs as the BatchBuilder will return it to forge the Batch
return &ProcessTxOutput{
ZKInputs: s.zki,
ExitInfos: nil,
CreatedAccounts: nil,
CoordinatorIdxsMap: coordIdxsMap,
CollectedFees: nil,
}, nil
}
// getFeePlanTokens returns an array of *big.Int containing a list of tokenIDs
// corresponding to the given CoordIdxs and the processed L2Txs
func (s *StateDB) getFeePlanTokens(coordIdxs []common.Idx, l2txs []common.PoolL2Tx) ([]*big.Int, error) {
// get Coordinator TokenIDs corresponding to the Idxs where the Fees
// will be sent
coordTokenIDs := make(map[common.TokenID]bool)
for i := 0; i < len(coordIdxs); i++ {
acc, err := s.GetAccount(coordIdxs[i])
if err != nil {
log.Errorf("could not get account to determine TokenID of CoordIdx %d not found: %s", coordIdxs[i], err.Error())
return nil, err
}
coordTokenIDs[acc.TokenID] = true
}
tokenIDs := make(map[common.TokenID]bool)
for i := 0; i < len(l2txs); i++ {
// as L2Tx does not have parameter TokenID, get it from the
// AccountsDB (in the StateDB)
acc, err := s.GetAccount(l2txs[i].FromIdx)
if err != nil {
log.Errorf("could not get account to determine TokenID of L2Tx: FromIdx %d not found: %s", l2txs[i].FromIdx, err.Error())
return nil, err
}
if _, ok := coordTokenIDs[acc.TokenID]; ok {
tokenIDs[acc.TokenID] = true
}
}
var tBI []*big.Int
for t := range tokenIDs {
tBI = append(tBI, t.BigInt())
}
return tBI, nil
}
// processL1Tx process the given L1Tx applying the needed updates to the
// StateDB depending on the transaction Type. It returns the 3 parameters
// related to the Exit (in case of): Idx, ExitAccount, boolean determining if
// the Exit created a new Leaf in the ExitTree.
// And another *common.Account parameter which contains the created account in
// case that has been a new created account and that the StateDB is of type
// TypeSynchronizer.
func (s *StateDB) processL1Tx(exitTree *merkletree.MerkleTree, tx *common.L1Tx) (*common.Idx, *common.Account, bool, *common.Account, error) {
// ZKInputs
if s.zki != nil {
// Txs
var err error
s.zki.TxCompressedData[s.i], err = tx.TxCompressedData()
if err != nil {
log.Error(err)
return nil, nil, false, nil, err
}
s.zki.FromIdx[s.i] = tx.FromIdx.BigInt()
s.zki.ToIdx[s.i] = tx.ToIdx.BigInt()
s.zki.OnChain[s.i] = big.NewInt(1)
// L1Txs
s.zki.LoadAmountF[s.i] = tx.LoadAmount
s.zki.FromEthAddr[s.i] = common.EthAddrToBigInt(tx.FromEthAddr)
if tx.FromBJJ != nil {
s.zki.FromBJJCompressed[s.i] = BJJCompressedTo256BigInts(tx.FromBJJ.Compress())
}
// Intermediate States, for all the transactions except for the last one
if s.i < len(s.zki.ISOnChain) { // len(s.zki.ISOnChain) == nTx
s.zki.ISOnChain[s.i] = big.NewInt(1)
}
}
switch tx.Type {
case common.TxTypeForceTransfer:
s.computeEffectiveAmounts(tx)
// go to the MT account of sender and receiver, and update balance
// & nonce
// coordIdxsMap is 'nil', as at L1Txs there is no L2 fees
// 0 for the parameter toIdx, as at L1Tx ToIdx can only be 0 in the Deposit type case.
err := s.applyTransfer(nil, nil, tx.Tx(), 0)
if err != nil {
log.Error(err)
return nil, nil, false, nil, err
}
case common.TxTypeCreateAccountDeposit:
s.computeEffectiveAmounts(tx)
// add new account to the MT, update balance of the MT account
err := s.applyCreateAccount(tx)
if err != nil {
log.Error(err)
return nil, nil, false, nil, err
}
// TODO applyCreateAccount will return the created account,
// which in the case type==TypeSynchronizer will be added to an
// array of created accounts that will be returned
case common.TxTypeDeposit:
s.computeEffectiveAmounts(tx)
// update balance of the MT account
err := s.applyDeposit(tx, false)
if err != nil {
log.Error(err)
return nil, nil, false, nil, err
}
case common.TxTypeDepositTransfer:
s.computeEffectiveAmounts(tx)
// update balance in MT account, update balance & nonce of sender
// & receiver
err := s.applyDeposit(tx, true)
if err != nil {
log.Error(err)
return nil, nil, false, nil, err
}
case common.TxTypeCreateAccountDepositTransfer:
s.computeEffectiveAmounts(tx)
// add new account to the merkletree, update balance in MT account,
// update balance & nonce of sender & receiver
err := s.applyCreateAccountDepositTransfer(tx)
if err != nil {
log.Error(err)
return nil, nil, false, nil, err
}
case common.TxTypeForceExit:
s.computeEffectiveAmounts(tx)
// execute exit flow
// coordIdxsMap is 'nil', as at L1Txs there is no L2 fees
exitAccount, newExit, err := s.applyExit(nil, nil, exitTree, tx.Tx())
if err != nil {
log.Error(err)
return nil, nil, false, nil, err
}
return &tx.FromIdx, exitAccount, newExit, nil, nil
default:
}
var createdAccount *common.Account
if s.typ == TypeSynchronizer && (tx.Type == common.TxTypeCreateAccountDeposit || tx.Type == common.TxTypeCreateAccountDepositTransfer) {
var err error
createdAccount, err = s.GetAccount(s.idx)
if err != nil {
log.Error(err)
return nil, nil, false, nil, err
}
}
return nil, nil, false, createdAccount, nil
}
// processL2Tx process the given L2Tx applying the needed updates to the
// StateDB depending on the transaction Type. It returns the 3 parameters
// related to the Exit (in case of): Idx, ExitAccount, boolean determining if
// the Exit created a new Leaf in the ExitTree.
func (s *StateDB) processL2Tx(coordIdxsMap map[common.TokenID]common.Idx, collectedFees map[common.TokenID]*big.Int,
exitTree *merkletree.MerkleTree, tx *common.PoolL2Tx) (*common.Idx, *common.Account, bool, error) {
var err error
// if tx.ToIdx==0, get toIdx by ToEthAddr or ToBJJ
if tx.ToIdx == common.Idx(0) && tx.AuxToIdx == common.Idx(0) {
if s.typ == TypeSynchronizer {
// this should never be reached
log.Error("WARNING: In StateDB with Synchronizer mode L2.ToIdx can't be 0")
return nil, nil, false, fmt.Errorf("In StateDB with Synchronizer mode L2.ToIdx can't be 0")
}
// case when tx.Type== common.TxTypeTransferToEthAddr or common.TxTypeTransferToBJJ
tx.AuxToIdx, err = s.GetIdxByEthAddrBJJ(tx.ToEthAddr, tx.ToBJJ, tx.TokenID)
if err != nil {
return nil, nil, false, err
}
}
// ZKInputs
if s.zki != nil {
// Txs
s.zki.TxCompressedData[s.i], err = tx.TxCompressedData()
if err != nil {
return nil, nil, false, err
}
s.zki.TxCompressedDataV2[s.i], err = tx.TxCompressedDataV2()
if err != nil {
return nil, nil, false, err
}
s.zki.FromIdx[s.i] = tx.FromIdx.BigInt()
s.zki.ToIdx[s.i] = tx.ToIdx.BigInt()
// fill AuxToIdx if needed
if tx.ToIdx == 0 {
// use toIdx that can have been filled by tx.ToIdx or
// if tx.Idx==0 (this case), toIdx is filled by the Idx
// from db by ToEthAddr&ToBJJ
s.zki.AuxToIdx[s.i] = tx.AuxToIdx.BigInt()
}
if tx.ToBJJ != nil {
s.zki.ToBJJAy[s.i] = tx.ToBJJ.Y
}
s.zki.ToEthAddr[s.i] = common.EthAddrToBigInt(tx.ToEthAddr)
s.zki.OnChain[s.i] = big.NewInt(0)
s.zki.NewAccount[s.i] = big.NewInt(0)
// L2Txs
// s.zki.RqOffset[s.i] = // TODO Rq once TxSelector is ready
// s.zki.RqTxCompressedDataV2[s.i] = // TODO
// s.zki.RqToEthAddr[s.i] = common.EthAddrToBigInt(tx.RqToEthAddr) // TODO
// s.zki.RqToBJJAy[s.i] = tx.ToBJJ.Y // TODO
signature, err := tx.Signature.Decompress()
if err != nil {
log.Error(err)
return nil, nil, false, err
}
s.zki.S[s.i] = signature.S
s.zki.R8x[s.i] = signature.R8.X
s.zki.R8y[s.i] = signature.R8.Y
}
// if StateDB type==TypeSynchronizer, will need to add Nonce
if s.typ == TypeSynchronizer {
// as type==TypeSynchronizer, always tx.ToIdx!=0
acc, err := s.GetAccount(tx.FromIdx)
if err != nil {
log.Errorw("GetAccount", "fromIdx", tx.FromIdx, "err", err)
return nil, nil, false, err
}
tx.Nonce = acc.Nonce + 1
tx.TokenID = acc.TokenID
}
switch tx.Type {
case common.TxTypeTransfer, common.TxTypeTransferToEthAddr, common.TxTypeTransferToBJJ:
// go to the MT account of sender and receiver, and update
// balance & nonce
err = s.applyTransfer(coordIdxsMap, collectedFees, tx.Tx(), tx.AuxToIdx)
if err != nil {
log.Error(err)
return nil, nil, false, err
}
case common.TxTypeExit:
// execute exit flow
exitAccount, newExit, err := s.applyExit(coordIdxsMap, collectedFees, exitTree, tx.Tx())
if err != nil {
log.Error(err)
return nil, nil, false, err
}
return &tx.FromIdx, exitAccount, newExit, nil
default:
}
return nil, nil, false, nil
}
// applyCreateAccount creates a new account in the account of the depositer, it
// stores the deposit value
func (s *StateDB) applyCreateAccount(tx *common.L1Tx) error {
account := &common.Account{
TokenID: tx.TokenID,
Nonce: 0,
Balance: tx.EffectiveLoadAmount,
PublicKey: tx.FromBJJ,
EthAddr: tx.FromEthAddr,
}
p, err := s.CreateAccount(common.Idx(s.idx+1), account)
if err != nil {
return err
}
if s.zki != nil {
s.zki.TokenID1[s.i] = tx.TokenID.BigInt()
s.zki.Nonce1[s.i] = big.NewInt(0)
if babyjub.PointCoordSign(tx.FromBJJ.X) {
s.zki.Sign1[s.i] = big.NewInt(1)
}
s.zki.Ay1[s.i] = tx.FromBJJ.Y
s.zki.Balance1[s.i] = tx.EffectiveLoadAmount
s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(tx.FromEthAddr)
s.zki.Siblings1[s.i] = siblingsToZKInputFormat(p.Siblings)
if p.IsOld0 {
s.zki.IsOld0_1[s.i] = big.NewInt(1)
}
s.zki.OldKey1[s.i] = p.OldKey.BigInt()
s.zki.OldValue1[s.i] = p.OldValue.BigInt()
s.zki.Metadata.NewLastIdxRaw = s.idx + 1
s.zki.AuxFromIdx[s.i] = common.Idx(s.idx + 1).BigInt()
s.zki.NewAccount[s.i] = big.NewInt(1)
if s.i < len(s.zki.ISOnChain) { // len(s.zki.ISOnChain) == nTx
// intermediate states
s.zki.ISOnChain[s.i] = big.NewInt(1)
}
}
s.idx = s.idx + 1
return s.setIdx(s.idx)
}
// applyDeposit updates the balance in the account of the depositer, if
// andTransfer parameter is set to true, the method will also apply the
// Transfer of the L1Tx/DepositTransfer
func (s *StateDB) applyDeposit(tx *common.L1Tx, transfer bool) error {
// deposit the tx.EffectiveLoadAmount into the sender account
accSender, err := s.GetAccount(tx.FromIdx)
if err != nil {
return err
}
accSender.Balance = new(big.Int).Add(accSender.Balance, tx.EffectiveLoadAmount)
// in case that the tx is a L1Tx>DepositTransfer
var accReceiver *common.Account
if transfer {
accReceiver, err = s.GetAccount(tx.ToIdx)
if err != nil {
return err
}
// subtract amount to the sender
accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.EffectiveAmount)
// add amount to the receiver
accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.EffectiveAmount)
}
// update sender account in localStateDB
p, err := s.UpdateAccount(tx.FromIdx, accSender)
if err != nil {
return err
}
if s.zki != nil {
s.zki.TokenID1[s.i] = accSender.TokenID.BigInt()
s.zki.Nonce1[s.i] = accSender.Nonce.BigInt()
if babyjub.PointCoordSign(accSender.PublicKey.X) {
s.zki.Sign1[s.i] = big.NewInt(1)
}
s.zki.Ay1[s.i] = accSender.PublicKey.Y
s.zki.Balance1[s.i] = accSender.Balance
s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(accSender.EthAddr)
s.zki.Siblings1[s.i] = siblingsToZKInputFormat(p.Siblings)
// IsOld0_1, OldKey1, OldValue1 not needed as this is not an insert
}
// this is done after updating Sender Account (depositer)
if transfer {
// update receiver account in localStateDB
p, err := s.UpdateAccount(tx.ToIdx, accReceiver)
if err != nil {
return err
}
if s.zki != nil {
s.zki.TokenID2[s.i] = accReceiver.TokenID.BigInt()
s.zki.Nonce2[s.i] = accReceiver.Nonce.BigInt()
if babyjub.PointCoordSign(accReceiver.PublicKey.X) {
s.zki.Sign2[s.i] = big.NewInt(1)
}
s.zki.Ay2[s.i] = accReceiver.PublicKey.Y
s.zki.Balance2[s.i] = accReceiver.Balance
s.zki.EthAddr2[s.i] = common.EthAddrToBigInt(accReceiver.EthAddr)
s.zki.Siblings2[s.i] = siblingsToZKInputFormat(p.Siblings)
// IsOld0_2, OldKey2, OldValue2 not needed as this is not an insert
}
}
return nil
}
// applyTransfer updates the balance & nonce in the account of the sender, and
// the balance in the account of the receiver.
// Parameter 'toIdx' should be at 0 if the tx already has tx.ToIdx!=0, if
// tx.ToIdx==0, then toIdx!=0, and will be used the toIdx parameter as Idx of
// the receiver. This parameter is used when the tx.ToIdx is not specified and
// the real ToIdx is found trhrough the ToEthAddr or ToBJJ.
func (s *StateDB) applyTransfer(coordIdxsMap map[common.TokenID]common.Idx,
collectedFees map[common.TokenID]*big.Int,
tx common.Tx, auxToIdx common.Idx) error {
if auxToIdx == common.Idx(0) {
auxToIdx = tx.ToIdx
}
// get sender and receiver accounts from localStateDB
accSender, err := s.GetAccount(tx.FromIdx)
if err != nil {
log.Error(err)
return err
}
if !tx.IsL1 {
// increment nonce
accSender.Nonce++
// compute fee and subtract it from the accSender
fee, err := common.CalcFeeAmount(tx.Amount, *tx.Fee)
if err != nil {
return err
}
feeAndAmount := new(big.Int).Add(tx.Amount, fee)
accSender.Balance = new(big.Int).Sub(accSender.Balance, feeAndAmount)
accCoord, err := s.GetAccount(coordIdxsMap[accSender.TokenID])
if err != nil {
log.Debugw("No coord Idx to receive fee", "tx", tx)
} else {
// accumulate the fee for the Coord account
accumulated := s.accumulatedFees[accCoord.Idx]
accumulated.Add(accumulated, fee)
if s.typ == TypeSynchronizer || s.typ == TypeBatchBuilder {
collected := collectedFees[accCoord.TokenID]
collected.Add(collected, fee)
}
}
} else {
accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.Amount)
}
var accReceiver *common.Account
if tx.FromIdx == auxToIdx {
// if Sender is the Receiver, reuse 'accSender' pointer,
// because in the DB the account for 'auxToIdx' won't be
// updated yet
accReceiver = accSender
} else {
accReceiver, err = s.GetAccount(auxToIdx)
if err != nil {
log.Error(err)
return err
}
}
// add amount-feeAmount to the receiver
accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.Amount)
// update sender account in localStateDB
pSender, err := s.UpdateAccount(tx.FromIdx, accSender)
if err != nil {
log.Error(err)
return err
}
if s.zki != nil {
s.zki.TokenID1[s.i] = accSender.TokenID.BigInt()
s.zki.Nonce1[s.i] = accSender.Nonce.BigInt()
if babyjub.PointCoordSign(accSender.PublicKey.X) {
s.zki.Sign1[s.i] = big.NewInt(1)
}
s.zki.Ay1[s.i] = accSender.PublicKey.Y
s.zki.Balance1[s.i] = accSender.Balance
s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(accSender.EthAddr)
s.zki.Siblings1[s.i] = siblingsToZKInputFormat(pSender.Siblings)
}
// update receiver account in localStateDB
pReceiver, err := s.UpdateAccount(auxToIdx, accReceiver)
if err != nil {
return err
}
if s.zki != nil {
s.zki.TokenID2[s.i] = accReceiver.TokenID.BigInt()
s.zki.Nonce2[s.i] = accReceiver.Nonce.BigInt()
if babyjub.PointCoordSign(accReceiver.PublicKey.X) {
s.zki.Sign2[s.i] = big.NewInt(1)
}
s.zki.Ay2[s.i] = accReceiver.PublicKey.Y
s.zki.Balance2[s.i] = accReceiver.Balance
s.zki.EthAddr2[s.i] = common.EthAddrToBigInt(accReceiver.EthAddr)
s.zki.Siblings2[s.i] = siblingsToZKInputFormat(pReceiver.Siblings)
}
return nil
}
// applyCreateAccountDepositTransfer, in a single tx, creates a new account,
// makes a deposit, and performs a transfer to another account
func (s *StateDB) applyCreateAccountDepositTransfer(tx *common.L1Tx) error {
accSender := &common.Account{
TokenID: tx.TokenID,
Nonce: 0,
Balance: tx.EffectiveLoadAmount,
PublicKey: tx.FromBJJ,
EthAddr: tx.FromEthAddr,
}
accReceiver, err := s.GetAccount(tx.ToIdx)
if err != nil {
return err
}
// subtract amount to the sender
accSender.Balance = new(big.Int).Sub(accSender.Balance, tx.EffectiveAmount)
// add amount to the receiver
accReceiver.Balance = new(big.Int).Add(accReceiver.Balance, tx.EffectiveAmount)
// create Account of the Sender
p, err := s.CreateAccount(common.Idx(s.idx+1), accSender)
if err != nil {
return err
}
if s.zki != nil {
s.zki.TokenID1[s.i] = tx.TokenID.BigInt()
s.zki.Nonce1[s.i] = big.NewInt(0)
if babyjub.PointCoordSign(tx.FromBJJ.X) {
s.zki.Sign1[s.i] = big.NewInt(1)
}
s.zki.Ay1[s.i] = tx.FromBJJ.Y
s.zki.Balance1[s.i] = tx.EffectiveLoadAmount
s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(tx.FromEthAddr)
s.zki.Siblings1[s.i] = siblingsToZKInputFormat(p.Siblings)
if p.IsOld0 {
s.zki.IsOld0_1[s.i] = big.NewInt(1)
}
s.zki.OldKey1[s.i] = p.OldKey.BigInt()
s.zki.OldValue1[s.i] = p.OldValue.BigInt()
s.zki.Metadata.NewLastIdxRaw = s.idx + 1
s.zki.AuxFromIdx[s.i] = common.Idx(s.idx + 1).BigInt()
s.zki.NewAccount[s.i] = big.NewInt(1)
// intermediate states
s.zki.ISOnChain[s.i] = big.NewInt(1)
}
// update receiver account in localStateDB
p, err = s.UpdateAccount(tx.ToIdx, accReceiver)
if err != nil {
return err
}
if s.zki != nil {
s.zki.TokenID2[s.i] = accReceiver.TokenID.BigInt()
s.zki.Nonce2[s.i] = accReceiver.Nonce.BigInt()
if babyjub.PointCoordSign(accReceiver.PublicKey.X) {
s.zki.Sign2[s.i] = big.NewInt(1)
}
s.zki.Ay2[s.i] = accReceiver.PublicKey.Y
s.zki.Balance2[s.i] = accReceiver.Balance
s.zki.EthAddr2[s.i] = common.EthAddrToBigInt(accReceiver.EthAddr)
s.zki.Siblings2[s.i] = siblingsToZKInputFormat(p.Siblings)
}
s.idx = s.idx + 1
return s.setIdx(s.idx)
}
// It returns the ExitAccount and a boolean determining if the Exit created a
// new Leaf in the ExitTree.
func (s *StateDB) applyExit(coordIdxsMap map[common.TokenID]common.Idx,
collectedFees map[common.TokenID]*big.Int, exitTree *merkletree.MerkleTree,
tx common.Tx) (*common.Account, bool, error) {
// 0. subtract tx.Amount from current Account in StateMT
// add the tx.Amount into the Account (tx.FromIdx) in the ExitMT
acc, err := s.GetAccount(tx.FromIdx)
if err != nil {
return nil, false, err
}
if !tx.IsL1 {
// increment nonce
acc.Nonce++
// compute fee and subtract it from the accSender
fee, err := common.CalcFeeAmount(tx.Amount, *tx.Fee)
if err != nil {
return nil, false, err
}
feeAndAmount := new(big.Int).Add(tx.Amount, fee)
acc.Balance = new(big.Int).Sub(acc.Balance, feeAndAmount)
accCoord, err := s.GetAccount(coordIdxsMap[acc.TokenID])
if err != nil {
log.Debugw("No coord Idx to receive fee", "tx", tx)
} else {
// accumulate the fee for the Coord account
accumulated := s.accumulatedFees[accCoord.Idx]
accumulated.Add(accumulated, fee)
if s.typ == TypeSynchronizer || s.typ == TypeBatchBuilder {
collected := collectedFees[accCoord.TokenID]
collected.Add(collected, fee)
}
}
} else {
acc.Balance = new(big.Int).Sub(acc.Balance, tx.Amount)
}
p, err := s.UpdateAccount(tx.FromIdx, acc)
if err != nil {
return nil, false, err
}
if s.zki != nil {
s.zki.TokenID1[s.i] = acc.TokenID.BigInt()
s.zki.Nonce1[s.i] = acc.Nonce.BigInt()
if babyjub.PointCoordSign(acc.PublicKey.X) {
s.zki.Sign1[s.i] = big.NewInt(1)
}
s.zki.Ay1[s.i] = acc.PublicKey.Y
s.zki.Balance1[s.i] = acc.Balance
s.zki.EthAddr1[s.i] = common.EthAddrToBigInt(acc.EthAddr)
s.zki.Siblings1[s.i] = siblingsToZKInputFormat(p.Siblings)
}
if exitTree == nil {
return nil, false, nil
}
exitAccount, err := getAccountInTreeDB(exitTree.DB(), tx.FromIdx)
if err == db.ErrNotFound {
// 1a. if idx does not exist in exitTree:
// add new leaf 'ExitTreeLeaf', where ExitTreeLeaf.Balance = exitAmount (exitAmount=tx.Amount)
exitAccount := &common.Account{
TokenID: acc.TokenID,
Nonce: common.Nonce(1),
Balance: tx.Amount,
PublicKey: acc.PublicKey,
EthAddr: acc.EthAddr,
}
_, err = createAccountInTreeDB(exitTree.DB(), exitTree, tx.FromIdx, exitAccount)
return exitAccount, true, err
} else if err != nil {
return exitAccount, false, err
}
// 1b. if idx already exist in exitTree:
// update account, where account.Balance += exitAmount
exitAccount.Balance = new(big.Int).Add(exitAccount.Balance, tx.Amount)
_, err = updateAccountInTreeDB(exitTree.DB(), exitTree, tx.FromIdx, exitAccount)
return exitAccount, false, err
}
// computeEffectiveAmounts checks that the L1Tx data is correct
func (s *StateDB) computeEffectiveAmounts(tx *common.L1Tx) {
if !tx.UserOrigin {
// case where the L1Tx is generated by the Coordinator
tx.EffectiveAmount = big.NewInt(0)
tx.EffectiveLoadAmount = big.NewInt(0)
return
}
tx.EffectiveAmount = tx.Amount
tx.EffectiveLoadAmount = tx.LoadAmount
if tx.Type == common.TxTypeCreateAccountDeposit {
return
}
if tx.ToIdx >= common.UserThreshold && tx.FromIdx == common.Idx(0) {
// CreateAccountDepositTransfer case
cmp := tx.LoadAmount.Cmp(tx.Amount)
if cmp == -1 { // LoadAmount<Amount
tx.EffectiveAmount = big.NewInt(0)
return
}
return
}
accSender, err := s.GetAccount(tx.FromIdx)
if err != nil {
log.Debugf("EffectiveAmount & EffectiveLoadAmount = 0: can not get account for tx.FromIdx: %d", tx.FromIdx)
tx.EffectiveLoadAmount = big.NewInt(0)
tx.EffectiveAmount = big.NewInt(0)
return
}
// check that tx.TokenID corresponds to the Sender account TokenID
if tx.TokenID != accSender.TokenID {
log.Debugf("EffectiveAmount & EffectiveLoadAmount = 0: tx.TokenID (%d) !=sender account TokenID (%d)", tx.TokenID, accSender.TokenID)
tx.EffectiveLoadAmount = big.NewInt(0)
tx.EffectiveAmount = big.NewInt(0)
return
}
// check that Sender has enough balance
bal := accSender.Balance
if tx.LoadAmount != nil {
bal = new(big.Int).Add(bal, tx.EffectiveLoadAmount)
}
cmp := bal.Cmp(tx.Amount)
if cmp == -1 {
log.Debugf("EffectiveAmount = 0: Not enough funds (%s<%s)", bal.String(), tx.Amount.String())
tx.EffectiveAmount = big.NewInt(0)
return
}
// check that the tx.FromEthAddr is the same than the EthAddress of the
// Sender
if !bytes.Equal(tx.FromEthAddr.Bytes(), accSender.EthAddr.Bytes()) {
log.Debugf("EffectiveAmount & EffectiveLoadAmount = 0: tx.FromEthAddr (%s) must be the same EthAddr of the sender account by the Idx (%s)", tx.FromEthAddr.Hex(), accSender.EthAddr.Hex())
tx.EffectiveLoadAmount = big.NewInt(0)
tx.EffectiveAmount = big.NewInt(0)
return
}
if tx.ToIdx == common.Idx(1) || tx.ToIdx == common.Idx(0) {
// if transfer is Exit type, there are no more checks
return
}
// check that TokenID is the same for Sender & Receiver account
accReceiver, err := s.GetAccount(tx.ToIdx)
if err != nil {
log.Debugf("EffectiveAmount & EffectiveLoadAmount = 0: can not get account for tx.ToIdx: %d", tx.ToIdx)
tx.EffectiveLoadAmount = big.NewInt(0)
tx.EffectiveAmount = big.NewInt(0)
return
}
if accSender.TokenID != accReceiver.TokenID {
log.Debugf("EffectiveAmount & EffectiveLoadAmount = 0: sender account TokenID (%d) != receiver account TokenID (%d)", tx.TokenID, accSender.TokenID)
tx.EffectiveLoadAmount = big.NewInt(0)
tx.EffectiveAmount = big.NewInt(0)
return
}
}
// getIdx returns the stored Idx from the localStateDB, which is the last Idx
// used for an Account in the localStateDB.
func (s *StateDB) getIdx() (common.Idx, error) {
idxBytes, err := s.DB().Get(keyidx)
if err == db.ErrNotFound {
return 0, nil
}
if err != nil {
return 0, err
}
return common.IdxFromBytes(idxBytes[:])
}
// setIdx stores Idx in the localStateDB
func (s *StateDB) setIdx(idx common.Idx) error {
tx, err := s.DB().NewTx()
if err != nil {
return err
}
idxBytes, err := idx.Bytes()
if err != nil {
return err
}
err = tx.Put(keyidx, idxBytes[:])
if err != nil {
return err
}
if err := tx.Commit(); err != nil {
return err
}
return nil
}