You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

1866 lines
57 KiB

package test
import (
"context"
"encoding/binary"
"encoding/json"
"fmt"
"math/big"
"reflect"
"sync"
"time"
"github.com/ethereum/go-ethereum"
"github.com/ethereum/go-ethereum/accounts/abi/bind"
ethKeystore "github.com/ethereum/go-ethereum/accounts/keystore"
ethCommon "github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/hermeznetwork/hermez-node/common"
"github.com/hermeznetwork/hermez-node/eth"
"github.com/hermeznetwork/hermez-node/log"
"github.com/hermeznetwork/tracerr"
"github.com/iden3/go-iden3-crypto/babyjub"
"github.com/mitchellh/copystructure"
)
func init() {
copystructure.Copiers[reflect.TypeOf(big.Int{})] =
func(raw interface{}) (interface{}, error) {
in := raw.(big.Int)
out := new(big.Int).Set(&in)
return *out, nil
}
}
// WDelayerBlock stores all the data related to the WDelayer SC from an ethereum block
type WDelayerBlock struct {
// State eth.WDelayerState // TODO
Vars common.WDelayerVariables
Events eth.WDelayerEvents
Txs map[ethCommon.Hash]*types.Transaction
Constants *common.WDelayerConstants
Eth *EthereumBlock
}
func (w *WDelayerBlock) addTransaction(tx *types.Transaction) *types.Transaction {
txHash := tx.Hash()
w.Txs[txHash] = tx
return tx
}
func (w *WDelayerBlock) deposit(txHash ethCommon.Hash, owner, token ethCommon.Address, amount *big.Int) {
w.Events.Deposit = append(w.Events.Deposit, eth.WDelayerEventDeposit{
Owner: owner,
Token: token,
Amount: amount,
DepositTimestamp: uint64(w.Eth.Time),
TxHash: txHash,
})
}
// RollupBlock stores all the data related to the Rollup SC from an ethereum block
type RollupBlock struct {
State eth.RollupState
Vars common.RollupVariables
Events eth.RollupEvents
Txs map[ethCommon.Hash]*types.Transaction
Constants *common.RollupConstants
Eth *EthereumBlock
}
func (r *RollupBlock) addTransaction(tx *types.Transaction) *types.Transaction {
txHash := tx.Hash()
r.Txs[txHash] = tx
return tx
}
var (
errBidClosed = fmt.Errorf("Bid has already been closed")
errBidNotOpen = fmt.Errorf("Bid has not been opened yet")
errBidBelowMin = fmt.Errorf("Bid below minimum")
errCoordNotReg = fmt.Errorf("Coordinator not registered")
)
// AuctionBlock stores all the data related to the Auction SC from an ethereum block
type AuctionBlock struct {
State eth.AuctionState
Vars common.AuctionVariables
Events eth.AuctionEvents
Txs map[ethCommon.Hash]*types.Transaction
Constants *common.AuctionConstants
Eth *EthereumBlock
}
func (a *AuctionBlock) addTransaction(tx *types.Transaction) *types.Transaction {
txHash := tx.Hash()
a.Txs[txHash] = tx
return tx
}
func (a *AuctionBlock) getSlotNumber(blockNumber int64) int64 {
if a.Eth.BlockNum >= a.Constants.GenesisBlockNum {
return (blockNumber - a.Constants.GenesisBlockNum) / int64(a.Constants.BlocksPerSlot)
}
return 0
}
func (a *AuctionBlock) getCurrentSlotNumber() int64 {
return a.getSlotNumber(a.Eth.BlockNum)
}
func (a *AuctionBlock) getSlotSet(slot int64) int64 {
return slot % int64(len(a.Vars.DefaultSlotSetBid))
}
func (a *AuctionBlock) getMinBidBySlot(slot int64) (*big.Int, error) {
if slot < a.getCurrentSlotNumber()+int64(a.Vars.ClosedAuctionSlots) {
return nil, tracerr.Wrap(errBidClosed)
}
slotSet := a.getSlotSet(slot)
// fmt.Println("slot:", slot, "slotSet:", slotSet)
var prevBid *big.Int
slotState, ok := a.State.Slots[slot]
if !ok {
slotState = eth.NewSlotState()
a.State.Slots[slot] = slotState
}
// If the bidAmount for a slot is 0 it means that it has not yet been
// bid, so the midBid will be the minimum bid for the slot time plus
// the outbidding set, otherwise it will be the bidAmount plus the
// outbidding
if slotState.BidAmount.Cmp(big.NewInt(0)) == 0 {
prevBid = a.Vars.DefaultSlotSetBid[slotSet]
} else {
prevBid = slotState.BidAmount
}
outBid := new(big.Int).Set(prevBid)
// fmt.Println("outBid:", outBid)
outBid.Mul(outBid, big.NewInt(int64(a.Vars.Outbidding)))
outBid.Div(outBid, big.NewInt(10000)) //nolint:gomnd
outBid.Add(prevBid, outBid)
// fmt.Println("minBid:", outBid)
return outBid, nil
}
func (a *AuctionBlock) forge(forger ethCommon.Address) error {
if ok, err := a.canForge(forger, a.Eth.BlockNum); err != nil {
return tracerr.Wrap(err)
} else if !ok {
return tracerr.Wrap(fmt.Errorf("Can't forge"))
}
slotToForge := a.getSlotNumber(a.Eth.BlockNum)
slotState, ok := a.State.Slots[slotToForge]
if !ok {
slotState = eth.NewSlotState()
a.State.Slots[slotToForge] = slotState
}
if !slotState.ForgerCommitment {
// Get the relativeBlock to check if the slotDeadline has been exceeded
relativeBlock := a.Eth.BlockNum - (a.Constants.GenesisBlockNum +
(slotToForge * int64(a.Constants.BlocksPerSlot)))
if relativeBlock < int64(a.Vars.SlotDeadline) {
slotState.ForgerCommitment = true
}
}
slotState.Fulfilled = true
a.Events.NewForge = append(a.Events.NewForge, eth.AuctionEventNewForge{
Forger: forger,
SlotToForge: slotToForge,
})
return nil
}
func (a *AuctionBlock) canForge(forger ethCommon.Address, blockNum int64) (bool, error) {
if blockNum < a.Constants.GenesisBlockNum {
return false, tracerr.Wrap(fmt.Errorf("Auction has not started yet"))
}
slotToForge := a.getSlotNumber(blockNum)
// Get the relativeBlock to check if the slotDeadline has been exceeded
relativeBlock := blockNum - (a.Constants.GenesisBlockNum + (slotToForge * int64(a.Constants.BlocksPerSlot)))
// If the closedMinBid is 0 it means that we have to take as minBid the
// one that is set for this slot set, otherwise the one that has been
// saved will be used
var minBid *big.Int
slotState, ok := a.State.Slots[slotToForge]
if !ok {
slotState = eth.NewSlotState()
a.State.Slots[slotToForge] = slotState
}
if slotState.ClosedMinBid.Cmp(big.NewInt(0)) == 0 {
minBid = a.Vars.DefaultSlotSetBid[a.getSlotSet(slotToForge)]
} else {
minBid = slotState.ClosedMinBid
}
if !slotState.ForgerCommitment && (relativeBlock >= int64(a.Vars.SlotDeadline)) {
// if the relative block has exceeded the slotDeadline and no
// batch has been forged, anyone can forge
return true, nil
} else if coord, ok := a.State.Coordinators[slotState.Bidder]; ok &&
coord.Forger == forger && slotState.BidAmount.Cmp(minBid) >= 0 {
// if forger bidAmount has exceeded the minBid it can forge
return true, nil
} else if a.Vars.BootCoordinator == forger && slotState.BidAmount.Cmp(minBid) == -1 {
// if it's the boot coordinator and it has not been bid or the
// bid is below the minimum it can forge
return true, nil
} else {
return false, nil
}
}
// EthereumBlock stores all the generic data related to the an ethereum block
type EthereumBlock struct {
BlockNum int64
Time int64
Hash ethCommon.Hash
ParentHash ethCommon.Hash
Tokens map[ethCommon.Address]eth.ERC20Consts
Nonce uint64
// state ethState
}
// Block represents a ethereum block
type Block struct {
Rollup *RollupBlock
Auction *AuctionBlock
WDelayer *WDelayerBlock
Eth *EthereumBlock
}
func (b *Block) copy() *Block {
bCopyRaw, err := copystructure.Copy(b)
if err != nil {
panic(err)
}
bCopy := bCopyRaw.(*Block)
return bCopy
}
// Next prepares the successive block.
func (b *Block) Next() *Block {
blockNext := b.copy()
blockNext.Rollup.Events = eth.NewRollupEvents()
blockNext.Auction.Events = eth.NewAuctionEvents()
blockNext.Eth.BlockNum = b.Eth.BlockNum + 1
blockNext.Eth.ParentHash = b.Eth.Hash
blockNext.Rollup.Constants = b.Rollup.Constants
blockNext.Auction.Constants = b.Auction.Constants
blockNext.WDelayer.Constants = b.WDelayer.Constants
blockNext.Rollup.Eth = blockNext.Eth
blockNext.Auction.Eth = blockNext.Eth
blockNext.WDelayer.Eth = blockNext.Eth
return blockNext
}
// ClientSetup is used to initialize the constants of the Smart Contracts and
// other details of the test Client
type ClientSetup struct {
RollupConstants *common.RollupConstants
RollupVariables *common.RollupVariables
AuctionConstants *common.AuctionConstants
AuctionVariables *common.AuctionVariables
WDelayerConstants *common.WDelayerConstants
WDelayerVariables *common.WDelayerVariables
VerifyProof bool
ChainID *big.Int
}
// NewClientSetupExample returns a ClientSetup example with hardcoded realistic
// values. With this setup, the rollup genesis will be block 1, and block 0
// and 1 will be premined.
//nolint:gomnd
func NewClientSetupExample() *ClientSetup {
// rfield, ok := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
// if !ok {
// panic("bad rfield")
// }
initialMinimalBidding, ok := new(big.Int).SetString("10000000000000000000", 10) // 10 * (1e18)
if !ok {
panic("bad initialMinimalBidding")
}
tokenHEZ := ethCommon.HexToAddress("0x51D243D62852Bba334DD5cc33f242BAc8c698074")
governanceAddress := ethCommon.HexToAddress("0x688EfD95BA4391f93717CF02A9aED9DBD2855cDd")
rollupConstants := &common.RollupConstants{
Verifiers: []common.RollupVerifierStruct{
{
MaxTx: 2048,
NLevels: 32,
},
},
TokenHEZ: tokenHEZ,
HermezGovernanceAddress: governanceAddress,
HermezAuctionContract: ethCommon.HexToAddress("0x8E442975805fb1908f43050c9C1A522cB0e28D7b"),
WithdrawDelayerContract: ethCommon.HexToAddress("0x5CB7979cBdbf65719BEE92e4D15b7b7Ed3D79114"),
}
var buckets [common.RollupConstNumBuckets]common.BucketParams
for i := range buckets {
buckets[i] = common.BucketParams{
CeilUSD: big.NewInt(0),
Withdrawals: big.NewInt(0),
BlockWithdrawalRate: big.NewInt(0),
MaxWithdrawals: big.NewInt(0),
}
}
rollupVariables := &common.RollupVariables{
FeeAddToken: big.NewInt(11),
ForgeL1L2BatchTimeout: 10,
WithdrawalDelay: 80,
Buckets: buckets,
}
auctionConstants := &common.AuctionConstants{
BlocksPerSlot: 40,
InitialMinimalBidding: initialMinimalBidding,
GenesisBlockNum: 1,
GovernanceAddress: governanceAddress,
TokenHEZ: tokenHEZ,
HermezRollup: ethCommon.HexToAddress("0x474B6e29852257491cf283EfB1A9C61eBFe48369"),
}
auctionVariables := &common.AuctionVariables{
DonationAddress: ethCommon.HexToAddress("0x61Ed87CF0A1496b49A420DA6D84B58196b98f2e7"),
BootCoordinator: ethCommon.HexToAddress("0xE39fEc6224708f0772D2A74fd3f9055A90E0A9f2"),
BootCoordinatorURL: "https://boot.coordinator.com",
DefaultSlotSetBid: [6]*big.Int{
initialMinimalBidding, initialMinimalBidding, initialMinimalBidding,
initialMinimalBidding, initialMinimalBidding, initialMinimalBidding,
},
ClosedAuctionSlots: 2,
OpenAuctionSlots: 4320,
AllocationRatio: [3]uint16{4000, 4000, 2000},
Outbidding: 1000,
SlotDeadline: 20,
}
wDelayerConstants := &common.WDelayerConstants{
MaxWithdrawalDelay: 60 * 60 * 24 * 7 * 2, // 2 weeks
MaxEmergencyModeTime: 60 * 60 * 24 * 7 * 26, // 26 weeks
HermezRollup: auctionConstants.HermezRollup,
}
wDelayerVariables := &common.WDelayerVariables{
HermezGovernanceAddress: ethCommon.HexToAddress("0xcfD0d163AE6432a72682323E2C3A5a69e6B37D12"),
EmergencyCouncilAddress: ethCommon.HexToAddress("0x2730700932a4FDB97B9268A3Ca29f97Ea5fd7EA0"),
WithdrawalDelay: 60,
EmergencyModeStartingBlock: 0,
EmergencyMode: false,
}
return &ClientSetup{
RollupConstants: rollupConstants,
RollupVariables: rollupVariables,
AuctionConstants: auctionConstants,
AuctionVariables: auctionVariables,
WDelayerConstants: wDelayerConstants,
WDelayerVariables: wDelayerVariables,
VerifyProof: false,
ChainID: big.NewInt(0),
}
}
// Timer is an interface to simulate a source of time, useful to advance time
// virtually.
type Timer interface {
Time() int64
}
// type forgeBatchArgs struct {
// ethTx *types.Transaction
// blockNum int64
// blockHash ethCommon.Hash
// }
type batch struct {
ForgeBatchArgs eth.RollupForgeBatchArgs
Sender ethCommon.Address
}
// Client implements the eth.ClientInterface interface, allowing to manipulate the
// values for testing, working with deterministic results.
type Client struct {
rw *sync.RWMutex
log bool
addr *ethCommon.Address
chainID *big.Int
rollupConstants *common.RollupConstants
auctionConstants *common.AuctionConstants
wDelayerConstants *common.WDelayerConstants
blocks map[int64]*Block
// state state
blockNum int64 // last mined block num
maxBlockNum int64 // highest block num calculated
timer Timer
hasher hasher
forgeBatchArgsPending map[ethCommon.Hash]*batch
forgeBatchArgs map[ethCommon.Hash]*batch
startBlock int64
}
// NewClient returns a new test Client that implements the eth.IClient
// interface, at the given initialBlockNumber.
func NewClient(l bool, timer Timer, addr *ethCommon.Address, setup *ClientSetup) *Client {
blocks := make(map[int64]*Block)
blockNum := int64(0)
hasher := hasher{}
// Add ethereum genesis block
mapL1TxQueue := make(map[int64]*eth.QueueStruct)
mapL1TxQueue[0] = eth.NewQueueStruct()
mapL1TxQueue[1] = eth.NewQueueStruct()
blockCurrent := &Block{
Rollup: &RollupBlock{
State: eth.RollupState{
StateRoot: big.NewInt(0),
ExitRoots: make([]*big.Int, 1),
ExitNullifierMap: make(map[int64]map[int64]bool),
// TokenID = 0 is ETH. Set first entry in TokenList with 0x0 address for ETH.
TokenList: []ethCommon.Address{{}},
TokenMap: make(map[ethCommon.Address]bool),
MapL1TxQueue: mapL1TxQueue,
LastL1L2Batch: 0,
CurrentToForgeL1TxsNum: 0,
LastToForgeL1TxsNum: 1,
CurrentIdx: 0,
},
Vars: *setup.RollupVariables,
Txs: make(map[ethCommon.Hash]*types.Transaction),
Events: eth.NewRollupEvents(),
Constants: setup.RollupConstants,
},
Auction: &AuctionBlock{
State: eth.AuctionState{
Slots: make(map[int64]*eth.SlotState),
PendingBalances: make(map[ethCommon.Address]*big.Int),
Coordinators: make(map[ethCommon.Address]*eth.Coordinator),
},
Vars: *setup.AuctionVariables,
Txs: make(map[ethCommon.Hash]*types.Transaction),
Events: eth.NewAuctionEvents(),
Constants: setup.AuctionConstants,
},
WDelayer: &WDelayerBlock{
// State: TODO
Vars: *setup.WDelayerVariables,
Txs: make(map[ethCommon.Hash]*types.Transaction),
Events: eth.NewWDelayerEvents(),
Constants: setup.WDelayerConstants,
},
Eth: &EthereumBlock{
BlockNum: blockNum,
Time: timer.Time(),
Hash: hasher.Next(),
ParentHash: ethCommon.Hash{},
Tokens: make(map[ethCommon.Address]eth.ERC20Consts),
},
}
blockCurrent.Rollup.Eth = blockCurrent.Eth
blockCurrent.Auction.Eth = blockCurrent.Eth
blocks[blockNum] = blockCurrent
blockNext := blockCurrent.Next()
blocks[blockNum+1] = blockNext
c := Client{
rw: &sync.RWMutex{},
log: l,
addr: addr,
rollupConstants: setup.RollupConstants,
auctionConstants: setup.AuctionConstants,
wDelayerConstants: setup.WDelayerConstants,
blocks: blocks,
timer: timer,
hasher: hasher,
forgeBatchArgsPending: make(map[ethCommon.Hash]*batch),
forgeBatchArgs: make(map[ethCommon.Hash]*batch),
blockNum: blockNum,
maxBlockNum: blockNum,
}
if c.startBlock == 0 {
c.startBlock = 2
}
for i := int64(1); i < c.startBlock; i++ {
c.CtlMineBlock()
}
return &c
}
//
// Mock Control
//
func (c *Client) setNextBlock(block *Block) {
c.blocks[c.blockNum+1] = block
}
func (c *Client) revertIfErr(err error, block *Block) {
if err != nil {
log.Infow("TestClient revert", "block", block.Eth.BlockNum, "err", err)
c.setNextBlock(block)
}
}
// Debugf calls log.Debugf if c.log is true
func (c *Client) Debugf(template string, args ...interface{}) {
if c.log {
log.Debugf(template, args...)
}
}
// Debugw calls log.Debugw if c.log is true
func (c *Client) Debugw(template string, kv ...interface{}) {
if c.log {
log.Debugw(template, kv...)
}
}
type hasher struct {
counter uint64
}
// Next returns the next hash
func (h *hasher) Next() ethCommon.Hash {
var hash ethCommon.Hash
binary.LittleEndian.PutUint64(hash[:], h.counter)
h.counter++
return hash
}
func (c *Client) nextBlock() *Block {
return c.blocks[c.blockNum+1]
}
func (c *Client) currentBlock() *Block {
return c.blocks[c.blockNum]
}
// CtlSetAddr sets the address of the client
func (c *Client) CtlSetAddr(addr ethCommon.Address) {
c.addr = &addr
}
// CtlMineBlock moves one block forward
func (c *Client) CtlMineBlock() {
c.rw.Lock()
defer c.rw.Unlock()
blockCurrent := c.nextBlock()
c.blockNum++
c.maxBlockNum = c.blockNum
blockCurrent.Eth.Time = c.timer.Time()
blockCurrent.Eth.Hash = c.hasher.Next()
for ethTxHash, forgeBatchArgs := range c.forgeBatchArgsPending {
c.forgeBatchArgs[ethTxHash] = forgeBatchArgs
}
c.forgeBatchArgsPending = make(map[ethCommon.Hash]*batch)
blockNext := blockCurrent.Next()
c.blocks[c.blockNum+1] = blockNext
c.Debugw("TestClient mined block", "blockNum", c.blockNum)
}
// CtlRollback discards the last mined block. Use this to replace a mined
// block to simulate reorgs.
func (c *Client) CtlRollback() {
c.rw.Lock()
defer c.rw.Unlock()
if c.blockNum == 0 {
panic("Can't rollback at blockNum = 0")
}
delete(c.blocks, c.blockNum+1) // delete next block
delete(c.blocks, c.blockNum) // delete current block
c.blockNum--
blockCurrent := c.blocks[c.blockNum]
blockNext := blockCurrent.Next()
c.blocks[c.blockNum+1] = blockNext
}
//
// Ethereum
//
// CtlLastBlock returns the last blockNum without checks
func (c *Client) CtlLastBlock() *common.Block {
c.rw.RLock()
defer c.rw.RUnlock()
block := c.blocks[c.blockNum]
return &common.Block{
Num: c.blockNum,
Timestamp: time.Unix(block.Eth.Time, 0),
Hash: block.Eth.Hash,
ParentHash: block.Eth.ParentHash,
}
}
// CtlLastForgedBatch returns the last batchNum without checks
func (c *Client) CtlLastForgedBatch() int64 {
c.rw.RLock()
defer c.rw.RUnlock()
currentBlock := c.currentBlock()
e := currentBlock.Rollup
return int64(len(e.State.ExitRoots)) - 1
}
// EthChainID returns the ChainID of the ethereum network
func (c *Client) EthChainID() (*big.Int, error) {
return c.chainID, nil
}
// EthPendingNonceAt returns the account nonce of the given account in the pending
// state. This is the nonce that should be used for the next transaction.
func (c *Client) EthPendingNonceAt(ctx context.Context, account ethCommon.Address) (uint64, error) {
// NOTE: For now Client doesn't simulate nonces
return 0, nil
}
// EthNonceAt returns the account nonce of the given account. The block number can
// be nil, in which case the nonce is taken from the latest known block.
func (c *Client) EthNonceAt(ctx context.Context, account ethCommon.Address, blockNumber *big.Int) (uint64, error) {
// NOTE: For now Client doesn't simulate nonces
return 0, nil
}
// EthSuggestGasPrice retrieves the currently suggested gas price to allow a
// timely execution of a transaction.
func (c *Client) EthSuggestGasPrice(ctx context.Context) (*big.Int, error) {
// NOTE: For now Client doesn't simulate gasPrice
return big.NewInt(0), nil
}
// EthKeyStore returns the keystore in the Client
func (c *Client) EthKeyStore() *ethKeystore.KeyStore {
return nil
}
// EthCall runs the transaction as a call (without paying) in the local node at
// blockNum.
func (c *Client) EthCall(ctx context.Context, tx *types.Transaction, blockNum *big.Int) ([]byte, error) {
return nil, tracerr.Wrap(common.ErrTODO)
}
// EthLastBlock returns the last blockNum
func (c *Client) EthLastBlock() (int64, error) {
c.rw.RLock()
defer c.rw.RUnlock()
if c.blockNum < c.maxBlockNum {
panic("blockNum has decreased. " +
"After a rollback you must mine to reach the same or higher blockNum")
}
return c.blockNum, nil
}
// EthTransactionReceipt returns the transaction receipt of the given txHash
func (c *Client) EthTransactionReceipt(ctx context.Context, txHash ethCommon.Hash) (*types.Receipt, error) {
c.rw.RLock()
defer c.rw.RUnlock()
for i := int64(0); i < c.blockNum; i++ {
b := c.blocks[i]
_, ok := b.Rollup.Txs[txHash]
if !ok {
_, ok = b.Auction.Txs[txHash]
}
if ok {
return &types.Receipt{
TxHash: txHash,
Status: types.ReceiptStatusSuccessful,
BlockHash: b.Eth.Hash,
BlockNumber: big.NewInt(b.Eth.BlockNum),
}, nil
}
}
return nil, nil
}
// CtlAddERC20 adds an ERC20 token to the blockchain.
func (c *Client) CtlAddERC20(tokenAddr ethCommon.Address, constants eth.ERC20Consts) {
nextBlock := c.nextBlock()
e := nextBlock.Eth
e.Tokens[tokenAddr] = constants
}
// EthERC20Consts returns the constants defined for a particular ERC20 Token instance.
func (c *Client) EthERC20Consts(tokenAddr ethCommon.Address) (*eth.ERC20Consts, error) {
currentBlock := c.currentBlock()
e := currentBlock.Eth
if constants, ok := e.Tokens[tokenAddr]; ok {
return &constants, nil
}
return nil, tracerr.Wrap(fmt.Errorf("tokenAddr not found"))
}
// func newHeader(number *big.Int) *types.Header {
// return &types.Header{
// Number: number,
// Time: uint64(number.Int64()),
// }
// }
// EthHeaderByNumber returns the *types.Header for the given block number in a
// deterministic way.
// func (c *Client) EthHeaderByNumber(ctx context.Context, number *big.Int) (*types.Header, error) {
// return newHeader(number), nil
// }
// EthBlockByNumber returns the *common.Block for the given block number in a
// deterministic way. If number == -1, the latests known block is returned.
func (c *Client) EthBlockByNumber(ctx context.Context, blockNum int64) (*common.Block, error) {
c.rw.RLock()
defer c.rw.RUnlock()
if blockNum > c.blockNum {
return nil, ethereum.NotFound
}
if blockNum == -1 {
blockNum = c.blockNum
}
block := c.blocks[blockNum]
return &common.Block{
Num: blockNum,
Timestamp: time.Unix(block.Eth.Time, 0),
Hash: block.Eth.Hash,
ParentHash: block.Eth.ParentHash,
}, nil
}
// EthAddress returns the ethereum address of the account loaded into the Client
func (c *Client) EthAddress() (*ethCommon.Address, error) {
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
return c.addr, nil
}
var errTODO = fmt.Errorf("TODO: Not implemented yet")
//
// Rollup
//
// CtlAddL1TxUser adds an L1TxUser to the L1UserTxs queue of the Rollup
// func (c *Client) CtlAddL1TxUser(l1Tx *common.L1Tx) {
// c.rw.Lock()
// defer c.rw.Unlock()
//
// nextBlock := c.nextBlock()
// r := nextBlock.Rollup
// queue := r.State.MapL1TxQueue[r.State.LastToForgeL1TxsNum]
// if len(queue.L1TxQueue) >= eth.RollupConstMaxL1UserTx {
// r.State.LastToForgeL1TxsNum++
// r.State.MapL1TxQueue[r.State.LastToForgeL1TxsNum] = eth.NewQueueStruct()
// queue = r.State.MapL1TxQueue[r.State.LastToForgeL1TxsNum]
// }
// if int64(l1Tx.FromIdx) > r.State.CurrentIdx {
// panic("l1Tx.FromIdx > r.State.CurrentIdx")
// }
// if int(l1Tx.TokenID)+1 > len(r.State.TokenList) {
// panic("l1Tx.TokenID + 1 > len(r.State.TokenList)")
// }
// queue.L1TxQueue = append(queue.L1TxQueue, *l1Tx)
// r.Events.L1UserTx = append(r.Events.L1UserTx, eth.RollupEventL1UserTx{
// L1Tx: *l1Tx,
// ToForgeL1TxsNum: r.State.LastToForgeL1TxsNum,
// Position: len(queue.L1TxQueue) - 1,
// })
// }
// RollupL1UserTxERC20Permit is the interface to call the smart contract function
func (c *Client) RollupL1UserTxERC20Permit(fromBJJ babyjub.PublicKeyComp, fromIdx int64, depositAmount *big.Int, amount *big.Int, tokenID uint32, toIdx int64, deadline *big.Int) (tx *types.Transaction, err error) {
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// RollupL1UserTxERC20ETH sends an L1UserTx to the Rollup.
func (c *Client) RollupL1UserTxERC20ETH(
fromBJJ babyjub.PublicKeyComp,
fromIdx int64,
depositAmount *big.Int,
amount *big.Int,
tokenID uint32,
toIdx int64,
) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
_, err = common.NewFloat16(amount)
if err != nil {
return nil, tracerr.Wrap(err)
}
_, err = common.NewFloat16(depositAmount)
if err != nil {
return nil, tracerr.Wrap(err)
}
nextBlock := c.nextBlock()
r := nextBlock.Rollup
queue := r.State.MapL1TxQueue[r.State.LastToForgeL1TxsNum]
if len(queue.L1TxQueue) >= common.RollupConstMaxL1UserTx {
r.State.LastToForgeL1TxsNum++
r.State.MapL1TxQueue[r.State.LastToForgeL1TxsNum] = eth.NewQueueStruct()
queue = r.State.MapL1TxQueue[r.State.LastToForgeL1TxsNum]
}
if fromIdx > r.State.CurrentIdx {
panic("l1Tx.FromIdx > r.State.CurrentIdx")
}
if int(tokenID)+1 > len(r.State.TokenList) {
panic("l1Tx.TokenID + 1 > len(r.State.TokenList)")
}
toForgeL1TxsNum := r.State.LastToForgeL1TxsNum
l1Tx, err := common.NewL1Tx(&common.L1Tx{
FromIdx: common.Idx(fromIdx),
FromEthAddr: *c.addr,
FromBJJ: fromBJJ,
Amount: amount,
DepositAmount: depositAmount,
TokenID: common.TokenID(tokenID),
ToIdx: common.Idx(toIdx),
ToForgeL1TxsNum: &toForgeL1TxsNum,
Position: len(queue.L1TxQueue),
UserOrigin: true,
})
if err != nil {
return nil, tracerr.Wrap(err)
}
queue.L1TxQueue = append(queue.L1TxQueue, *l1Tx)
r.Events.L1UserTx = append(r.Events.L1UserTx, eth.RollupEventL1UserTx{
L1UserTx: *l1Tx,
})
return r.addTransaction(c.newTransaction("l1UserTxERC20ETH", l1Tx)), nil
}
// RollupL1UserTxERC777 is the interface to call the smart contract function
// func (c *Client) RollupL1UserTxERC777(fromBJJ *babyjub.PublicKey, fromIdx int64, depositAmount *big.Int, amount *big.Int, tokenID uint32, toIdx int64) (*types.Transaction, error) {
// log.Error("TODO")
// return nil, errTODO
// }
// RollupRegisterTokensCount is the interface to call the smart contract function
func (c *Client) RollupRegisterTokensCount() (*big.Int, error) {
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// RollupLastForgedBatch is the interface to call the smart contract function
func (c *Client) RollupLastForgedBatch() (int64, error) {
c.rw.RLock()
defer c.rw.RUnlock()
currentBlock := c.currentBlock()
e := currentBlock.Rollup
return int64(len(e.State.ExitRoots)) - 1, nil
}
// RollupWithdrawCircuit is the interface to call the smart contract function
func (c *Client) RollupWithdrawCircuit(proofA, proofC [2]*big.Int, proofB [2][2]*big.Int, tokenID uint32, numExitRoot, idx int64, amount *big.Int, instantWithdraw bool) (*types.Transaction, error) {
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// RollupWithdrawMerkleProof is the interface to call the smart contract function
func (c *Client) RollupWithdrawMerkleProof(babyPubKey babyjub.PublicKeyComp, tokenID uint32, numExitRoot, idx int64, amount *big.Int, siblings []*big.Int, instantWithdraw bool) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
nextBlock := c.nextBlock()
r := nextBlock.Rollup
if int(numExitRoot) >= len(r.State.ExitRoots) {
return nil, tracerr.Wrap(fmt.Errorf("numExitRoot >= len(r.State.ExitRoots)"))
}
if _, ok := r.State.ExitNullifierMap[numExitRoot][idx]; ok {
return nil, tracerr.Wrap(fmt.Errorf("exit already withdrawn"))
}
r.State.ExitNullifierMap[numExitRoot][idx] = true
babyPubKeyDecomp, err := babyPubKey.Decompress()
if err != nil {
return nil, tracerr.Wrap(err)
}
type data struct {
BabyPubKey *babyjub.PublicKey
TokenID uint32
NumExitRoot int64
Idx int64
Amount *big.Int
Siblings []*big.Int
InstantWithdraw bool
}
tx = r.addTransaction(c.newTransaction("withdrawMerkleProof", data{
BabyPubKey: babyPubKeyDecomp,
TokenID: tokenID,
NumExitRoot: numExitRoot,
Idx: idx,
Amount: amount,
Siblings: siblings,
InstantWithdraw: instantWithdraw,
}))
r.Events.Withdraw = append(r.Events.Withdraw, eth.RollupEventWithdraw{
Idx: uint64(idx),
NumExitRoot: uint64(numExitRoot),
InstantWithdraw: instantWithdraw,
TxHash: tx.Hash(),
})
if !instantWithdraw {
w := nextBlock.WDelayer
w.deposit(tx.Hash(), *c.addr, r.State.TokenList[int(tokenID)], amount)
}
return tx, nil
}
type transactionData struct {
Name string
Value interface{}
}
func (c *Client) newTransaction(name string, value interface{}) *types.Transaction {
eth := c.nextBlock().Eth
nonce := eth.Nonce
eth.Nonce++
data, err := json.Marshal(transactionData{name, value})
if err != nil {
panic(err)
}
return types.NewTransaction(nonce, ethCommon.Address{}, nil, 0, nil,
data)
}
// RollupForgeBatch is the interface to call the smart contract function
func (c *Client) RollupForgeBatch(args *eth.RollupForgeBatchArgs, auth *bind.TransactOpts) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
a := c.nextBlock().Auction
ok, err := a.canForge(*c.addr, a.Eth.BlockNum)
if err != nil {
return nil, tracerr.Wrap(err)
}
if !ok {
return nil, tracerr.Wrap(fmt.Errorf(common.AuctionErrMsgCannotForge))
}
// TODO: Verify proof
// Auction
err = a.forge(*c.addr)
if err != nil {
return nil, tracerr.Wrap(err)
}
// TODO: If successful, store the tx in a successful array.
// TODO: If failed, store the tx in a failed array.
// TODO: Add method to move the tx to another block, reapply it there, and possibly go from successful to failed.
return c.addBatch(args)
}
// CtlAddBatch adds forged batch to the Rollup, without checking any ZKProof
func (c *Client) CtlAddBatch(args *eth.RollupForgeBatchArgs) {
c.rw.Lock()
defer c.rw.Unlock()
if _, err := c.addBatch(args); err != nil {
panic(err)
}
}
func (c *Client) addBatch(args *eth.RollupForgeBatchArgs) (*types.Transaction, error) {
nextBlock := c.nextBlock()
r := nextBlock.Rollup
r.State.StateRoot = args.NewStRoot
if args.NewLastIdx < r.State.CurrentIdx {
return nil, tracerr.Wrap(fmt.Errorf("args.NewLastIdx < r.State.CurrentIdx"))
}
r.State.CurrentIdx = args.NewLastIdx
r.State.ExitNullifierMap[int64(len(r.State.ExitRoots))] = make(map[int64]bool)
r.State.ExitRoots = append(r.State.ExitRoots, args.NewExitRoot)
if args.L1Batch {
r.State.CurrentToForgeL1TxsNum++
if r.State.CurrentToForgeL1TxsNum == r.State.LastToForgeL1TxsNum {
r.State.LastToForgeL1TxsNum++
r.State.MapL1TxQueue[r.State.LastToForgeL1TxsNum] = eth.NewQueueStruct()
}
}
ethTx := r.addTransaction(c.newTransaction("forgebatch", args))
c.forgeBatchArgsPending[ethTx.Hash()] = &batch{*args, *c.addr}
r.Events.ForgeBatch = append(r.Events.ForgeBatch, eth.RollupEventForgeBatch{
BatchNum: int64(len(r.State.ExitRoots)) - 1,
EthTxHash: ethTx.Hash(),
L1UserTxsLen: uint16(len(args.L1UserTxs)),
})
return ethTx, nil
}
// RollupAddTokenSimple is a wrapper around RollupAddToken that automatically
// sets `deadlie`.
func (c *Client) RollupAddTokenSimple(tokenAddress ethCommon.Address, feeAddToken *big.Int) (tx *types.Transaction, err error) {
return c.RollupAddToken(tokenAddress, feeAddToken, big.NewInt(9999)) //nolint:gomnd
}
// RollupAddToken is the interface to call the smart contract function
func (c *Client) RollupAddToken(tokenAddress ethCommon.Address, feeAddToken *big.Int,
deadline *big.Int) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
nextBlock := c.nextBlock()
r := nextBlock.Rollup
if _, ok := r.State.TokenMap[tokenAddress]; ok {
return nil, tracerr.Wrap(fmt.Errorf("Token %v already registered", tokenAddress))
}
if feeAddToken.Cmp(r.Vars.FeeAddToken) != 0 {
return nil, tracerr.Wrap(fmt.Errorf("Expected fee: %v but got: %v", r.Vars.FeeAddToken, feeAddToken))
}
r.State.TokenMap[tokenAddress] = true
r.State.TokenList = append(r.State.TokenList, tokenAddress)
r.Events.AddToken = append(r.Events.AddToken, eth.RollupEventAddToken{TokenAddress: tokenAddress,
TokenID: uint32(len(r.State.TokenList) - 1)})
return r.addTransaction(c.newTransaction("addtoken", tokenAddress)), nil
}
// RollupGetCurrentTokens is the interface to call the smart contract function
func (c *Client) RollupGetCurrentTokens() (*big.Int, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// RollupUpdateForgeL1L2BatchTimeout is the interface to call the smart contract function
func (c *Client) RollupUpdateForgeL1L2BatchTimeout(newForgeL1Timeout int64) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
nextBlock := c.nextBlock()
r := nextBlock.Rollup
r.Vars.ForgeL1L2BatchTimeout = newForgeL1Timeout
r.Events.UpdateForgeL1L2BatchTimeout = append(r.Events.UpdateForgeL1L2BatchTimeout,
eth.RollupEventUpdateForgeL1L2BatchTimeout{NewForgeL1L2BatchTimeout: newForgeL1Timeout})
return r.addTransaction(c.newTransaction("updateForgeL1L2BatchTimeout", newForgeL1Timeout)), nil
}
// RollupUpdateFeeAddToken is the interface to call the smart contract function
func (c *Client) RollupUpdateFeeAddToken(newFeeAddToken *big.Int) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// RollupUpdateTokensHEZ is the interface to call the smart contract function
// func (c *Client) RollupUpdateTokensHEZ(newTokenHEZ ethCommon.Address) (tx *types.Transaction, err error) {
// c.rw.Lock()
// defer c.rw.Unlock()
// cpy := c.nextBlock().copy()
// defer func() { c.revertIfErr(err, cpy) }()
//
// log.Error("TODO")
// return nil, errTODO
// }
// RollupUpdateGovernance is the interface to call the smart contract function
// func (c *Client) RollupUpdateGovernance() (*types.Transaction, error) { // TODO (Not defined in Hermez.sol)
// return nil, errTODO
// }
// RollupConstants returns the Constants of the Rollup Smart Contract
func (c *Client) RollupConstants() (*common.RollupConstants, error) {
c.rw.RLock()
defer c.rw.RUnlock()
return c.rollupConstants, nil
}
// RollupEventsByBlock returns the events in a block that happened in the Rollup Smart Contract
func (c *Client) RollupEventsByBlock(blockNum int64) (*eth.RollupEvents, *ethCommon.Hash, error) {
c.rw.RLock()
defer c.rw.RUnlock()
block, ok := c.blocks[blockNum]
if !ok {
return nil, nil, tracerr.Wrap(fmt.Errorf("Block %v doesn't exist", blockNum))
}
return &block.Rollup.Events, &block.Eth.Hash, nil
}
// RollupEventInit returns the initialize event with its corresponding block number
func (c *Client) RollupEventInit() (*eth.RollupEventInitialize, int64, error) {
vars := c.blocks[0].Rollup.Vars
return &eth.RollupEventInitialize{
ForgeL1L2BatchTimeout: uint8(vars.ForgeL1L2BatchTimeout),
FeeAddToken: vars.FeeAddToken,
WithdrawalDelay: vars.WithdrawalDelay,
}, 1, nil
}
// RollupForgeBatchArgs returns the arguments used in a ForgeBatch call in the Rollup Smart Contract in the given transaction
func (c *Client) RollupForgeBatchArgs(ethTxHash ethCommon.Hash, l1UserTxsLen uint16) (*eth.RollupForgeBatchArgs, *ethCommon.Address, error) {
c.rw.RLock()
defer c.rw.RUnlock()
batch, ok := c.forgeBatchArgs[ethTxHash]
if !ok {
return nil, nil, tracerr.Wrap(fmt.Errorf("transaction not found"))
}
return &batch.ForgeBatchArgs, &batch.Sender, nil
}
//
// Auction
//
// AuctionSetSlotDeadline is the interface to call the smart contract function
func (c *Client) AuctionSetSlotDeadline(newDeadline uint8) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// AuctionGetSlotDeadline is the interface to call the smart contract function
func (c *Client) AuctionGetSlotDeadline() (uint8, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return 0, tracerr.Wrap(errTODO)
}
// AuctionSetOpenAuctionSlots is the interface to call the smart contract function
func (c *Client) AuctionSetOpenAuctionSlots(newOpenAuctionSlots uint16) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
nextBlock := c.nextBlock()
a := nextBlock.Auction
a.Vars.OpenAuctionSlots = newOpenAuctionSlots
a.Events.NewOpenAuctionSlots = append(a.Events.NewOpenAuctionSlots,
eth.AuctionEventNewOpenAuctionSlots{NewOpenAuctionSlots: newOpenAuctionSlots})
return a.addTransaction(c.newTransaction("setOpenAuctionSlots", newOpenAuctionSlots)), nil
}
// AuctionGetOpenAuctionSlots is the interface to call the smart contract function
func (c *Client) AuctionGetOpenAuctionSlots() (uint16, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return 0, tracerr.Wrap(errTODO)
}
// AuctionSetClosedAuctionSlots is the interface to call the smart contract function
func (c *Client) AuctionSetClosedAuctionSlots(newClosedAuctionSlots uint16) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// AuctionGetClosedAuctionSlots is the interface to call the smart contract function
func (c *Client) AuctionGetClosedAuctionSlots() (uint16, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return 0, tracerr.Wrap(errTODO)
}
// AuctionSetOutbidding is the interface to call the smart contract function
func (c *Client) AuctionSetOutbidding(newOutbidding uint16) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// AuctionGetOutbidding is the interface to call the smart contract function
func (c *Client) AuctionGetOutbidding() (uint16, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return 0, tracerr.Wrap(errTODO)
}
// AuctionSetAllocationRatio is the interface to call the smart contract function
func (c *Client) AuctionSetAllocationRatio(newAllocationRatio [3]uint16) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// AuctionGetAllocationRatio is the interface to call the smart contract function
func (c *Client) AuctionGetAllocationRatio() ([3]uint16, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return [3]uint16{}, tracerr.Wrap(errTODO)
}
// AuctionSetDonationAddress is the interface to call the smart contract function
func (c *Client) AuctionSetDonationAddress(newDonationAddress ethCommon.Address) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// AuctionGetDonationAddress is the interface to call the smart contract function
func (c *Client) AuctionGetDonationAddress() (*ethCommon.Address, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// AuctionSetBootCoordinator is the interface to call the smart contract function
func (c *Client) AuctionSetBootCoordinator(newBootCoordinator ethCommon.Address, newBootCoordinatorURL string) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// AuctionGetBootCoordinator is the interface to call the smart contract function
func (c *Client) AuctionGetBootCoordinator() (*ethCommon.Address, error) {
c.rw.RLock()
defer c.rw.RUnlock()
currentBlock := c.currentBlock()
a := currentBlock.Auction
return &a.Vars.BootCoordinator, nil
}
// AuctionChangeDefaultSlotSetBid is the interface to call the smart contract function
func (c *Client) AuctionChangeDefaultSlotSetBid(slotSet int64, newInitialMinBid *big.Int) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// AuctionSetCoordinator is the interface to call the smart contract function
func (c *Client) AuctionSetCoordinator(forger ethCommon.Address, URL string) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
nextBlock := c.nextBlock()
a := nextBlock.Auction
a.State.Coordinators[*c.addr] = &eth.Coordinator{
Forger: forger,
URL: URL,
}
a.Events.SetCoordinator = append(a.Events.SetCoordinator,
eth.AuctionEventSetCoordinator{
BidderAddress: *c.addr,
ForgerAddress: forger,
CoordinatorURL: URL,
})
type data struct {
BidderAddress ethCommon.Address
ForgerAddress ethCommon.Address
URL string
}
return a.addTransaction(c.newTransaction("registercoordinator", data{*c.addr, forger, URL})), nil
}
// AuctionIsRegisteredCoordinator is the interface to call the smart contract function
func (c *Client) AuctionIsRegisteredCoordinator(forgerAddress ethCommon.Address) (bool, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return false, tracerr.Wrap(errTODO)
}
// AuctionUpdateCoordinatorInfo is the interface to call the smart contract function
func (c *Client) AuctionUpdateCoordinatorInfo(forgerAddress ethCommon.Address, newWithdrawAddress ethCommon.Address, newURL string) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// AuctionGetSlotNumber is the interface to call the smart contract function
func (c *Client) AuctionGetSlotNumber(blockNum int64) (int64, error) {
c.rw.RLock()
defer c.rw.RUnlock()
currentBlock := c.currentBlock()
a := currentBlock.Auction
return a.getSlotNumber(blockNum), nil
}
// AuctionGetCurrentSlotNumber is the interface to call the smart contract function
func (c *Client) AuctionGetCurrentSlotNumber() (int64, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return 0, tracerr.Wrap(errTODO)
}
// AuctionGetMinBidBySlot is the interface to call the smart contract function
func (c *Client) AuctionGetMinBidBySlot(slot int64) (*big.Int, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// AuctionGetDefaultSlotSetBid is the interface to call the smart contract function
func (c *Client) AuctionGetDefaultSlotSetBid(slotSet uint8) (*big.Int, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// AuctionGetSlotSet is the interface to call the smart contract function
func (c *Client) AuctionGetSlotSet(slot int64) (*big.Int, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// AuctionTokensReceived is the interface to call the smart contract function
// func (c *Client) AuctionTokensReceived(operator, from, to ethCommon.Address, amount *big.Int, userData, operatorData []byte) error {
// return errTODO
// }
// AuctionBidSimple is a wrapper around AuctionBid that automatically sets `amount` and `deadline`.
func (c *Client) AuctionBidSimple(slot int64, bidAmount *big.Int) (tx *types.Transaction, err error) {
return c.AuctionBid(bidAmount, slot, bidAmount, big.NewInt(99999)) //nolint:gomnd
}
// AuctionBid is the interface to call the smart contract function. This
// implementation behaves as if any address has infinite tokens.
func (c *Client) AuctionBid(amount *big.Int, slot int64, bidAmount *big.Int,
deadline *big.Int) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { func() { c.revertIfErr(err, cpy) }() }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
nextBlock := c.nextBlock()
a := nextBlock.Auction
if slot <= a.getCurrentSlotNumber()+int64(a.Vars.ClosedAuctionSlots) {
return nil, tracerr.Wrap(errBidClosed)
}
if slot > a.getCurrentSlotNumber()+int64(a.Vars.ClosedAuctionSlots)+int64(a.Vars.OpenAuctionSlots) {
return nil, tracerr.Wrap(errBidNotOpen)
}
minBid, err := a.getMinBidBySlot(slot)
if err != nil {
return nil, tracerr.Wrap(err)
}
if bidAmount.Cmp(minBid) == -1 {
return nil, tracerr.Wrap(errBidBelowMin)
}
if _, ok := a.State.Coordinators[*c.addr]; !ok {
return nil, tracerr.Wrap(errCoordNotReg)
}
slotState, ok := a.State.Slots[slot]
if !ok {
slotState = eth.NewSlotState()
a.State.Slots[slot] = slotState
}
slotState.Bidder = *c.addr
slotState.BidAmount = bidAmount
a.Events.NewBid = append(a.Events.NewBid,
eth.AuctionEventNewBid{Slot: slot, BidAmount: bidAmount, Bidder: *c.addr})
type data struct {
Slot int64
BidAmount *big.Int
Bidder ethCommon.Address
}
return a.addTransaction(c.newTransaction("bid", data{slot, bidAmount, *c.addr})), nil
}
// AuctionMultiBid is the interface to call the smart contract function. This
// implementation behaves as if any address has infinite tokens.
func (c *Client) AuctionMultiBid(amount *big.Int, startingSlot int64, endingSlot int64, slotSet [6]bool,
maxBid, closedMinBid, deadline *big.Int) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// AuctionCanForge is the interface to call the smart contract function
func (c *Client) AuctionCanForge(forger ethCommon.Address, blockNum int64) (bool, error) {
c.rw.RLock()
defer c.rw.RUnlock()
currentBlock := c.currentBlock()
a := currentBlock.Auction
return a.canForge(forger, blockNum)
}
// AuctionForge is the interface to call the smart contract function
func (c *Client) AuctionForge(forger ethCommon.Address) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// AuctionClaimHEZ is the interface to call the smart contract function
func (c *Client) AuctionClaimHEZ() (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// AuctionGetClaimableHEZ is the interface to call the smart contract function
func (c *Client) AuctionGetClaimableHEZ(bidder ethCommon.Address) (*big.Int, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// AuctionConstants returns the Constants of the Auction Smart Contract
func (c *Client) AuctionConstants() (*common.AuctionConstants, error) {
c.rw.RLock()
defer c.rw.RUnlock()
return c.auctionConstants, nil
}
// AuctionEventsByBlock returns the events in a block that happened in the Auction Smart Contract
func (c *Client) AuctionEventsByBlock(blockNum int64) (*eth.AuctionEvents, *ethCommon.Hash, error) {
c.rw.RLock()
defer c.rw.RUnlock()
block, ok := c.blocks[blockNum]
if !ok {
return nil, nil, tracerr.Wrap(fmt.Errorf("Block %v doesn't exist", blockNum))
}
return &block.Auction.Events, &block.Eth.Hash, nil
}
// AuctionEventInit returns the initialize event with its corresponding block number
func (c *Client) AuctionEventInit() (*eth.AuctionEventInitialize, int64, error) {
vars := c.blocks[0].Auction.Vars
return &eth.AuctionEventInitialize{
DonationAddress: vars.DonationAddress,
BootCoordinatorAddress: vars.BootCoordinator,
BootCoordinatorURL: vars.BootCoordinatorURL,
Outbidding: vars.Outbidding,
SlotDeadline: vars.SlotDeadline,
ClosedAuctionSlots: vars.ClosedAuctionSlots,
OpenAuctionSlots: vars.OpenAuctionSlots,
AllocationRatio: vars.AllocationRatio,
}, 1, nil
}
//
// WDelayer
//
// WDelayerGetHermezGovernanceAddress is the interface to call the smart contract function
func (c *Client) WDelayerGetHermezGovernanceAddress() (*ethCommon.Address, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// WDelayerTransferGovernance is the interface to call the smart contract function
func (c *Client) WDelayerTransferGovernance(newAddress ethCommon.Address) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// WDelayerClaimGovernance is the interface to call the smart contract function
func (c *Client) WDelayerClaimGovernance() (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// WDelayerGetEmergencyCouncil is the interface to call the smart contract function
func (c *Client) WDelayerGetEmergencyCouncil() (*ethCommon.Address, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// WDelayerTransferEmergencyCouncil is the interface to call the smart contract function
func (c *Client) WDelayerTransferEmergencyCouncil(newAddress ethCommon.Address) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// WDelayerClaimEmergencyCouncil is the interface to call the smart contract function
func (c *Client) WDelayerClaimEmergencyCouncil() (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// WDelayerIsEmergencyMode is the interface to call the smart contract function
func (c *Client) WDelayerIsEmergencyMode() (bool, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return false, tracerr.Wrap(errTODO)
}
// WDelayerGetWithdrawalDelay is the interface to call the smart contract function
func (c *Client) WDelayerGetWithdrawalDelay() (int64, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return 0, tracerr.Wrap(errTODO)
}
// WDelayerGetEmergencyModeStartingTime is the interface to call the smart contract function
func (c *Client) WDelayerGetEmergencyModeStartingTime() (int64, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return 0, tracerr.Wrap(errTODO)
}
// WDelayerEnableEmergencyMode is the interface to call the smart contract function
func (c *Client) WDelayerEnableEmergencyMode() (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// WDelayerChangeWithdrawalDelay is the interface to call the smart contract function
func (c *Client) WDelayerChangeWithdrawalDelay(newWithdrawalDelay uint64) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
nextBlock := c.nextBlock()
w := nextBlock.WDelayer
w.Vars.WithdrawalDelay = newWithdrawalDelay
w.Events.NewWithdrawalDelay = append(w.Events.NewWithdrawalDelay,
eth.WDelayerEventNewWithdrawalDelay{WithdrawalDelay: newWithdrawalDelay})
return w.addTransaction(c.newTransaction("changeWithdrawalDelay", newWithdrawalDelay)), nil
}
// WDelayerDepositInfo is the interface to call the smart contract function
func (c *Client) WDelayerDepositInfo(owner, token ethCommon.Address) (eth.DepositState, error) {
c.rw.RLock()
defer c.rw.RUnlock()
log.Error("TODO")
return eth.DepositState{}, tracerr.Wrap(errTODO)
}
// WDelayerDeposit is the interface to call the smart contract function
func (c *Client) WDelayerDeposit(onwer, token ethCommon.Address, amount *big.Int) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// WDelayerWithdrawal is the interface to call the smart contract function
func (c *Client) WDelayerWithdrawal(owner, token ethCommon.Address) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// WDelayerEscapeHatchWithdrawal is the interface to call the smart contract function
func (c *Client) WDelayerEscapeHatchWithdrawal(to, token ethCommon.Address, amount *big.Int) (tx *types.Transaction, err error) {
c.rw.Lock()
defer c.rw.Unlock()
cpy := c.nextBlock().copy()
defer func() { c.revertIfErr(err, cpy) }()
if c.addr == nil {
return nil, tracerr.Wrap(eth.ErrAccountNil)
}
log.Error("TODO")
return nil, tracerr.Wrap(errTODO)
}
// WDelayerEventsByBlock returns the events in a block that happened in the WDelayer Contract
func (c *Client) WDelayerEventsByBlock(blockNum int64) (*eth.WDelayerEvents, *ethCommon.Hash, error) {
c.rw.RLock()
defer c.rw.RUnlock()
block, ok := c.blocks[blockNum]
if !ok {
return nil, nil, tracerr.Wrap(fmt.Errorf("Block %v doesn't exist", blockNum))
}
return &block.WDelayer.Events, &block.Eth.Hash, nil
}
// WDelayerConstants returns the Constants of the WDelayer Contract
func (c *Client) WDelayerConstants() (*common.WDelayerConstants, error) {
c.rw.RLock()
defer c.rw.RUnlock()
return c.wDelayerConstants, nil
}
// WDelayerEventInit returns the initialize event with its corresponding block number
func (c *Client) WDelayerEventInit() (*eth.WDelayerEventInitialize, int64, error) {
vars := c.blocks[0].WDelayer.Vars
return &eth.WDelayerEventInitialize{
InitialWithdrawalDelay: vars.WithdrawalDelay,
InitialHermezGovernanceAddress: vars.HermezGovernanceAddress,
InitialEmergencyCouncil: vars.EmergencyCouncilAddress,
}, 1, nil
}
// CtlAddBlocks adds block data to the smarts contracts. The added blocks will
// appear as mined. Not thread safe.
func (c *Client) CtlAddBlocks(blocks []common.BlockData) (err error) {
// NOTE: We don't lock because internally we call public functions that
// lock already.
for _, block := range blocks {
nextBlock := c.nextBlock()
rollup := nextBlock.Rollup
auction := nextBlock.Auction
for _, token := range block.Rollup.AddedTokens {
if _, err := c.RollupAddTokenSimple(token.EthAddr, rollup.Vars.FeeAddToken); err != nil {
return tracerr.Wrap(err)
}
}
for _, tx := range block.Rollup.L1UserTxs {
c.CtlSetAddr(tx.FromEthAddr)
if _, err := c.RollupL1UserTxERC20ETH(tx.FromBJJ, int64(tx.FromIdx), tx.DepositAmount, tx.Amount,
uint32(tx.TokenID), int64(tx.ToIdx)); err != nil {
return tracerr.Wrap(err)
}
}
c.CtlSetAddr(auction.Vars.BootCoordinator)
for _, batch := range block.Rollup.Batches {
if _, err := c.RollupForgeBatch(&eth.RollupForgeBatchArgs{
NewLastIdx: batch.Batch.LastIdx,
NewStRoot: batch.Batch.StateRoot,
NewExitRoot: batch.Batch.ExitRoot,
L1CoordinatorTxs: batch.L1CoordinatorTxs,
L1CoordinatorTxsAuths: [][]byte{}, // Intentionally empty
L2TxsData: batch.L2Txs,
FeeIdxCoordinator: batch.Batch.FeeIdxsCoordinator,
// Circuit selector
VerifierIdx: 0, // Intentionally empty
L1Batch: batch.L1Batch,
ProofA: [2]*big.Int{}, // Intentionally empty
ProofB: [2][2]*big.Int{}, // Intentionally empty
ProofC: [2]*big.Int{}, // Intentionally empty
}, nil); err != nil {
return tracerr.Wrap(err)
}
}
// Mine block and sync
c.CtlMineBlock()
}
return nil
}