|
package common
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"math"
|
|
"math/big"
|
|
|
|
eth "github.com/ethereum/go-ethereum/common"
|
|
cryptoUtils "github.com/iden3/go-iden3-crypto/utils"
|
|
)
|
|
|
|
// Leaf is the data structure stored in the Leaf of the MerkleTree
|
|
type Leaf struct {
|
|
TokenID TokenID
|
|
Nonce uint64 // max of 40 bits used
|
|
Balance *big.Int // max of 192 bits used
|
|
Ax *big.Int
|
|
Ay *big.Int
|
|
EthAddr eth.Address
|
|
}
|
|
|
|
// Bytes returns the bytes representing the Leaf, in a way that each BigInt is represented by 32 bytes, in spite of the BigInt could be represented in less bytes (due a small big.Int), so in this way each BigInt is always 32 bytes and can be automatically parsed from a byte array.
|
|
func (l *Leaf) Bytes() ([32 * 5]byte, error) {
|
|
var b [32 * 5]byte
|
|
|
|
if l.Nonce >= uint64(math.Pow(2, 40)) {
|
|
return b, fmt.Errorf("%s Nonce", ErrNumOverflow)
|
|
}
|
|
if len(l.Balance.Bytes()) > 24 {
|
|
return b, fmt.Errorf("%s Balance", ErrNumOverflow)
|
|
}
|
|
|
|
var tokenIDBytes [4]byte
|
|
binary.LittleEndian.PutUint32(tokenIDBytes[:], uint32(l.TokenID))
|
|
var nonceBytes [8]byte
|
|
binary.LittleEndian.PutUint64(nonceBytes[:], l.Nonce)
|
|
|
|
copy(b[0:4], tokenIDBytes[:])
|
|
copy(b[4:9], nonceBytes[:])
|
|
copy(b[32:64], SwapEndianness(l.Balance.Bytes())) // SwapEndianness, as big.Int uses BigEndian
|
|
copy(b[64:96], SwapEndianness(l.Ax.Bytes()))
|
|
copy(b[96:128], SwapEndianness(l.Ay.Bytes()))
|
|
copy(b[128:148], l.EthAddr.Bytes())
|
|
|
|
return b, nil
|
|
}
|
|
|
|
// BigInts returns the [5]*big.Int, where each *big.Int is inside the Finite Field
|
|
func (l *Leaf) BigInts() ([5]*big.Int, error) {
|
|
e := [5]*big.Int{}
|
|
|
|
b, err := l.Bytes()
|
|
if err != nil {
|
|
return e, err
|
|
}
|
|
|
|
e[0] = new(big.Int).SetBytes(SwapEndianness(b[0:32]))
|
|
e[1] = new(big.Int).SetBytes(SwapEndianness(b[32:64]))
|
|
e[2] = new(big.Int).SetBytes(SwapEndianness(b[64:96]))
|
|
e[3] = new(big.Int).SetBytes(SwapEndianness(b[96:128]))
|
|
e[4] = new(big.Int).SetBytes(SwapEndianness(b[128:160]))
|
|
|
|
return e, nil
|
|
}
|
|
|
|
// LeafFromBigInts returns a Leaf from a [5]*big.Int
|
|
func LeafFromBigInts(e [5]*big.Int) (*Leaf, error) {
|
|
if !cryptoUtils.CheckBigIntArrayInField(e[:]) {
|
|
return nil, ErrNotInFF
|
|
}
|
|
var b [32 * 5]byte
|
|
copy(b[0:32], SwapEndianness(e[0].Bytes())) // SwapEndianness, as big.Int uses BigEndian
|
|
copy(b[32:64], SwapEndianness(e[1].Bytes()))
|
|
copy(b[64:96], SwapEndianness(e[2].Bytes()))
|
|
copy(b[96:128], SwapEndianness(e[3].Bytes()))
|
|
copy(b[128:160], SwapEndianness(e[4].Bytes()))
|
|
|
|
return LeafFromBytes(b)
|
|
}
|
|
|
|
// LeafFromBytes returns a Leaf from a byte array
|
|
func LeafFromBytes(b [32 * 5]byte) (*Leaf, error) {
|
|
tokenID := binary.LittleEndian.Uint32(b[0:4])
|
|
nonce := binary.LittleEndian.Uint64(b[4:12])
|
|
if !bytes.Equal(b[9:12], []byte{0, 0, 0}) { // alternatively: if nonce >= uint64(math.Pow(2, 40)) {
|
|
return nil, fmt.Errorf("%s Nonce", ErrNumOverflow)
|
|
}
|
|
balance := new(big.Int).SetBytes(SwapEndianness(b[32:56])) // b[32:56], as Balance is 192 bits (24 bytes)
|
|
if !bytes.Equal(b[56:64], []byte{0, 0, 0, 0, 0, 0, 0, 0}) {
|
|
return nil, fmt.Errorf("%s Balance", ErrNumOverflow)
|
|
}
|
|
ax := new(big.Int).SetBytes(SwapEndianness(b[64:96])) // SwapEndianness, as big.Int uses BigEndian
|
|
ay := new(big.Int).SetBytes(SwapEndianness(b[96:128]))
|
|
ethAddr := eth.BytesToAddress(b[128:148])
|
|
|
|
if !cryptoUtils.CheckBigIntInField(balance) {
|
|
return nil, ErrNotInFF
|
|
}
|
|
if !cryptoUtils.CheckBigIntInField(ax) {
|
|
return nil, ErrNotInFF
|
|
}
|
|
if !cryptoUtils.CheckBigIntInField(ay) {
|
|
return nil, ErrNotInFF
|
|
}
|
|
|
|
l := Leaf{
|
|
TokenID: TokenID(tokenID),
|
|
Nonce: nonce,
|
|
Balance: balance,
|
|
Ax: ax,
|
|
Ay: ay,
|
|
EthAddr: ethAddr,
|
|
}
|
|
return &l, nil
|
|
}
|