Browse Source

a generic Trait for both ml and uni KZG (#43)

main
zhenfei 2 years ago
committed by GitHub
parent
commit
17cff52765
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 1872 additions and 950 deletions
  1. +18
    -11
      pcs/benches/bench.rs
  2. +0
    -620
      pcs/src/commit.rs
  3. +76
    -36
      pcs/src/lib.rs
  4. +433
    -0
      pcs/src/multilinear_kzg/batching.rs
  5. +441
    -0
      pcs/src/multilinear_kzg/mod.rs
  6. +258
    -0
      pcs/src/multilinear_kzg/srs.rs
  7. +101
    -32
      pcs/src/multilinear_kzg/util.rs
  8. +2
    -251
      pcs/src/param.rs
  9. +13
    -0
      pcs/src/prelude.rs
  10. +9
    -0
      pcs/src/structs.rs
  11. +384
    -0
      pcs/src/univariate_kzg/mod.rs
  12. +127
    -0
      pcs/src/univariate_kzg/srs.rs
  13. +10
    -0
      poly-iop/src/transcript.rs

+ 18
- 11
pcs/benches/bench.rs

@ -2,7 +2,10 @@ use ark_bls12_381::{Bls12_381, Fr};
use ark_ff::UniformRand;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_std::test_rng;
use pcs::{KZGMultilinearPC, MultilinearCommitmentScheme, PCSErrors};
use pcs::{
prelude::{KZGMultilinearPCS, PCSErrors, PolynomialCommitmentScheme},
StructuredReferenceString,
};
use std::time::Instant;
fn main() -> Result<(), PCSErrors> {
@ -13,7 +16,7 @@ fn bench_pcs() -> Result<(), PCSErrors> {
let mut rng = test_rng();
// normal polynomials
let uni_params = KZGMultilinearPC::<Bls12_381>::setup(&mut rng, 18)?;
let uni_params = KZGMultilinearPCS::<Bls12_381>::gen_srs_for_testing(&mut rng, 18)?;
for nv in 4..19 {
let repetition = if nv < 10 {
@ -25,14 +28,18 @@ fn bench_pcs() -> Result<(), PCSErrors> {
};
let poly = DenseMultilinearExtension::rand(nv, &mut rng);
let (ck, vk) = uni_params.trim(nv)?;
let (ml_ck, ml_vk) = uni_params.0.trim(nv)?;
let (uni_ck, uni_vk) = uni_params.1.trim(nv)?;
let ck = (ml_ck, uni_ck);
let vk = (ml_vk, uni_vk);
let point: Vec<_> = (0..nv).map(|_| Fr::rand(&mut rng)).collect();
// commit
let com = {
let start = Instant::now();
for _ in 0..repetition {
let _commit = KZGMultilinearPC::commit(&ck, &poly)?;
let _commit = KZGMultilinearPCS::commit(&ck, &poly)?;
}
println!(
@ -41,14 +48,14 @@ fn bench_pcs() -> Result<(), PCSErrors> {
start.elapsed().as_nanos() / repetition as u128
);
KZGMultilinearPC::commit(&ck, &poly)?
KZGMultilinearPCS::commit(&ck, &poly)?
};
// open
let proof = {
let (proof, value) = {
let start = Instant::now();
for _ in 0..repetition {
let _open = KZGMultilinearPC::open(&ck, &poly, &point)?;
let _open = KZGMultilinearPCS::open(&ck, &poly, &point)?;
}
println!(
@ -56,16 +63,16 @@ fn bench_pcs() -> Result<(), PCSErrors> {
nv,
start.elapsed().as_nanos() / repetition as u128
);
KZGMultilinearPC::open(&ck, &poly, &point)?
KZGMultilinearPCS::open(&ck, &poly, &point)?
};
let value = poly.evaluate(&point).unwrap();
// verify
{
let start = Instant::now();
for _ in 0..repetition {
assert!(KZGMultilinearPC::verify(&vk, &com, &point, &value, &proof)?);
assert!(KZGMultilinearPCS::verify(
&vk, &com, &point, &value, &proof
)?);
}
println!(
"KZG verify for {} variables: {} ns",

+ 0
- 620
pcs/src/commit.rs

@ -1,620 +0,0 @@
use crate::{
util::{build_l, compute_w_circ_l, merge_polynomials},
KZGMultilinearPC, MultilinearCommitmentScheme, PCSErrors, ProverParam, UniversalParams,
VerifierParam,
};
use ark_ec::{
msm::{FixedBaseMSM, VariableBaseMSM},
AffineCurve, PairingEngine, ProjectiveCurve,
};
use ark_ff::PrimeField;
use ark_poly::{univariate::DensePolynomial, MultilinearExtension, Polynomial, UVPolynomial};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize, Read, SerializationError, Write};
use ark_std::{end_timer, log2, rand::RngCore, start_timer, vec::Vec, One, Zero};
use poly_iop::IOPTranscript;
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
/// commitment
pub struct Commitment<E: PairingEngine> {
/// number of variables
pub nv: usize,
/// product of g as described by the vRAM paper
pub g_product: E::G1Affine,
}
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
/// proof of opening
pub struct Proof<E: PairingEngine> {
/// Evaluation of quotients
pub proofs: Vec<E::G1Affine>,
}
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
/// proof of batch opening
pub struct BatchProof<E: PairingEngine> {
/// The actual proof
pub proof: Proof<E>,
/// The value which is `w` evaluated at `p:= l(r)`, where
/// - `w` is the merged MLE
/// - `l` is the list of univariate polys that goes through all points
/// - `r` is sampled from the transcript.
pub value: E::Fr,
/// Commitment to q(x)
// This is currently set to the entire coefficient list of q(x)
// TODO: replace me with a KZG commit
pub q_x_com: Vec<E::Fr>,
}
impl<E: PairingEngine> MultilinearCommitmentScheme<E> for KZGMultilinearPC<E> {
type ProverParam = ProverParam<E>;
type VerifierParam = VerifierParam<E>;
type SRS = UniversalParams<E>;
type Commitment = Commitment<E>;
type Proof = Proof<E>;
type Transcript = IOPTranscript<E::Fr>;
type BatchProof = BatchProof<E>;
/// Generate SRS from RNG.
/// WARNING: THIS FUNCTION IS FOR TESTING PURPOSE ONLY.
/// THE OUTPUT SRS SHOULD NOT BE USED IN PRODUCTION.
fn setup<R: RngCore>(rng: &mut R, num_vars: usize) -> Result<Self::SRS, PCSErrors> {
let setup_timer = start_timer!(|| format!("SRS setup for dim {}", num_vars));
let res = Self::SRS::gen_srs_for_testing(rng, num_vars);
end_timer!(setup_timer);
res
}
/// Generate a commitment for a polynomial.
///
/// This function takes `2^num_vars` number of scalar multiplications over
/// G1.
fn commit(
prover_param: &Self::ProverParam,
poly: &impl MultilinearExtension<E::Fr>,
) -> Result<Self::Commitment, PCSErrors> {
let commit_timer = start_timer!(|| "commit");
let nv = poly.num_vars();
let scalars: Vec<_> = poly
.to_evaluations()
.into_iter()
.map(|x| x.into_repr())
.collect();
let g_product = VariableBaseMSM::multi_scalar_mul(
&prover_param.powers_of_g[0].evals,
scalars.as_slice(),
)
.into_affine();
end_timer!(commit_timer);
Ok(Commitment { nv, g_product })
}
/// Generate a commitment for a list of polynomials.
///
/// This function takes `2^(num_vars + log(polys.len())` number of scalar
/// multiplications over G1.
fn multi_commit(
prover_param: &Self::ProverParam,
polys: &[impl MultilinearExtension<E::Fr>],
) -> Result<Self::Commitment, PCSErrors> {
let commit_timer = start_timer!(|| "multi commit");
let poly = merge_polynomials(polys)?;
let scalars: Vec<_> = poly
.to_evaluations()
.iter()
.map(|x| x.into_repr())
.collect();
let g_product = VariableBaseMSM::multi_scalar_mul(
&prover_param.powers_of_g[0].evals,
scalars.as_slice(),
)
.into_affine();
end_timer!(commit_timer);
Ok(Commitment {
nv: poly.num_vars,
g_product,
})
}
/// On input a polynomial `p` and a point `point`, outputs a proof for the
/// same. This function does not need to take the evaluation value as an
/// input.
///
/// This function takes 2^{num_var +1} number of scalar multiplications over
/// G1:
/// - it proceeds with `num_var` number of rounds,
/// - at round i, we compute an MSM for `2^{num_var - i + 1}` number of G2
/// elements.
fn open(
prover_param: &Self::ProverParam,
polynomial: &impl MultilinearExtension<E::Fr>,
point: &[E::Fr],
) -> Result<Self::Proof, PCSErrors> {
let open_timer = start_timer!(|| "open");
assert_eq!(
polynomial.num_vars(),
prover_param.num_vars,
"Invalid size of polynomial"
);
let nv = polynomial.num_vars();
let mut r: Vec<Vec<E::Fr>> = (0..nv + 1).map(|_| Vec::new()).collect();
let mut q: Vec<Vec<E::Fr>> = (0..nv + 1).map(|_| Vec::new()).collect();
r[nv] = polynomial.to_evaluations();
let mut proofs = Vec::new();
for (i, (&point_at_k, gi)) in point
.iter()
.zip(prover_param.powers_of_g.iter())
.take(nv)
.enumerate()
{
let ith_round = start_timer!(|| format!("{}-th round", i));
let k = nv - i;
let cur_dim = 1 << (k - 1);
let mut cur_q = vec![E::Fr::zero(); cur_dim];
let mut cur_r = vec![E::Fr::zero(); cur_dim];
for b in 0..(1 << (k - 1)) {
// q_b = pre_r [2^b + 1] - pre_r [2^b]
cur_q[b] = r[k][(b << 1) + 1] - r[k][b << 1];
// r_b = pre_r [2^b]*(1-p) + pre_r [2^b + 1] * p
cur_r[b] =
r[k][b << 1] * (E::Fr::one() - point_at_k) + (r[k][(b << 1) + 1] * point_at_k);
}
let scalars: Vec<_> = (0..(1 << k)).map(|x| cur_q[x >> 1].into_repr()).collect();
q[k] = cur_q;
r[k - 1] = cur_r;
// this is a MSM over G1 and is likely to be the bottleneck
proofs.push(VariableBaseMSM::multi_scalar_mul(&gi.evals, &scalars).into_affine());
end_timer!(ith_round);
}
end_timer!(open_timer);
Ok(Proof { proofs })
}
/// Input
/// - the prover parameters,
/// - a list of MLEs,
/// - and a same number of points,
/// - and a transcript,
/// compute a multi-opening for all the polynomials.
///
/// For simplicity, this API requires each MLE to have only one point. If
/// the caller wish to use more than one points per MLE, it should be
/// handled at the caller layer.
///
/// Returns an error if the lengths do not match.
///
/// Returns:
/// - the proof,
/// - q(x), which is a univariate polynomial `w circ l` where `w` is the
/// merged MLE, and `l` is a list of polynomials that go through all the
/// points. TODO: change this field to a commitment to `q(x)`
/// - and a value which is `w` evaluated at `p:= l(r)` from some `r` from
/// the transcript.
///
/// Steps:
/// 1. build `l(points)` which is a list of univariate polynomials that goes
/// through the points
/// 2. build MLE `w` which is the merge of all MLEs.
/// 3. build `q(x)` which is a univariate polynomial `W circ l`
/// 4. output `q(x)`' and put it into transcript
/// 5. sample `r` from transcript
/// 6. get a point `p := l(r)`
/// 7. output an opening of `w` over point `p`
/// 8. output `w(p)`
fn multi_open(
prover_param: &Self::ProverParam,
polynomials: &[impl MultilinearExtension<E::Fr>],
points: &[&[E::Fr]],
transcript: &mut IOPTranscript<E::Fr>,
) -> Result<Self::BatchProof, PCSErrors> {
let open_timer = start_timer!(|| "multi open");
if points.len() != polynomials.len() {
return Err(PCSErrors::InvalidParameters(
"polynomial length does not match point length".to_string(),
));
}
let num_var = polynomials[0].num_vars();
for poly in polynomials.iter().skip(1) {
if poly.num_vars() != num_var {
return Err(PCSErrors::InvalidParameters(
"polynomials do not have same num_vars".to_string(),
));
}
}
for &point in points.iter() {
if point.len() != num_var {
return Err(PCSErrors::InvalidParameters(
"points do not have same num_vars".to_string(),
));
}
}
// 1. build `l(points)` which is a list of univariate polynomials that goes
// through the points
let uni_polys = build_l(num_var, points)?;
// 2. build MLE `w` which is the merge of all MLEs.
let merge_poly = merge_polynomials(polynomials)?;
// 3. build `q(x)` which is a univariate polynomial `W circ l`
let q_x = compute_w_circ_l(&merge_poly, &uni_polys)?;
// 4. output `q(x)`' and put it into transcript
//
// TODO: use KZG commit for q(x)
// TODO: unwrap
q_x.coeffs
.iter()
.for_each(|x| transcript.append_field_element(b"q(x)", x).unwrap());
// 5. sample `r` from transcript
let r = transcript.get_and_append_challenge(b"r")?;
// 6. get a point `p := l(r)`
let point: Vec<E::Fr> = uni_polys
.iter()
.rev()
.map(|poly| poly.evaluate(&r))
.collect();
// 7. output an opening of `w` over point `p`
let opening = Self::open(prover_param, &merge_poly, &point)?;
// 8. output value that is `w` evaluated at `p` (which should match `q(r)`)
let value = merge_poly.evaluate(&point).unwrap();
let value2 = q_x.evaluate(&r);
if value != value2 {
return Err(PCSErrors::InvalidProver(
"Q(r) does not match W(l(r))".to_string(),
));
}
end_timer!(open_timer);
Ok(Self::BatchProof {
proof: opening,
q_x_com: q_x.coeffs,
value,
})
}
/// Verifies that `value` is the evaluation at `x` of the polynomial
/// committed inside `comm`.
///
/// This function takes
/// - num_var number of pairing product.
/// - num_var number of MSM
fn verify(
verifier_param: &Self::VerifierParam,
commitment: &Self::Commitment,
point: &[E::Fr],
value: &E::Fr,
proof: &Self::Proof,
) -> Result<bool, PCSErrors> {
let verify_timer = start_timer!(|| "verify");
let prepare_inputs_timer = start_timer!(|| "prepare pairing inputs");
let scalar_size = E::Fr::size_in_bits();
let window_size = FixedBaseMSM::get_mul_window_size(verifier_param.num_vars);
let h_table = FixedBaseMSM::get_window_table(
scalar_size,
window_size,
verifier_param.h.into_projective(),
);
let h_mul: Vec<E::G2Projective> =
FixedBaseMSM::multi_scalar_mul(scalar_size, window_size, &h_table, point);
let h_vec: Vec<_> = (0..verifier_param.num_vars)
.map(|i| verifier_param.h_mask[i].into_projective() - h_mul[i])
.collect();
let h_vec: Vec<E::G2Affine> = E::G2Projective::batch_normalization_into_affine(&h_vec);
end_timer!(prepare_inputs_timer);
let pairing_product_timer = start_timer!(|| "pairing product");
let mut pairings: Vec<_> = proof
.proofs
.iter()
.map(|&x| E::G1Prepared::from(x))
.zip(
h_vec
.into_iter()
.take(verifier_param.num_vars)
.map(E::G2Prepared::from),
)
.collect();
pairings.push((
E::G1Prepared::from(
(verifier_param.g.mul(*value) - commitment.g_product.into_projective())
.into_affine(),
),
E::G2Prepared::from(verifier_param.h),
));
let res = E::product_of_pairings(pairings.iter()) == E::Fqk::one();
end_timer!(pairing_product_timer);
end_timer!(verify_timer);
Ok(res)
}
/// Verifies that `value` is the evaluation at `x_i` of the polynomial
/// `poly_i` committed inside `comm`.
/// steps:
///
/// 1. put `q(x)`'s evaluations over `(1, omega,...)` into transcript
/// 2. sample `r` from transcript
/// 3. check `q(r) == value`
/// 4. build `l(points)` which is a list of univariate polynomials that goes
/// through the points
/// 5. get a point `p := l(r)`
/// 6. verifies `p` is verifies against proof
fn batch_verify(
verifier_param: &Self::VerifierParam,
multi_commitment: &Self::Commitment,
points: &[&[E::Fr]],
batch_proof: &Self::BatchProof,
transcript: &mut IOPTranscript<E::Fr>,
) -> Result<bool, PCSErrors> {
let verify_timer = start_timer!(|| "batch verify");
let num_var = points[0].len();
for &point in points.iter().skip(1) {
if point.len() != num_var {
return Err(PCSErrors::InvalidParameters(format!(
"points do not have same num_vars ({} vs {})",
point.len(),
num_var,
)));
}
}
if num_var + log2(points.len()) as usize != multi_commitment.nv {
return Err(PCSErrors::InvalidParameters(format!(
"points and multi_commitment do not have same num_vars ({} vs {})",
num_var + log2(points.len()) as usize,
num_var,
)));
}
// TODO: verify commitment of `q(x)` instead of receiving full `q(x)`
// 1. put `q(x)`'s evaluations over `(1, omega,...)` into transcript
// TODO: unwrap
batch_proof
.q_x_com
.iter()
.for_each(|x| transcript.append_field_element(b"q(x)", x).unwrap());
// 2. sample `r` from transcript
let r = transcript.get_and_append_challenge(b"r")?;
// 3. check `q(r) == value`
let q_x = DensePolynomial::from_coefficients_slice(&batch_proof.q_x_com);
let q_r = q_x.evaluate(&r);
if q_r != batch_proof.value {
return Ok(false);
}
// 4. build `l(points)` which is a list of univariate polynomials that goes
// through the points
let uni_polys = build_l(num_var, points)?;
// 5. get a point `p := l(r)`
let point: Vec<E::Fr> = uni_polys.iter().rev().map(|x| x.evaluate(&r)).collect();
// 6. verifies `p` is verifies against proof
let res = Self::verify(
verifier_param,
multi_commitment,
&point,
&batch_proof.value,
&batch_proof.proof,
);
end_timer!(verify_timer);
res
}
}
#[cfg(test)]
mod tests {
use crate::util::get_batched_nv;
use super::*;
use ark_bls12_381::Bls12_381;
use ark_ec::PairingEngine;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_std::{rand::RngCore, test_rng, vec::Vec, UniformRand};
type E = Bls12_381;
type Fr = <E as PairingEngine>::Fr;
fn test_single_helper<R: RngCore>(
uni_params: &UniversalParams<E>,
poly: &impl MultilinearExtension<Fr>,
rng: &mut R,
) -> Result<(), PCSErrors> {
let nv = poly.num_vars();
assert_ne!(nv, 0);
let (ck, vk) = uni_params.trim(nv)?;
let point: Vec<_> = (0..nv).map(|_| Fr::rand(rng)).collect();
let com = KZGMultilinearPC::commit(&ck, poly)?;
let proof = KZGMultilinearPC::open(&ck, poly, &point)?;
let value = poly.evaluate(&point).unwrap();
assert!(KZGMultilinearPC::verify(&vk, &com, &point, &value, &proof)?);
let value = Fr::rand(rng);
assert!(!KZGMultilinearPC::verify(
&vk, &com, &point, &value, &proof
)?);
Ok(())
}
#[test]
fn test_single_commit() -> Result<(), PCSErrors> {
let mut rng = test_rng();
let uni_params = KZGMultilinearPC::<E>::setup(&mut rng, 10)?;
// normal polynomials
let poly1 = DenseMultilinearExtension::rand(8, &mut rng);
test_single_helper(&uni_params, &poly1, &mut rng)?;
// single-variate polynomials
let poly2 = DenseMultilinearExtension::rand(1, &mut rng);
test_single_helper(&uni_params, &poly2, &mut rng)?;
Ok(())
}
fn test_multi_commit_helper<R: RngCore>(
uni_params: &UniversalParams<E>,
polys: &[impl MultilinearExtension<Fr>],
rng: &mut R,
) -> Result<(), PCSErrors> {
let mut transcript = IOPTranscript::new(b"test");
let nv = get_batched_nv(polys[0].num_vars(), polys.len());
let (ck, vk) = uni_params.trim(nv)?;
let mut points = Vec::new();
for poly in polys.iter() {
let point = (0..poly.num_vars())
.map(|_| Fr::rand(rng))
.collect::<Vec<Fr>>();
points.push(point);
}
let points_ref: Vec<&[Fr]> = points.iter().map(|x| x.as_ref()).collect();
let com = KZGMultilinearPC::multi_commit(&ck, polys)?;
let batch_proof = KZGMultilinearPC::multi_open(&ck, polys, &points_ref, &mut transcript)?;
// good path
let mut transcript = IOPTranscript::new(b"test");
assert!(KZGMultilinearPC::batch_verify(
&vk,
&com,
&points_ref,
&batch_proof,
&mut transcript
)?);
// bad commitment
assert!(KZGMultilinearPC::batch_verify(
&vk,
&Commitment {
nv: 0,
g_product: <E as PairingEngine>::G1Affine::default()
},
&points_ref,
&batch_proof,
&mut transcript
)
.is_err());
// bad points
let points_ref: Vec<&[Fr]> = points.iter().skip(1).map(|x| x.as_ref()).collect();
assert!(KZGMultilinearPC::batch_verify(
&vk,
&com,
&points_ref,
&batch_proof,
&mut transcript
)
.is_err());
// bad proof
assert!(KZGMultilinearPC::batch_verify(
&vk,
&com,
&points_ref,
&BatchProof {
proof: Proof { proofs: Vec::new() },
value: batch_proof.value,
q_x_com: batch_proof.q_x_com.clone()
},
&mut transcript
)
.is_err());
// bad value
assert!(KZGMultilinearPC::batch_verify(
&vk,
&com,
&points_ref,
&BatchProof {
proof: batch_proof.proof.clone(),
value: Fr::one(),
q_x_com: batch_proof.q_x_com
},
&mut transcript
)
.is_err());
// bad q(x) commit
assert!(KZGMultilinearPC::batch_verify(
&vk,
&com,
&points_ref,
&BatchProof {
proof: batch_proof.proof,
value: batch_proof.value,
q_x_com: Vec::new()
},
&mut transcript
)
.is_err());
Ok(())
}
#[test]
fn test_multi_commit() -> Result<(), PCSErrors> {
let mut rng = test_rng();
let uni_params = KZGMultilinearPC::<E>::setup(&mut rng, 15)?;
// normal polynomials
let polys1: Vec<_> = (0..2)
.map(|_| DenseMultilinearExtension::rand(4, &mut rng))
.collect();
test_multi_commit_helper(&uni_params, &polys1, &mut rng)?;
// single-variate polynomials
let polys1: Vec<_> = (0..5)
.map(|_| DenseMultilinearExtension::rand(1, &mut rng))
.collect();
test_multi_commit_helper(&uni_params, &polys1, &mut rng)?;
Ok(())
}
#[test]
fn setup_commit_verify_constant_polynomial() {
let mut rng = test_rng();
// normal polynomials
assert!(KZGMultilinearPC::<E>::setup(&mut rng, 0).is_err());
}
}

+ 76
- 36
pcs/src/lib.rs

@ -1,85 +1,125 @@
mod commit;
mod errors;
mod param;
mod util;
mod multilinear_kzg;
mod structs;
mod univariate_kzg;
pub mod prelude;
use ark_ec::PairingEngine;
use ark_poly::MultilinearExtension;
use ark_std::rand::RngCore;
use poly_iop::IOPTranscript;
use std::marker::PhantomData;
pub use errors::PCSErrors;
pub use param::{ProverParam, UniversalParams, VerifierParam};
/// KZG Polynomial Commitment Scheme on multilinear extensions.
pub struct KZGMultilinearPC<E: PairingEngine> {
#[doc(hidden)]
phantom: PhantomData<E>,
}
use errors::PCSErrors;
pub trait MultilinearCommitmentScheme<E: PairingEngine> {
/// This trait defines APIs for polynomial commitment schemes.
/// Note that for our usage of PCS, we do not require the hiding property.
pub trait PolynomialCommitmentScheme<E: PairingEngine> {
// Parameters
type ProverParam;
type VerifierParam;
type SRS;
// Polynomial and its associated types
type Polynomial;
type Point;
type Evaluation;
// Commitments and proofs
type Commitment;
type Proof;
type BatchProof;
type Transcript;
type BatchCommitment;
/// Generate SRS from RNG.
/// Build SRS for testing.
///
/// - For univariate polynomials, `log_size` is the log of maximum degree.
/// - For multilinear polynomials, `log_size` is the number of variables.
///
/// WARNING: THIS FUNCTION IS FOR TESTING PURPOSE ONLY.
/// THE OUTPUT SRS SHOULD NOT BE USED IN PRODUCTION.
fn setup<R: RngCore>(rng: &mut R, num_vars: usize) -> Result<Self::SRS, PCSErrors>;
fn gen_srs_for_testing<R: RngCore>(
rng: &mut R,
log_size: usize,
) -> Result<Self::SRS, PCSErrors>;
/// Generate a commitment for a polynomial
fn commit(
prover_param: &Self::ProverParam,
poly: &impl MultilinearExtension<E::Fr>,
poly: &Self::Polynomial,
) -> Result<Self::Commitment, PCSErrors>;
/// Generate a commitment for a list of polynomials
fn multi_commit(
prover_param: &Self::ProverParam,
polys: &[impl MultilinearExtension<E::Fr>],
) -> Result<Self::Commitment, PCSErrors>;
polys: &[Self::Polynomial],
) -> Result<Self::BatchCommitment, PCSErrors>;
/// On input a polynomial `p` and a point `point`, outputs a proof for the
/// same.
fn open(
prover_param: &Self::ProverParam,
polynomial: &impl MultilinearExtension<E::Fr>,
point: &[E::Fr],
) -> Result<Self::Proof, PCSErrors>;
polynomial: &Self::Polynomial,
point: &Self::Point,
) -> Result<(Self::Proof, Self::Evaluation), PCSErrors>;
/// Input a list of MLEs, and a same number of points, and a transcript,
/// compute a multi-opening for all the polynomials.
#[allow(clippy::type_complexity)]
// TODO: remove after we KZG-commit q(x)
fn multi_open(
prover_param: &Self::ProverParam,
polynomials: &[impl MultilinearExtension<E::Fr>],
point: &[&[E::Fr]],
transcript: &mut Self::Transcript,
) -> Result<Self::BatchProof, PCSErrors>;
multi_commitment: &Self::Commitment,
polynomials: &[Self::Polynomial],
points: &[Self::Point],
) -> Result<(Self::BatchProof, Vec<Self::Evaluation>), PCSErrors>;
/// Verifies that `value` is the evaluation at `x` of the polynomial
/// committed inside `comm`.
fn verify(
verifier_param: &Self::VerifierParam,
commitment: &Self::Commitment,
point: &[E::Fr],
point: &Self::Point,
value: &E::Fr,
proof: &Self::Proof,
) -> Result<bool, PCSErrors>;
/// Verifies that `value_i` is the evaluation at `x_i` of the polynomial
/// `poly_i` committed inside `comm`.
fn batch_verify(
fn batch_verify<R: RngCore>(
verifier_param: &Self::VerifierParam,
multi_commitment: &Self::Commitment,
points: &[&[E::Fr]],
multi_commitment: &Self::BatchCommitment,
points: &[Self::Point],
values: &[E::Fr],
batch_proof: &Self::BatchProof,
transcript: &mut IOPTranscript<E::Fr>,
rng: &mut R,
) -> Result<bool, PCSErrors>;
}
/// API definitions for structured reference string
pub trait StructuredReferenceString<E: PairingEngine>: Sized {
type ProverParam;
type VerifierParam;
/// Extract the prover parameters from the public parameters.
fn extract_prover_param(&self, supported_log_size: usize) -> Self::ProverParam;
/// Extract the verifier parameters from the public parameters.
fn extract_verifier_param(&self, supported_log_size: usize) -> Self::VerifierParam;
/// Trim the universal parameters to specialize the public parameters
/// for polynomials to the given `supported_log_size`, and
/// returns committer key and verifier key.
///
/// - For univariate polynomials, `supported_log_size` is the log of maximum
/// degree.
/// - For multilinear polynomials, `supported_log_size` is the number of
/// variables.
///
/// `supported_log_size` should be in range `1..=params.log_size`
fn trim(
&self,
supported_log_size: usize,
) -> Result<(Self::ProverParam, Self::VerifierParam), PCSErrors>;
/// Build SRS for testing.
///
/// - For univariate polynomials, `log_size` is the log of maximum degree.
/// - For multilinear polynomials, `log_size` is the number of variables.
///
/// WARNING: THIS FUNCTION IS FOR TESTING PURPOSE ONLY.
/// THE OUTPUT SRS SHOULD NOT BE USED IN PRODUCTION.
fn gen_srs_for_testing<R: RngCore>(rng: &mut R, log_size: usize) -> Result<Self, PCSErrors>;
}

+ 433
- 0
pcs/src/multilinear_kzg/batching.rs

@ -0,0 +1,433 @@
use super::{
open_internal,
srs::{MultilinearProverParam, MultilinearVerifierParam},
util::{build_l, compute_w_circ_l, merge_polynomials},
verify_internal, BatchProof,
};
use crate::{
multilinear_kzg::util::get_uni_domain,
prelude::{Commitment, UnivariateProverParam, UnivariateVerifierParam},
univariate_kzg::KZGUnivariatePCS,
PCSErrors, PolynomialCommitmentScheme,
};
use ark_ec::PairingEngine;
use ark_poly::{DenseMultilinearExtension, EvaluationDomain, MultilinearExtension, Polynomial};
use ark_std::{end_timer, start_timer, vec::Vec};
use poly_iop::IOPTranscript;
/// Input
/// - the prover parameters for univariate KZG,
/// - the prover parameters for multilinear KZG,
/// - a list of MLEs,
/// - a commitment to all MLEs
/// - and a same number of points,
/// compute a multi-opening for all the polynomials.
///
/// For simplicity, this API requires each MLE to have only one point. If
/// the caller wish to use more than one points per MLE, it should be
/// handled at the caller layer.
///
/// Returns an error if the lengths do not match.
///
/// Returns the proof, consists of
/// - the multilinear KZG opening
/// - the univariate KZG commitment to q(x)
/// - the openings and evaluations of q(x) at omega^i and r
///
/// Steps:
/// 1. build `l(points)` which is a list of univariate polynomials that goes
/// through the points
/// 2. build MLE `w` which is the merge of all MLEs.
/// 3. build `q(x)` which is a univariate polynomial `W circ l`
/// 4. commit to q(x) and sample r from transcript
/// transcript contains: w commitment, points, q(x)'s commitment
/// 5. build q(omega^i) and their openings
/// 6. build q(r) and its opening
/// 7. get a point `p := l(r)`
/// 8. output an opening of `w` over point `p`
/// 9. output `w(p)`
pub(super) fn multi_open_internal<E: PairingEngine>(
uni_prover_param: &UnivariateProverParam<E::G1Affine>,
ml_prover_param: &MultilinearProverParam<E>,
polynomials: &[DenseMultilinearExtension<E::Fr>],
multi_commitment: &Commitment<E>,
points: &[Vec<E::Fr>],
) -> Result<(BatchProof<E>, Vec<E::Fr>), PCSErrors> {
let open_timer = start_timer!(|| "multi open");
// ===================================
// Sanity checks on inputs
// ===================================
let points_len = points.len();
if points_len == 0 {
return Err(PCSErrors::InvalidParameters("points is empty".to_string()));
}
if points_len != polynomials.len() {
return Err(PCSErrors::InvalidParameters(
"polynomial length does not match point length".to_string(),
));
}
let num_var = polynomials[0].num_vars();
for poly in polynomials.iter().skip(1) {
if poly.num_vars() != num_var {
return Err(PCSErrors::InvalidParameters(
"polynomials do not have same num_vars".to_string(),
));
}
}
for point in points.iter() {
if point.len() != num_var {
return Err(PCSErrors::InvalidParameters(
"points do not have same num_vars".to_string(),
));
}
}
let domain = get_uni_domain::<E::Fr>(points_len)?;
// 1. build `l(points)` which is a list of univariate polynomials that goes
// through the points
let uni_polys = build_l(num_var, points, &domain)?;
// 2. build MLE `w` which is the merge of all MLEs.
let merge_poly = merge_polynomials(polynomials)?;
// 3. build `q(x)` which is a univariate polynomial `W circ l`
let q_x = compute_w_circ_l(&merge_poly, &uni_polys)?;
// 4. commit to q(x) and sample r from transcript
// transcript contains: w commitment, points, q(x)'s commitment
let mut transcript = IOPTranscript::new(b"ml kzg");
transcript.append_serializable_element(b"w", multi_commitment)?;
for point in points {
transcript.append_serializable_element(b"w", point)?;
}
let q_x_commit = KZGUnivariatePCS::<E>::commit(uni_prover_param, &q_x)?;
transcript.append_serializable_element(b"q(x)", &q_x_commit)?;
let r = transcript.get_and_append_challenge(b"r")?;
// 5. build q(omega^i) and their openings
let mut q_x_opens = vec![];
let mut q_x_evals = vec![];
for i in 0..points_len {
let (q_x_open, q_x_eval) =
KZGUnivariatePCS::<E>::open(uni_prover_param, &q_x, &domain.element(i))?;
q_x_opens.push(q_x_open);
q_x_evals.push(q_x_eval);
// sanity check
let point: Vec<E::Fr> = uni_polys
.iter()
.rev()
.map(|poly| poly.evaluate(&domain.element(i)))
.collect();
let mle_eval = merge_poly.evaluate(&point).unwrap();
if mle_eval != q_x_eval {
return Err(PCSErrors::InvalidProver(
"Q(omega) does not match W(l(omega))".to_string(),
));
}
}
// 6. build q(r) and its opening
let (q_x_open, q_r_value) = KZGUnivariatePCS::<E>::open(uni_prover_param, &q_x, &r)?;
q_x_opens.push(q_x_open);
q_x_evals.push(q_r_value);
// 7. get a point `p := l(r)`
let point: Vec<E::Fr> = uni_polys
.iter()
.rev()
.map(|poly| poly.evaluate(&r))
.collect();
// 8. output an opening of `w` over point `p`
let (mle_opening, mle_eval) = open_internal(ml_prover_param, &merge_poly, &point)?;
// 9. output value that is `w` evaluated at `p` (which should match `q(r)`)
if mle_eval != q_r_value {
return Err(PCSErrors::InvalidProver(
"Q(r) does not match W(l(r))".to_string(),
));
}
end_timer!(open_timer);
Ok((
BatchProof {
proof: mle_opening,
q_x_commit,
q_x_opens,
},
q_x_evals,
))
}
/// Verifies that the `multi_commitment` is a valid commitment
/// to a list of MLEs for the given openings and evaluations in
/// the batch_proof.
///
/// steps:
///
/// 1. push w, points and q_com into transcript
/// 2. sample `r` from transcript
/// 3. check `q(r) == batch_proof.q_x_value.last` and
/// `q(omega^i) == batch_proof.q_x_value[i]`
/// 4. build `l(points)` which is a list of univariate
/// polynomials that goes through the points
/// 5. get a point `p := l(r)`
/// 6. verifies `p` is valid against multilinear KZG proof
pub(super) fn batch_verify_internal<E: PairingEngine>(
uni_verifier_param: &UnivariateVerifierParam<E>,
ml_verifier_param: &MultilinearVerifierParam<E>,
multi_commitment: &Commitment<E>,
points: &[Vec<E::Fr>],
values: &[E::Fr],
batch_proof: &BatchProof<E>,
) -> Result<bool, PCSErrors> {
let verify_timer = start_timer!(|| "batch verify");
// ===================================
// Sanity checks on inputs
// ===================================
let points_len = points.len();
if points_len == 0 {
return Err(PCSErrors::InvalidParameters("points is empty".to_string()));
}
// add one here because we also have q(r) and its opening
if points_len + 1 != batch_proof.q_x_opens.len() {
return Err(PCSErrors::InvalidParameters(
"openings length does not match point length".to_string(),
));
}
if points_len + 1 != values.len() {
return Err(PCSErrors::InvalidParameters(
"values length does not match point length".to_string(),
));
}
let num_var = points[0].len();
for point in points.iter().skip(1) {
if point.len() != num_var {
return Err(PCSErrors::InvalidParameters(format!(
"points do not have same num_vars ({} vs {})",
point.len(),
num_var,
)));
}
}
let domain = get_uni_domain::<E::Fr>(points_len)?;
// 1. push w, points and q_com into transcript
let mut transcript = IOPTranscript::new(b"ml kzg");
transcript.append_serializable_element(b"w", multi_commitment)?;
for point in points {
transcript.append_serializable_element(b"w", point)?;
}
transcript.append_serializable_element(b"q(x)", &batch_proof.q_x_commit)?;
// 2. sample `r` from transcript
let r = transcript.get_and_append_challenge(b"r")?;
// 3. check `q(r) == batch_proof.q_x_value.last` and `q(omega^i) =
// batch_proof.q_x_value[i]`
for i in 0..points_len {
if !KZGUnivariatePCS::verify(
uni_verifier_param,
&batch_proof.q_x_commit,
&domain.element(i),
&values[i],
&batch_proof.q_x_opens[i],
)? {
#[cfg(debug_assertion)]
println!("q(omega^{}) verification failed", i);
return Ok(false);
}
}
if !KZGUnivariatePCS::verify(
uni_verifier_param,
&batch_proof.q_x_commit,
&r,
&values[points_len],
&batch_proof.q_x_opens[points_len],
)? {
#[cfg(debug_assertion)]
println!("q(r) verification failed");
return Ok(false);
}
// 4. build `l(points)` which is a list of univariate polynomials that goes
// through the points
let uni_polys = build_l(num_var, points, &domain)?;
// 5. get a point `p := l(r)`
let point: Vec<E::Fr> = uni_polys.iter().rev().map(|x| x.evaluate(&r)).collect();
// 6. verifies `p` is valid against multilinear KZG proof
let res = verify_internal(
ml_verifier_param,
multi_commitment,
&point,
&values[points_len],
&batch_proof.proof,
)?;
#[cfg(debug_assertion)]
if !res {
println!("multilinear KZG verification failed");
}
end_timer!(verify_timer);
Ok(res)
}
#[cfg(test)]
mod tests {
use super::{
super::{util::get_batched_nv, *},
*,
};
use crate::{
multilinear_kzg::util::{compute_qx_degree, generate_evaluations},
prelude::UnivariateUniversalParams,
StructuredReferenceString,
};
use ark_bls12_381::Bls12_381 as E;
use ark_ec::PairingEngine;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_std::{log2, rand::RngCore, test_rng, vec::Vec, UniformRand};
type Fr = <E as PairingEngine>::Fr;
fn test_multi_commit_helper<R: RngCore>(
uni_params: &UnivariateUniversalParams<E>,
ml_params: &MultilinearUniversalParams<E>,
polys: &[DenseMultilinearExtension<Fr>],
rng: &mut R,
) -> Result<(), PCSErrors> {
let merged_nv = get_batched_nv(polys[0].num_vars(), polys.len());
let qx_degree = compute_qx_degree(merged_nv, polys.len());
let log_qx_degree = log2(qx_degree) as usize;
let (uni_ck, uni_vk) = uni_params.trim(log_qx_degree)?;
let (ml_ck, ml_vk) = ml_params.trim(merged_nv)?;
let mut points = Vec::new();
for poly in polys.iter() {
let point = (0..poly.num_vars())
.map(|_| Fr::rand(rng))
.collect::<Vec<Fr>>();
points.push(point);
}
let evals = generate_evaluations(polys, &points)?;
let com = KZGMultilinearPCS::multi_commit(&(ml_ck.clone(), uni_ck.clone()), polys)?;
let (batch_proof, evaluations) =
multi_open_internal(&uni_ck, &ml_ck, polys, &com, &points)?;
for (a, b) in evals.iter().zip(evaluations.iter()) {
assert_eq!(a, b)
}
// good path
assert!(batch_verify_internal(
&uni_vk,
&ml_vk,
&com,
&points,
&evaluations,
&batch_proof,
)?);
// bad commitment
assert!(!batch_verify_internal(
&uni_vk,
&ml_vk,
&Commitment {
commitment: <E as PairingEngine>::G1Affine::default()
},
&points,
&evaluations,
&batch_proof,
)?);
// bad points
assert!(
batch_verify_internal(&uni_vk, &ml_vk, &com, &points[1..], &[], &batch_proof,).is_err()
);
// bad proof
assert!(batch_verify_internal(
&uni_vk,
&ml_vk,
&com,
&points,
&evaluations,
&BatchProof {
proof: Proof { proofs: Vec::new() },
q_x_commit: Commitment {
commitment: <E as PairingEngine>::G1Affine::default()
},
q_x_opens: vec![],
},
)
.is_err());
// bad value
let mut wrong_evals = evaluations.clone();
wrong_evals[0] = Fr::default();
assert!(!batch_verify_internal(
&uni_vk,
&ml_vk,
&com,
&points,
&wrong_evals,
&batch_proof
)?);
// bad q(x) commit
let mut wrong_proof = batch_proof.clone();
wrong_proof.q_x_commit = Commitment {
commitment: <E as PairingEngine>::G1Affine::default(),
};
assert!(!batch_verify_internal(
&uni_vk,
&ml_vk,
&com,
&points,
&evaluations,
&wrong_proof,
)?);
Ok(())
}
#[test]
fn test_multi_commit_internal() -> Result<(), PCSErrors> {
let mut rng = test_rng();
let uni_params = UnivariateUniversalParams::<E>::gen_srs_for_testing(&mut rng, 15)?;
let ml_params = MultilinearUniversalParams::<E>::gen_srs_for_testing(&mut rng, 15)?;
// normal polynomials
let polys1: Vec<_> = (0..5)
.map(|_| DenseMultilinearExtension::rand(4, &mut rng))
.collect();
test_multi_commit_helper(&uni_params, &ml_params, &polys1, &mut rng)?;
// single-variate polynomials
let polys1: Vec<_> = (0..5)
.map(|_| DenseMultilinearExtension::rand(1, &mut rng))
.collect();
test_multi_commit_helper(&uni_params, &ml_params, &polys1, &mut rng)?;
Ok(())
}
}

+ 441
- 0
pcs/src/multilinear_kzg/mod.rs

@ -0,0 +1,441 @@
//! Main module for multilinear KZG commitment scheme
mod batching;
pub(crate) mod srs;
pub(crate) mod util;
use crate::{
prelude::{
Commitment, UnivariateProverParam, UnivariateUniversalParams, UnivariateVerifierParam,
},
univariate_kzg::KZGUnivariateOpening,
PCSErrors, PolynomialCommitmentScheme, StructuredReferenceString,
};
use ark_ec::{
msm::{FixedBaseMSM, VariableBaseMSM},
AffineCurve, PairingEngine, ProjectiveCurve,
};
use ark_ff::PrimeField;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize, Read, SerializationError, Write};
use ark_std::{end_timer, rand::RngCore, start_timer, vec::Vec, One, Zero};
use batching::{batch_verify_internal, multi_open_internal};
use srs::{MultilinearProverParam, MultilinearUniversalParams, MultilinearVerifierParam};
use std::marker::PhantomData;
use util::merge_polynomials;
/// KZG Polynomial Commitment Scheme on multilinear polynomials.
pub struct KZGMultilinearPCS<E: PairingEngine> {
#[doc(hidden)]
phantom: PhantomData<E>,
}
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
/// proof of opening
pub struct Proof<E: PairingEngine> {
/// Evaluation of quotients
pub proofs: Vec<E::G1Affine>,
}
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
/// proof of batch opening
pub struct BatchProof<E: PairingEngine> {
/// The actual proof
pub proof: Proof<E>,
/// Commitment to q(x):= w(l(x)) where
/// - `w` is the merged MLE
/// - `l` is the list of univariate polys that goes through all points
pub q_x_commit: Commitment<E>,
/// openings of q(x) at 1, omega, ..., and r
pub q_x_opens: Vec<KZGUnivariateOpening<E>>,
}
impl<E: PairingEngine> PolynomialCommitmentScheme<E> for KZGMultilinearPCS<E> {
// Parameters
type ProverParam = (
MultilinearProverParam<E>,
UnivariateProverParam<E::G1Affine>,
);
type VerifierParam = (MultilinearVerifierParam<E>, UnivariateVerifierParam<E>);
type SRS = (MultilinearUniversalParams<E>, UnivariateUniversalParams<E>);
// Polynomial and its associated types
type Polynomial = DenseMultilinearExtension<E::Fr>;
type Point = Vec<E::Fr>;
type Evaluation = E::Fr;
// Commitments and proofs
type Commitment = Commitment<E>;
type Proof = Proof<E>;
type BatchProof = BatchProof<E>;
type BatchCommitment = Commitment<E>;
/// Build SRS for testing.
///
/// - For univariate polynomials, `log_size` is the log of maximum degree.
/// - For multilinear polynomials, `log_size` is the number of variables.
///
/// WARNING: THIS FUNCTION IS FOR TESTING PURPOSE ONLY.
/// THE OUTPUT SRS SHOULD NOT BE USED IN PRODUCTION.
fn gen_srs_for_testing<R: RngCore>(
rng: &mut R,
log_size: usize,
) -> Result<Self::SRS, PCSErrors> {
Ok((
MultilinearUniversalParams::<E>::gen_srs_for_testing(rng, log_size)?,
UnivariateUniversalParams::<E>::gen_srs_for_testing(rng, log_size)?,
))
}
/// Generate a commitment for a polynomial.
///
/// This function takes `2^num_vars` number of scalar multiplications over
/// G1.
fn commit(
prover_param: &Self::ProverParam,
poly: &Self::Polynomial,
) -> Result<Self::Commitment, PCSErrors> {
let commit_timer = start_timer!(|| "commit");
let scalars: Vec<_> = poly
.to_evaluations()
.into_iter()
.map(|x| x.into_repr())
.collect();
let commitment = VariableBaseMSM::multi_scalar_mul(
&prover_param.0.powers_of_g[0].evals,
scalars.as_slice(),
)
.into_affine();
end_timer!(commit_timer);
Ok(Commitment { commitment })
}
/// Generate a commitment for a list of polynomials.
///
/// This function takes `2^(num_vars + log(polys.len())` number of scalar
/// multiplications over G1.
fn multi_commit(
prover_param: &Self::ProverParam,
polys: &[Self::Polynomial],
) -> Result<Self::Commitment, PCSErrors> {
let commit_timer = start_timer!(|| "multi commit");
let poly = merge_polynomials(polys)?;
let scalars: Vec<_> = poly
.to_evaluations()
.iter()
.map(|x| x.into_repr())
.collect();
let commitment = VariableBaseMSM::multi_scalar_mul(
&prover_param.0.powers_of_g[0].evals,
scalars.as_slice(),
)
.into_affine();
end_timer!(commit_timer);
Ok(Commitment { commitment })
}
/// On input a polynomial `p` and a point `point`, outputs a proof for the
/// same. This function does not need to take the evaluation value as an
/// input.
///
/// This function takes 2^{num_var +1} number of scalar multiplications over
/// G1:
/// - it prodceeds with `num_var` number of rounds,
/// - at round i, we compute an MSM for `2^{num_var - i + 1}` number of G2
/// elements.
fn open(
prover_param: &Self::ProverParam,
polynomial: &Self::Polynomial,
point: &Self::Point,
) -> Result<(Self::Proof, Self::Evaluation), PCSErrors> {
open_internal(&prover_param.0, polynomial, point)
}
/// Input
/// - the prover parameters for univariate KZG,
/// - the prover parameters for multilinear KZG,
/// - a list of MLEs,
/// - a commitment to all MLEs
/// - and a same number of points,
/// compute a multi-opening for all the polynomials.
///
/// For simplicity, this API requires each MLE to have only one point. If
/// the caller wish to use more than one points per MLE, it should be
/// handled at the caller layer.
///
/// Returns an error if the lengths do not match.
///
/// Returns the proof, consists of
/// - the multilinear KZG opening
/// - the univariate KZG commitment to q(x)
/// - the openings and evaluations of q(x) at omega^i and r
///
/// Steps:
/// 1. build `l(points)` which is a list of univariate polynomials that goes
/// through the points
/// 2. build MLE `w` which is the merge of all MLEs.
/// 3. build `q(x)` which is a univariate polynomial `W circ l`
/// 4. commit to q(x) and sample r from transcript
/// transcript contains: w commitment, points, q(x)'s commitment
/// 5. build q(omega^i) and their openings
/// 6. build q(r) and its opening
/// 7. get a point `p := l(r)`
/// 8. output an opening of `w` over point `p`
/// 9. output `w(p)`
fn multi_open(
prover_param: &Self::ProverParam,
multi_commitment: &Self::Commitment,
polynomials: &[Self::Polynomial],
points: &[Self::Point],
) -> Result<(Self::BatchProof, Vec<Self::Evaluation>), PCSErrors> {
multi_open_internal::<E>(
&prover_param.1,
&prover_param.0,
polynomials,
multi_commitment,
points,
)
}
/// Verifies that `value` is the evaluation at `x` of the polynomial
/// committed inside `comm`.
///
/// This function takes
/// - num_var number of pairing product.
/// - num_var number of MSM
fn verify(
verifier_param: &Self::VerifierParam,
commitment: &Self::Commitment,
point: &Self::Point,
value: &E::Fr,
proof: &Self::Proof,
) -> Result<bool, PCSErrors> {
verify_internal(&verifier_param.0, commitment, point, value, proof)
}
/// Verifies that `value` is the evaluation at `x_i` of the polynomial
/// `poly_i` committed inside `comm`.
/// steps:
///
/// 1. put `q(x)`'s evaluations over `(1, omega,...)` into transcript
/// 2. sample `r` from transcript
/// 3. check `q(r) == value`
/// 4. build `l(points)` which is a list of univariate polynomials that goes
/// through the points
/// 5. get a point `p := l(r)`
/// 6. verifies `p` is verifies against proof
fn batch_verify<R: RngCore>(
verifier_param: &Self::VerifierParam,
multi_commitment: &Self::BatchCommitment,
points: &[Self::Point],
values: &[E::Fr],
batch_proof: &Self::BatchProof,
_rng: &mut R,
) -> Result<bool, PCSErrors> {
batch_verify_internal(
&verifier_param.1,
&verifier_param.0,
multi_commitment,
points,
values,
batch_proof,
)
}
}
/// On input a polynomial `p` and a point `point`, outputs a proof for the
/// same. This function does not need to take the evaluation value as an
/// input.
///
/// This function takes 2^{num_var +1} number of scalar multiplications over
/// G1:
/// - it proceeds with `num_var` number of rounds,
/// - at round i, we compute an MSM for `2^{num_var - i + 1}` number of G2
/// elements.
fn open_internal<E: PairingEngine>(
prover_param: &MultilinearProverParam<E>,
polynomial: &DenseMultilinearExtension<E::Fr>,
point: &[E::Fr],
) -> Result<(Proof<E>, E::Fr), PCSErrors> {
let open_timer = start_timer!(|| format!("open mle with {} variable", polynomial.num_vars));
assert_eq!(
polynomial.num_vars(),
prover_param.num_vars,
"Invalid size of polynomial"
);
let nv = polynomial.num_vars();
let mut r: Vec<Vec<E::Fr>> = (0..nv + 1).map(|_| Vec::new()).collect();
let mut q: Vec<Vec<E::Fr>> = (0..nv + 1).map(|_| Vec::new()).collect();
r[nv] = polynomial.to_evaluations();
let mut proofs = Vec::new();
for (i, (&point_at_k, gi)) in point
.iter()
.zip(prover_param.powers_of_g.iter())
.take(nv)
.enumerate()
{
let ith_round = start_timer!(|| format!("{}-th round", i));
let k = nv - i;
let cur_dim = 1 << (k - 1);
let mut cur_q = vec![E::Fr::zero(); cur_dim];
let mut cur_r = vec![E::Fr::zero(); cur_dim];
for b in 0..(1 << (k - 1)) {
// q_b = pre_r [2^b + 1] - pre_r [2^b]
cur_q[b] = r[k][(b << 1) + 1] - r[k][b << 1];
// r_b = pre_r [2^b]*(1-p) + pre_r [2^b + 1] * p
cur_r[b] =
r[k][b << 1] * (E::Fr::one() - point_at_k) + (r[k][(b << 1) + 1] * point_at_k);
}
let scalars: Vec<_> = (0..(1 << k)).map(|x| cur_q[x >> 1].into_repr()).collect();
q[k] = cur_q;
r[k - 1] = cur_r;
// this is a MSM over G1 and is likely to be the bottleneck
proofs.push(VariableBaseMSM::multi_scalar_mul(&gi.evals, &scalars).into_affine());
end_timer!(ith_round);
}
let eval = polynomial.evaluate(point).ok_or_else(|| {
PCSErrors::InvalidParameters("fail to evaluate the polynomial".to_string())
})?;
end_timer!(open_timer);
Ok((Proof { proofs }, eval))
}
/// Verifies that `value` is the evaluation at `x` of the polynomial
/// committed inside `comm`.
///
/// This function takes
/// - num_var number of pairing product.
/// - num_var number of MSM
fn verify_internal<E: PairingEngine>(
verifier_param: &MultilinearVerifierParam<E>,
commitment: &Commitment<E>,
point: &[E::Fr],
value: &E::Fr,
proof: &Proof<E>,
) -> Result<bool, PCSErrors> {
let verify_timer = start_timer!(|| "verify");
let prepare_inputs_timer = start_timer!(|| "prepare pairing inputs");
let scalar_size = E::Fr::size_in_bits();
let window_size = FixedBaseMSM::get_mul_window_size(verifier_param.num_vars);
let h_table = FixedBaseMSM::get_window_table(
scalar_size,
window_size,
verifier_param.h.into_projective(),
);
let h_mul: Vec<E::G2Projective> =
FixedBaseMSM::multi_scalar_mul(scalar_size, window_size, &h_table, point);
let h_vec: Vec<_> = (0..verifier_param.num_vars)
.map(|i| verifier_param.h_mask[i].into_projective() - h_mul[i])
.collect();
let h_vec: Vec<E::G2Affine> = E::G2Projective::batch_normalization_into_affine(&h_vec);
end_timer!(prepare_inputs_timer);
let pairing_product_timer = start_timer!(|| "pairing product");
let mut pairings: Vec<_> = proof
.proofs
.iter()
.map(|&x| E::G1Prepared::from(x))
.zip(
h_vec
.into_iter()
.take(verifier_param.num_vars)
.map(E::G2Prepared::from),
)
.collect();
pairings.push((
E::G1Prepared::from(
(verifier_param.g.mul(*value) - commitment.commitment.into_projective()).into_affine(),
),
E::G2Prepared::from(verifier_param.h),
));
let res = E::product_of_pairings(pairings.iter()) == E::Fqk::one();
end_timer!(pairing_product_timer);
end_timer!(verify_timer);
Ok(res)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::StructuredReferenceString;
use ark_bls12_381::Bls12_381;
use ark_ec::PairingEngine;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_std::{rand::RngCore, test_rng, vec::Vec, UniformRand};
type E = Bls12_381;
type Fr = <E as PairingEngine>::Fr;
fn test_single_helper<R: RngCore>(
params: &(MultilinearUniversalParams<E>, UnivariateUniversalParams<E>),
poly: &DenseMultilinearExtension<Fr>,
rng: &mut R,
) -> Result<(), PCSErrors> {
let nv = poly.num_vars();
assert_ne!(nv, 0);
let uni_degree = 1;
let (uni_ck, uni_vk) = params.1.trim(uni_degree)?;
let (ml_ck, ml_vk) = params.0.trim(nv)?;
let ck = (ml_ck, uni_ck);
let vk = (ml_vk, uni_vk);
let point: Vec<_> = (0..nv).map(|_| Fr::rand(rng)).collect();
let com = KZGMultilinearPCS::commit(&ck, poly)?;
let (proof, value) = KZGMultilinearPCS::open(&ck, poly, &point)?;
assert!(KZGMultilinearPCS::verify(
&vk, &com, &point, &value, &proof
)?);
let value = Fr::rand(rng);
assert!(!KZGMultilinearPCS::verify(
&vk, &com, &point, &value, &proof
)?);
Ok(())
}
#[test]
fn test_single_commit() -> Result<(), PCSErrors> {
let mut rng = test_rng();
let params = KZGMultilinearPCS::<E>::gen_srs_for_testing(&mut rng, 10)?;
// normal polynomials
let poly1 = DenseMultilinearExtension::rand(8, &mut rng);
test_single_helper(&params, &poly1, &mut rng)?;
// single-variate polynomials
let poly2 = DenseMultilinearExtension::rand(1, &mut rng);
test_single_helper(&params, &poly2, &mut rng)?;
Ok(())
}
#[test]
fn setup_commit_verify_constant_polynomial() {
let mut rng = test_rng();
// normal polynomials
assert!(KZGMultilinearPCS::<E>::gen_srs_for_testing(&mut rng, 0).is_err());
}
}

+ 258
- 0
pcs/src/multilinear_kzg/srs.rs

@ -0,0 +1,258 @@
//! Implementing Structured Reference Strings for multilinear polynomial KZG
use crate::{prelude::PCSErrors, StructuredReferenceString};
use ark_ec::{msm::FixedBaseMSM, AffineCurve, PairingEngine, ProjectiveCurve};
use ark_ff::{Field, PrimeField};
use ark_poly::DenseMultilinearExtension;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize, Read, SerializationError, Write};
use ark_std::{end_timer, rand::RngCore, start_timer, vec::Vec, UniformRand};
use std::collections::LinkedList;
/// Evaluations over {0,1}^n for G1 or G2
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
pub struct Evaluations<C: AffineCurve> {
/// The evaluations.
pub evals: Vec<C>,
}
/// Universal Parameter
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
pub struct MultilinearUniversalParams<E: PairingEngine> {
/// prover parameters
pub prover_param: MultilinearProverParam<E>,
/// h^randomness: h^t1, h^t2, ..., **h^{t_nv}**
pub h_mask: Vec<E::G2Affine>,
}
/// Prover Parameters
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
pub struct MultilinearProverParam<E: PairingEngine> {
/// number of variables
pub num_vars: usize,
/// `pp_{num_vars}`, `pp_{num_vars - 1}`, `pp_{num_vars - 2}`, ..., defined
/// by XZZPD19
pub powers_of_g: Vec<Evaluations<E::G1Affine>>,
/// generator for G1
pub g: E::G1Affine,
/// generator for G2
pub h: E::G2Affine,
}
/// Verifier Parameters
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
pub struct MultilinearVerifierParam<E: PairingEngine> {
/// number of variables
pub num_vars: usize,
/// generator of G1
pub g: E::G1Affine,
/// generator of G2
pub h: E::G2Affine,
/// h^randomness: h^t1, h^t2, ..., **h^{t_nv}**
pub h_mask: Vec<E::G2Affine>,
}
impl<E: PairingEngine> StructuredReferenceString<E> for MultilinearUniversalParams<E> {
type ProverParam = MultilinearProverParam<E>;
type VerifierParam = MultilinearVerifierParam<E>;
/// Extract the prover parameters from the public parameters.
fn extract_prover_param(&self, supported_num_vars: usize) -> Self::ProverParam {
let to_reduce = self.prover_param.num_vars - supported_num_vars;
Self::ProverParam {
powers_of_g: self.prover_param.powers_of_g[to_reduce..].to_vec(),
g: self.prover_param.g,
h: self.prover_param.h,
num_vars: supported_num_vars,
}
}
/// Extract the verifier parameters from the public parameters.
fn extract_verifier_param(&self, supported_num_vars: usize) -> Self::VerifierParam {
let to_reduce = self.prover_param.num_vars - supported_num_vars;
Self::VerifierParam {
num_vars: supported_num_vars,
g: self.prover_param.g,
h: self.prover_param.h,
h_mask: self.h_mask[to_reduce..].to_vec(),
}
}
/// Trim the universal parameters to specialize the public parameters
/// for multilinear polynomials to the given `supported_num_vars`, and
/// returns committer key and verifier key. `supported_num_vars` should
/// be in range `1..=params.num_vars`
fn trim(
&self,
supported_num_vars: usize,
) -> Result<(Self::ProverParam, Self::VerifierParam), PCSErrors> {
if supported_num_vars > self.prover_param.num_vars {
return Err(PCSErrors::InvalidParameters(format!(
"SRS does not support target number of vars {}",
supported_num_vars
)));
}
let to_reduce = self.prover_param.num_vars - supported_num_vars;
let ck = Self::ProverParam {
powers_of_g: self.prover_param.powers_of_g[to_reduce..].to_vec(),
g: self.prover_param.g,
h: self.prover_param.h,
num_vars: supported_num_vars,
};
let vk = Self::VerifierParam {
num_vars: supported_num_vars,
g: self.prover_param.g,
h: self.prover_param.h,
h_mask: self.h_mask[to_reduce..].to_vec(),
};
Ok((ck, vk))
}
/// Build SRS for testing.
/// WARNING: THIS FUNCTION IS FOR TESTING PURPOSE ONLY.
/// THE OUTPUT SRS SHOULD NOT BE USED IN PRODUCTION.
fn gen_srs_for_testing<R: RngCore>(rng: &mut R, num_vars: usize) -> Result<Self, PCSErrors> {
if num_vars == 0 {
return Err(PCSErrors::InvalidParameters(
"constant polynomial not supported".to_string(),
));
}
let total_timer = start_timer!(|| "SRS generation");
let pp_generation_timer = start_timer!(|| "Prover Param generation");
let g = E::G1Projective::rand(rng);
let h = E::G2Projective::rand(rng);
let mut powers_of_g = Vec::new();
let t: Vec<_> = (0..num_vars).map(|_| E::Fr::rand(rng)).collect();
let scalar_bits = E::Fr::size_in_bits();
let mut eq: LinkedList<DenseMultilinearExtension<E::Fr>> =
LinkedList::from_iter(eq_extension(&t).into_iter());
let mut eq_arr = LinkedList::new();
let mut base = eq.pop_back().unwrap().evaluations;
for i in (0..num_vars).rev() {
eq_arr.push_front(remove_dummy_variable(&base, i)?);
if i != 0 {
let mul = eq.pop_back().unwrap().evaluations;
base = base
.into_iter()
.zip(mul.into_iter())
.map(|(a, b)| a * b)
.collect();
}
}
let mut pp_powers = Vec::new();
let mut total_scalars = 0;
for i in 0..num_vars {
let eq = eq_arr.pop_front().unwrap();
let pp_k_powers = (0..(1 << (num_vars - i))).map(|x| eq[x]);
pp_powers.extend(pp_k_powers);
total_scalars += 1 << (num_vars - i);
}
let window_size = FixedBaseMSM::get_mul_window_size(total_scalars);
let g_table = FixedBaseMSM::get_window_table(scalar_bits, window_size, g);
let pp_g = E::G1Projective::batch_normalization_into_affine(
&FixedBaseMSM::multi_scalar_mul(scalar_bits, window_size, &g_table, &pp_powers),
);
let mut start = 0;
for i in 0..num_vars {
let size = 1 << (num_vars - i);
let pp_k_g = Evaluations {
evals: pp_g[start..(start + size)].to_vec(),
};
powers_of_g.push(pp_k_g);
start += size;
}
let pp = Self::ProverParam {
num_vars,
g: g.into_affine(),
h: h.into_affine(),
powers_of_g,
};
end_timer!(pp_generation_timer);
let vp_generation_timer = start_timer!(|| "VP generation");
let h_mask = {
let window_size = FixedBaseMSM::get_mul_window_size(num_vars);
let h_table = FixedBaseMSM::get_window_table(scalar_bits, window_size, h);
E::G2Projective::batch_normalization_into_affine(&FixedBaseMSM::multi_scalar_mul(
scalar_bits,
window_size,
&h_table,
&t,
))
};
end_timer!(vp_generation_timer);
end_timer!(total_timer);
Ok(Self {
prover_param: pp,
h_mask,
})
}
}
/// fix first `pad` variables of `poly` represented in evaluation form to zero
fn remove_dummy_variable<F: Field>(poly: &[F], pad: usize) -> Result<Vec<F>, PCSErrors> {
if pad == 0 {
return Ok(poly.to_vec());
}
if !poly.len().is_power_of_two() {
return Err(PCSErrors::InvalidParameters(
"Size of polynomial should be power of two.".to_string(),
));
}
let nv = ark_std::log2(poly.len()) as usize - pad;
Ok((0..(1 << nv)).map(|x| poly[x << pad]).collect())
}
/// Generate eq(t,x), a product of multilinear polynomials with fixed t.
/// eq(a,b) is takes extensions of a,b in {0,1}^num_vars such that if a and b in
/// {0,1}^num_vars are equal then this polynomial evaluates to 1.
fn eq_extension<F: PrimeField>(t: &[F]) -> Vec<DenseMultilinearExtension<F>> {
let start = start_timer!(|| "eq extension");
let dim = t.len();
let mut result = Vec::new();
for (i, &ti) in t.iter().enumerate().take(dim) {
let mut poly = Vec::with_capacity(1 << dim);
for x in 0..(1 << dim) {
let xi = if x >> i & 1 == 1 { F::one() } else { F::zero() };
let ti_xi = ti * xi;
poly.push(ti_xi + ti_xi - xi - ti + F::one());
}
result.push(DenseMultilinearExtension::from_evaluations_vec(dim, poly));
}
end_timer!(start);
result
}
#[cfg(test)]
mod tests {
use super::*;
use ark_bls12_381::Bls12_381;
use ark_std::test_rng;
type E = Bls12_381;
#[test]
fn test_srs_gen() -> Result<(), PCSErrors> {
let mut rng = test_rng();
for nv in 4..10 {
let _ = MultilinearUniversalParams::<E>::gen_srs_for_testing(&mut rng, nv)?;
}
Ok(())
}
}

pcs/src/util.rs → pcs/src/multilinear_kzg/util.rs

@ -8,6 +8,36 @@ use ark_poly::{
};
use ark_std::{end_timer, log2, start_timer};
use poly_iop::bit_decompose;
use std::cmp::max;
/// For an MLE w with `mle_num_vars` variables, and `point_len` number of
/// points, compute the degree of the univariate polynomial `q(x):= w(l(x))`
/// where l(x) is a list of polynomials that go through all points.
// uni_degree is computed as `mle_num_vars * point_len`:
// - each l(x) is of degree `point_len`
// - mle has degree one
// - worst case is `\prod_{i=0}^{mle_num_vars-1} l_i(x) < point_len * mle_num_vars`
#[inline]
#[allow(dead_code)]
pub(crate) fn compute_qx_degree(mle_num_vars: usize, point_len: usize) -> usize {
mle_num_vars * point_len
}
/// get the domain for the univariate polynomial
#[inline]
pub(crate) fn get_uni_domain<F: PrimeField>(
uni_poly_degree: usize,
) -> Result<Radix2EvaluationDomain<F>, PCSErrors> {
let domain = match Radix2EvaluationDomain::<F>::new(uni_poly_degree) {
Some(p) => p,
None => {
return Err(PCSErrors::InvalidParameters(
"failed to build radix 2 domain".to_string(),
))
},
};
Ok(domain)
}
/// Compute W \circ l.
///
@ -64,9 +94,23 @@ pub(crate) fn get_batched_nv(num_var: usize, polynomials_len: usize) -> usize {
num_var + log2(polynomials_len) as usize
}
/// Return the SRS size
// We require an SRS that is the greater of the two:
// - Multilinear srs is bounded by the merged MLS size which is `get_batched_nv(num_var,
// num_witnesses)`
// - Univariate srs is bounded by q_x's degree which is `compute_uni_degree(num_vars,
// num_witnesses)`
#[inline]
#[allow(dead_code)]
pub(crate) fn get_srs_size(num_var: usize, num_wires: usize) -> usize {
max(
num_var + log2(num_wires) as usize,
(log2(num_var) as usize + 2) * num_wires,
)
}
/// merge a set of polynomials. Returns an error if the
/// polynomials do not share a same number of nvs.
pub(crate) fn merge_polynomials<F: PrimeField>(
pub fn merge_polynomials<F: PrimeField>(
polynomials: &[impl MultilinearExtension<F>],
) -> Result<DenseMultilinearExtension<F>, PCSErrors> {
let nv = polynomials[0].num_vars();
@ -93,26 +137,10 @@ pub(crate) fn merge_polynomials(
/// polynomials that goes through the points
pub(crate) fn build_l<F: PrimeField>(
num_var: usize,
points: &[&[F]],
points: &[Vec<F>],
domain: &Radix2EvaluationDomain<F>,
) -> Result<Vec<DensePolynomial<F>>, PCSErrors> {
let prefix_len = log2(points.len()) as usize;
let uni_degree = points.len();
let small_domain = match Radix2EvaluationDomain::<F>::new(uni_degree) {
Some(p) => p,
None => {
return Err(PCSErrors::InvalidParameters(
"failed to build radix 2 domain".to_string(),
))
},
};
// The following code print out the roots for testing
// println!("domain root0: {}", small_domain.element(0));
// println!("domain root1: {}", small_domain.element(1));
// println!("domain root2: {}", small_domain.element(2));
// println!("domain root3: {}", small_domain.element(3));
let mut uni_polys = Vec::new();
// 1.1 build the indexes and the univariate polys that go through the indexes
@ -125,19 +153,56 @@ pub(crate) fn build_l(
.map(|x| F::from(x[prefix_len - i - 1]))
.collect();
uni_polys.push(Evaluations::from_vec_and_domain(eval, small_domain).interpolate());
uni_polys.push(Evaluations::from_vec_and_domain(eval, *domain).interpolate());
}
// 1.2 build the actual univariate polys that go through the points
for i in 0..num_var {
let mut eval: Vec<F> = points.iter().map(|x| x[i]).collect();
eval.extend_from_slice(vec![F::zero(); small_domain.size as usize - eval.len()].as_slice());
uni_polys.push(Evaluations::from_vec_and_domain(eval, small_domain).interpolate())
eval.extend_from_slice(vec![F::zero(); domain.size as usize - eval.len()].as_slice());
uni_polys.push(Evaluations::from_vec_and_domain(eval, *domain).interpolate())
}
Ok(uni_polys)
}
/// Input a list of multilinear polynomials and a list of points,
/// generate a list of evaluations.
// Note that this function is only used for testing verifications.
// In practice verifier does not see polynomials, and the `mle_values`
// are included in the `batch_proof`.
#[cfg(test)]
pub(crate) fn generate_evaluations<F: PrimeField>(
polynomials: &[DenseMultilinearExtension<F>],
points: &[Vec<F>],
) -> Result<Vec<F>, PCSErrors> {
if polynomials.len() != points.len() {
return Err(PCSErrors::InvalidParameters(
"polynomial length does not match point length".to_string(),
));
}
let num_var = polynomials[0].num_vars;
let uni_poly_degree = points.len();
let merge_poly = merge_polynomials(polynomials)?;
let domain = get_uni_domain::<F>(uni_poly_degree)?;
let uni_polys = build_l(num_var, points, &domain)?;
let mut mle_values = vec![];
for i in 0..uni_poly_degree {
let point: Vec<F> = uni_polys
.iter()
.rev()
.map(|poly| poly.evaluate(&domain.element(i)))
.collect();
let mle_value = merge_poly.evaluate(&point).unwrap();
mle_values.push(mle_value)
}
Ok(mle_values)
}
#[cfg(test)]
mod test {
use super::*;
@ -341,16 +406,17 @@ mod test {
fn test_build_l_helper<F: PrimeField>() -> Result<(), PCSErrors> {
// point 1 is [1, 2]
let point1 = [Fr::from(1u64), Fr::from(2u64)];
let point1 = vec![Fr::from(1u64), Fr::from(2u64)];
// point 2 is [3, 4]
let point2 = [Fr::from(3u64), Fr::from(4u64)];
let point2 = vec![Fr::from(3u64), Fr::from(4u64)];
// point 3 is [5, 6]
let point3 = [Fr::from(5u64), Fr::from(6u64)];
let point3 = vec![Fr::from(5u64), Fr::from(6u64)];
{
let l = build_l(2, &[&point1, &point2])?;
let domain = get_uni_domain::<Fr>(2)?;
let l = build_l(2, &[point1.clone(), point2.clone()], &domain)?;
// roots: [1, -1]
// l0 = -1/2 * x + 1/2
@ -369,7 +435,8 @@ mod test {
}
{
let l = build_l(2, &[&point1, &point2, &point3])?;
let domain = get_uni_domain::<Fr>(3)?;
let l = build_l(2, &[point1, point2, point3], &domain)?;
// sage: q = 52435875175126190479447740508185965837690552500527637822603658699938581184513
// sage: P.<x> = PolynomialRing(Zmod(q))
@ -512,20 +579,21 @@ mod test {
let r = Fr::from(42u64);
// point 1 is [1, 2]
let point1 = [Fr::from(1u64), Fr::from(2u64)];
let point1 = vec![Fr::from(1u64), Fr::from(2u64)];
// point 2 is [3, 4]
let point2 = [Fr::from(3u64), Fr::from(4u64)];
let point2 = vec![Fr::from(3u64), Fr::from(4u64)];
// point 3 is [5, 6]
let point3 = [Fr::from(5u64), Fr::from(6u64)];
let point3 = vec![Fr::from(5u64), Fr::from(6u64)];
{
let domain = get_uni_domain::<Fr>(2)?;
// w = (3x1x2 + 2x2)(1-x0) + (x1x2 + x1)x0
// with evaluations: [0,2,0,5,0,0,1,2]
let w = merge_polynomials(&[w1.clone(), w2.clone()])?;
let l = build_l(2, &[&point1, &point2])?;
let l = build_l(2, &[point1.clone(), point2.clone()], &domain)?;
// sage: P.<x> = PolynomialRing(ZZ)
// sage: l0 = -1/2 * x + 1/2
@ -548,12 +616,13 @@ mod test {
}
{
let domain = get_uni_domain::<Fr>(3)?;
// W = (3x1x2 + 2x2) * (1-y1) * (1-y2)
// + (x1x2 + x1) * (1-y1) * y2
// + (x1 + x2) * y1 * (1-y2)
let w = merge_polynomials(&[w1, w2, w3])?;
let l = build_l(2, &[&point1, &point2, &point3])?;
let l = build_l(2, &[point1, point2, point3], &domain)?;
// l0 =
// 13108968793781547619861935127046491459422638125131909455650914674984645296128*x^3 +

+ 2
- 251
pcs/src/param.rs

@ -1,252 +1,3 @@
use std::collections::LinkedList;
use crate::PCSErrors;
use ark_ec::{msm::FixedBaseMSM, AffineCurve, PairingEngine, ProjectiveCurve};
use ark_ff::{Field, PrimeField};
use ark_poly::DenseMultilinearExtension;
use ark_ec::{AffineCurve, PairingEngine};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize, Read, SerializationError, Write};
use ark_std::{end_timer, rand::RngCore, start_timer, vec::Vec, UniformRand};
/// Evaluations over {0,1}^n for G1 or G2
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
pub struct Evaluations<C: AffineCurve> {
/// The evaluations.
pub evals: Vec<C>,
}
/// Universal Parameter
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
pub struct UniversalParams<E: PairingEngine> {
/// prover parameters
pub prover_param: ProverParam<E>,
/// h^randomness: h^t1, h^t2, ..., **h^{t_nv}**
pub h_mask: Vec<E::G2Affine>,
}
/// Prover Parameters
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
pub struct ProverParam<E: PairingEngine> {
/// number of variables
pub num_vars: usize,
/// `pp_{num_vars}`, `pp_{num_vars - 1}`, `pp_{num_vars - 2}`, ..., defined
/// by XZZPD19
pub powers_of_g: Vec<Evaluations<E::G1Affine>>,
/// generator for G1
pub g: E::G1Affine,
/// generator for G2
pub h: E::G2Affine,
}
/// Verifier Parameters
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
pub struct VerifierParam<E: PairingEngine> {
/// number of variables
pub num_vars: usize,
/// generator of G1
pub g: E::G1Affine,
/// generator of G2
pub h: E::G2Affine,
/// h^randomness: h^t1, h^t2, ..., **h^{t_nv}**
pub h_mask: Vec<E::G2Affine>,
}
impl<E: PairingEngine> UniversalParams<E> {
/// Extract the prover parameters from the public parameters.
pub fn extract_prover_param(&self) -> ProverParam<E> {
self.prover_param.clone()
}
/// Extract the verifier parameters from the public parameters.
pub fn extract_verifier_param(&self) -> VerifierParam<E> {
VerifierParam {
num_vars: self.prover_param.num_vars,
g: self.prover_param.g,
h: self.prover_param.h,
h_mask: self.h_mask.clone(),
}
}
/// Trim the universal parameters to specialize the public parameters
/// for multilinear polynomials to the given `supported_num_vars`, and
/// returns committer key and verifier key. `supported_num_vars` should
/// be in range `1..=params.num_vars`
pub fn trim(
&self,
supported_num_vars: usize,
) -> Result<(ProverParam<E>, VerifierParam<E>), PCSErrors> {
if supported_num_vars > self.prover_param.num_vars {
return Err(PCSErrors::InvalidParameters(format!(
"SRS does not support target number of vars {}",
supported_num_vars
)));
}
let to_reduce = self.prover_param.num_vars - supported_num_vars;
let ck = ProverParam {
powers_of_g: self.prover_param.powers_of_g[to_reduce..].to_vec(),
g: self.prover_param.g,
h: self.prover_param.h,
num_vars: supported_num_vars,
};
let vk = VerifierParam {
num_vars: supported_num_vars,
g: self.prover_param.g,
h: self.prover_param.h,
h_mask: self.h_mask[to_reduce..].to_vec(),
};
Ok((ck, vk))
}
/// Build SRS for testing.
/// WARNING: THIS FUNCTION IS FOR TESTING PURPOSE ONLY.
/// THE OUTPUT SRS SHOULD NOT BE USED IN PRODUCTION.
pub fn gen_srs_for_testing<R: RngCore>(
rng: &mut R,
num_vars: usize,
) -> Result<Self, PCSErrors> {
if num_vars == 0 {
return Err(PCSErrors::InvalidParameters(
"constant polynomial not supported".to_string(),
));
}
let total_timer = start_timer!(|| "SRS generation");
let pp_generation_timer = start_timer!(|| "Prover Param generation");
let g = E::G1Projective::rand(rng);
let h = E::G2Projective::rand(rng);
let mut powers_of_g = Vec::new();
let t: Vec<_> = (0..num_vars).map(|_| E::Fr::rand(rng)).collect();
let scalar_bits = E::Fr::size_in_bits();
let mut eq: LinkedList<DenseMultilinearExtension<E::Fr>> =
LinkedList::from_iter(eq_extension(&t).into_iter());
let mut eq_arr = LinkedList::new();
let mut base = eq.pop_back().unwrap().evaluations;
for i in (0..num_vars).rev() {
eq_arr.push_front(remove_dummy_variable(&base, i)?);
if i != 0 {
let mul = eq.pop_back().unwrap().evaluations;
base = base
.into_iter()
.zip(mul.into_iter())
.map(|(a, b)| a * b)
.collect();
}
}
let mut pp_powers = Vec::new();
let mut total_scalars = 0;
for i in 0..num_vars {
let eq = eq_arr.pop_front().unwrap();
let pp_k_powers = (0..(1 << (num_vars - i))).map(|x| eq[x]);
pp_powers.extend(pp_k_powers);
total_scalars += 1 << (num_vars - i);
}
let window_size = FixedBaseMSM::get_mul_window_size(total_scalars);
let g_table = FixedBaseMSM::get_window_table(scalar_bits, window_size, g);
let pp_g = E::G1Projective::batch_normalization_into_affine(
&FixedBaseMSM::multi_scalar_mul(scalar_bits, window_size, &g_table, &pp_powers),
);
let mut start = 0;
for i in 0..num_vars {
let size = 1 << (num_vars - i);
let pp_k_g = Evaluations {
evals: pp_g[start..(start + size)].to_vec(),
};
powers_of_g.push(pp_k_g);
start += size;
}
let pp = ProverParam {
num_vars,
g: g.into_affine(),
h: h.into_affine(),
powers_of_g,
};
end_timer!(pp_generation_timer);
let vp_generation_timer = start_timer!(|| "VP generation");
let h_mask = {
let window_size = FixedBaseMSM::get_mul_window_size(num_vars);
let h_table = FixedBaseMSM::get_window_table(scalar_bits, window_size, h);
E::G2Projective::batch_normalization_into_affine(&FixedBaseMSM::multi_scalar_mul(
scalar_bits,
window_size,
&h_table,
&t,
))
};
end_timer!(vp_generation_timer);
end_timer!(total_timer);
Ok(Self {
prover_param: pp,
h_mask,
})
}
}
/// fix first `pad` variables of `poly` represented in evaluation form to zero
fn remove_dummy_variable<F: Field>(poly: &[F], pad: usize) -> Result<Vec<F>, PCSErrors> {
if pad == 0 {
return Ok(poly.to_vec());
}
if !poly.len().is_power_of_two() {
return Err(PCSErrors::InvalidParameters(
"Size of polynomial should be power of two.".to_string(),
));
}
let nv = ark_std::log2(poly.len()) as usize - pad;
Ok((0..(1 << nv)).map(|x| poly[x << pad]).collect())
}
/// Generate eq(t,x), a product of multilinear polynomials with fixed t.
/// eq(a,b) is takes extensions of a,b in {0,1}^num_vars such that if a and b in
/// {0,1}^num_vars are equal then this polynomial evaluates to 1.
fn eq_extension<F: PrimeField>(t: &[F]) -> Vec<DenseMultilinearExtension<F>> {
let start = start_timer!(|| "eq extension");
let dim = t.len();
let mut result = Vec::new();
for (i, &ti) in t.iter().enumerate().take(dim) {
let mut poly = Vec::with_capacity(1 << dim);
for x in 0..(1 << dim) {
let xi = if x >> i & 1 == 1 { F::one() } else { F::zero() };
let ti_xi = ti * xi;
poly.push(ti_xi + ti_xi - xi - ti + F::one());
}
result.push(DenseMultilinearExtension::from_evaluations_vec(dim, poly));
}
end_timer!(start);
result
}
#[cfg(test)]
mod tests {
use super::*;
use ark_bls12_381::Bls12_381;
use ark_std::test_rng;
type E = Bls12_381;
#[test]
fn test_srs_gen() -> Result<(), PCSErrors> {
let mut rng = test_rng();
for nv in 4..10 {
let _ = UniversalParams::<E>::gen_srs_for_testing(&mut rng, nv)?;
}
Ok(())
}
}
use ark_std::vec::Vec;

+ 13
- 0
pcs/src/prelude.rs

@ -0,0 +1,13 @@
pub use crate::{
errors::PCSErrors,
multilinear_kzg::{
srs::{MultilinearProverParam, MultilinearUniversalParams, MultilinearVerifierParam},
util::merge_polynomials,
BatchProof, KZGMultilinearPCS, Proof,
},
structs::Commitment,
univariate_kzg::srs::{
UnivariateProverParam, UnivariateUniversalParams, UnivariateVerifierParam,
},
PolynomialCommitmentScheme, StructuredReferenceString,
};

+ 9
- 0
pcs/src/structs.rs

@ -0,0 +1,9 @@
use ark_ec::PairingEngine;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize, Read, SerializationError, Write};
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug, Default, PartialEq)]
/// A commitment is an Affine point.
pub struct Commitment<E: PairingEngine> {
/// the actual commitment is an affine point.
pub commitment: E::G1Affine,
}

+ 384
- 0
pcs/src/univariate_kzg/mod.rs

@ -0,0 +1,384 @@
//! Main module for univariate KZG commitment scheme
use crate::{
prelude::{Commitment, PCSErrors},
PolynomialCommitmentScheme, StructuredReferenceString,
};
use ark_ec::{msm::VariableBaseMSM, AffineCurve, PairingEngine, ProjectiveCurve};
use ark_ff::PrimeField;
use ark_poly::{univariate::DensePolynomial, Polynomial, UVPolynomial};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize, Read, SerializationError, Write};
use ark_std::{end_timer, rand::RngCore, start_timer, One, UniformRand, Zero};
use srs::{UnivariateProverParam, UnivariateUniversalParams, UnivariateVerifierParam};
use std::marker::PhantomData;
pub(crate) mod srs;
/// KZG Polynomial Commitment Scheme on univariate polynomial.
pub struct KZGUnivariatePCS<E: PairingEngine> {
#[doc(hidden)]
phantom: PhantomData<E>,
}
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
/// proof of opening
pub struct KZGUnivariateOpening<E: PairingEngine> {
/// Evaluation of quotients
pub proof: E::G1Affine,
}
impl<E: PairingEngine> PolynomialCommitmentScheme<E> for KZGUnivariatePCS<E> {
// Parameters
type ProverParam = UnivariateProverParam<E::G1Affine>;
type VerifierParam = UnivariateVerifierParam<E>;
type SRS = UnivariateUniversalParams<E>;
// Polynomial and its associated types
type Polynomial = DensePolynomial<E::Fr>;
type Point = E::Fr;
type Evaluation = E::Fr;
// Polynomial and its associated types
type Commitment = Commitment<E>;
type Proof = KZGUnivariateOpening<E>;
type BatchProof = Vec<Self::Proof>;
type BatchCommitment = Vec<Self::Commitment>;
/// Build SRS for testing.
///
/// - For univariate polynomials, `log_size` is the log of maximum degree.
/// - For multilinear polynomials, `log_size` is the number of variables.
///
/// WARNING: THIS FUNCTION IS FOR TESTING PURPOSE ONLY.
/// THE OUTPUT SRS SHOULD NOT BE USED IN PRODUCTION.
fn gen_srs_for_testing<R: RngCore>(
rng: &mut R,
log_size: usize,
) -> Result<Self::SRS, PCSErrors> {
Self::SRS::gen_srs_for_testing(rng, log_size)
}
/// Generate a commitment for a polynomial
/// Note that the scheme is not hidding
fn commit(
prover_param: &Self::ProverParam,
poly: &Self::Polynomial,
) -> Result<Self::Commitment, PCSErrors> {
let commit_time =
start_timer!(|| format!("Committing to polynomial of degree {} ", poly.degree()));
if poly.degree() > prover_param.powers_of_g.len() {
return Err(PCSErrors::InvalidParameters(format!(
"poly degree {} is larger than allowed {}",
poly.degree(),
prover_param.powers_of_g.len()
)));
}
let (num_leading_zeros, plain_coeffs) = skip_leading_zeros_and_convert_to_bigints(poly);
let msm_time = start_timer!(|| "MSM to compute commitment to plaintext poly");
let commitment = VariableBaseMSM::multi_scalar_mul(
&prover_param.powers_of_g[num_leading_zeros..],
&plain_coeffs,
)
.into_affine();
end_timer!(msm_time);
end_timer!(commit_time);
Ok(Commitment { commitment })
}
/// Generate a commitment for a list of polynomials
fn multi_commit(
prover_param: &Self::ProverParam,
polys: &[Self::Polynomial],
) -> Result<Self::BatchCommitment, PCSErrors> {
let commit_time = start_timer!(|| format!("batch commit {} polynomials", polys.len()));
let res = polys
.iter()
.map(|poly| Self::commit(prover_param, poly))
.collect::<Result<Vec<Self::Commitment>, PCSErrors>>()?;
end_timer!(commit_time);
Ok(res)
}
/// On input a polynomial `p` and a point `point`, outputs a proof for the
/// same.
fn open(
prover_param: &Self::ProverParam,
polynomial: &Self::Polynomial,
point: &Self::Point,
) -> Result<(Self::Proof, Self::Evaluation), PCSErrors> {
let open_time =
start_timer!(|| format!("Opening polynomial of degree {}", polynomial.degree()));
let divisor = Self::Polynomial::from_coefficients_vec(vec![-*point, E::Fr::one()]);
let witness_time = start_timer!(|| "Computing witness polynomial");
let witness_polynomial = polynomial / &divisor;
end_timer!(witness_time);
let (num_leading_zeros, witness_coeffs) =
skip_leading_zeros_and_convert_to_bigints(&witness_polynomial);
let proof = VariableBaseMSM::multi_scalar_mul(
&prover_param.powers_of_g[num_leading_zeros..],
&witness_coeffs,
)
.into_affine();
let eval = polynomial.evaluate(point);
end_timer!(open_time);
Ok((Self::Proof { proof }, eval))
}
/// Input a list of polynomials, and a same number of points,
/// compute a multi-opening for all the polynomials.
// This is a naive approach
// TODO: to implement the more efficient batch opening algorithm
// (e.g., the appendix C.4 in https://eprint.iacr.org/2020/1536.pdf)
fn multi_open(
prover_param: &Self::ProverParam,
_multi_commitment: &Self::Commitment,
polynomials: &[Self::Polynomial],
points: &[Self::Point],
) -> Result<(Self::BatchProof, Vec<Self::Evaluation>), PCSErrors> {
let open_time = start_timer!(|| format!("batch opening {} polynomials", polynomials.len()));
if polynomials.len() != points.len() {
return Err(PCSErrors::InvalidParameters(format!(
"poly length {} is different from points length {}",
polynomials.len(),
points.len()
)));
}
let mut batch_proof = vec![];
let mut evals = vec![];
for (poly, point) in polynomials.iter().zip(points.iter()) {
let (proof, eval) = Self::open(prover_param, poly, point)?;
batch_proof.push(proof);
evals.push(eval);
}
end_timer!(open_time);
Ok((batch_proof, evals))
}
/// Verifies that `value` is the evaluation at `x` of the polynomial
/// committed inside `comm`.
fn verify(
verifier_param: &Self::VerifierParam,
commitment: &Self::Commitment,
point: &Self::Point,
value: &E::Fr,
proof: &Self::Proof,
) -> Result<bool, PCSErrors> {
let check_time = start_timer!(|| "Checking evaluation");
let pairing_inputs: Vec<(E::G1Prepared, E::G2Prepared)> = vec![
(
(verifier_param.g.mul(value.into_repr())
- proof.proof.mul(point.into_repr())
- commitment.commitment.into_projective())
.into_affine()
.into(),
verifier_param.h.into(),
),
(proof.proof.into(), verifier_param.beta_h.into()),
];
let res = E::product_of_pairings(pairing_inputs.iter()).is_one();
end_timer!(check_time, || format!("Result: {}", res));
Ok(res)
}
/// Verifies that `value_i` is the evaluation at `x_i` of the polynomial
/// `poly_i` committed inside `comm`.
// This is a naive approach
// TODO: to implement the more efficient batch verification algorithm
// (e.g., the appendix C.4 in https://eprint.iacr.org/2020/1536.pdf)
fn batch_verify<R: RngCore>(
verifier_param: &Self::VerifierParam,
multi_commitment: &Self::BatchCommitment,
points: &[Self::Point],
values: &[E::Fr],
batch_proof: &Self::BatchProof,
rng: &mut R,
) -> Result<bool, PCSErrors> {
let check_time =
start_timer!(|| format!("Checking {} evaluation proofs", multi_commitment.len()));
let mut total_c = <E::G1Projective>::zero();
let mut total_w = <E::G1Projective>::zero();
let combination_time = start_timer!(|| "Combining commitments and proofs");
let mut randomizer = E::Fr::one();
// Instead of multiplying g and gamma_g in each turn, we simply accumulate
// their coefficients and perform a final multiplication at the end.
let mut g_multiplier = E::Fr::zero();
for (((c, z), v), proof) in multi_commitment
.iter()
.zip(points)
.zip(values)
.zip(batch_proof)
{
let w = proof.proof;
let mut temp = w.mul(*z);
temp.add_assign_mixed(&c.commitment);
let c = temp;
g_multiplier += &(randomizer * v);
total_c += &c.mul(randomizer.into_repr());
total_w += &w.mul(randomizer.into_repr());
// We don't need to sample randomizers from the full field,
// only from 128-bit strings.
randomizer = u128::rand(rng).into();
}
total_c -= &verifier_param.g.mul(g_multiplier);
end_timer!(combination_time);
let to_affine_time = start_timer!(|| "Converting results to affine for pairing");
let affine_points = E::G1Projective::batch_normalization_into_affine(&[-total_w, total_c]);
let (total_w, total_c) = (affine_points[0], affine_points[1]);
end_timer!(to_affine_time);
let pairing_time = start_timer!(|| "Performing product of pairings");
let result = E::product_of_pairings(&[
(total_w.into(), verifier_param.beta_h.into()),
(total_c.into(), verifier_param.h.into()),
])
.is_one();
end_timer!(pairing_time);
end_timer!(check_time, || format!("Result: {}", result));
Ok(result)
}
}
fn skip_leading_zeros_and_convert_to_bigints<F: PrimeField, P: UVPolynomial<F>>(
p: &P,
) -> (usize, Vec<F::BigInt>) {
let mut num_leading_zeros = 0;
while num_leading_zeros < p.coeffs().len() && p.coeffs()[num_leading_zeros].is_zero() {
num_leading_zeros += 1;
}
let coeffs = convert_to_bigints(&p.coeffs()[num_leading_zeros..]);
(num_leading_zeros, coeffs)
}
fn convert_to_bigints<F: PrimeField>(p: &[F]) -> Vec<F::BigInt> {
let to_bigint_time = start_timer!(|| "Converting polynomial coeffs to bigints");
let coeffs = p.iter().map(|s| s.into_repr()).collect::<Vec<_>>();
end_timer!(to_bigint_time);
coeffs
}
#[cfg(test)]
mod tests {
use super::*;
use crate::StructuredReferenceString;
use ark_bls12_381::Bls12_381;
use ark_ec::PairingEngine;
use ark_poly::univariate::DensePolynomial;
use ark_std::{log2, test_rng, UniformRand};
fn end_to_end_test_template<E>() -> Result<(), PCSErrors>
where
E: PairingEngine,
{
let rng = &mut test_rng();
for _ in 0..100 {
let mut degree = 0;
while degree <= 1 {
degree = usize::rand(rng) % 20;
}
let log_degree = log2(degree) as usize;
let pp = KZGUnivariatePCS::<E>::gen_srs_for_testing(rng, log_degree)?;
let (ck, vk) = pp.trim(log_degree)?;
let p = <DensePolynomial<E::Fr> as UVPolynomial<E::Fr>>::rand(degree, rng);
let comm = KZGUnivariatePCS::<E>::commit(&ck, &p)?;
let point = E::Fr::rand(rng);
let (proof, value) = KZGUnivariatePCS::<E>::open(&ck, &p, &point)?;
assert!(
KZGUnivariatePCS::<E>::verify(&vk, &comm, &point, &value, &proof)?,
"proof was incorrect for max_degree = {}, polynomial_degree = {}",
degree,
p.degree(),
);
}
Ok(())
}
fn linear_polynomial_test_template<E>() -> Result<(), PCSErrors>
where
E: PairingEngine,
{
let rng = &mut test_rng();
for _ in 0..100 {
let degree = 50;
let log_degree = log2(degree) as usize;
let pp = KZGUnivariatePCS::<E>::gen_srs_for_testing(rng, log_degree)?;
let (ck, vk) = pp.trim(log_degree)?;
let p = <DensePolynomial<E::Fr> as UVPolynomial<E::Fr>>::rand(degree, rng);
let comm = KZGUnivariatePCS::<E>::commit(&ck, &p)?;
let point = E::Fr::rand(rng);
let (proof, value) = KZGUnivariatePCS::<E>::open(&ck, &p, &point)?;
assert!(
KZGUnivariatePCS::<E>::verify(&vk, &comm, &point, &value, &proof)?,
"proof was incorrect for max_degree = {}, polynomial_degree = {}",
degree,
p.degree(),
);
}
Ok(())
}
fn batch_check_test_template<E>() -> Result<(), PCSErrors>
where
E: PairingEngine,
{
let rng = &mut test_rng();
for _ in 0..10 {
let mut degree = 0;
while degree <= 1 {
degree = usize::rand(rng) % 20;
}
let log_degree = log2(degree) as usize;
let pp = KZGUnivariatePCS::<E>::gen_srs_for_testing(rng, log_degree)?;
let (ck, vk) = pp.trim(log_degree)?;
let mut comms = Vec::new();
let mut values = Vec::new();
let mut points = Vec::new();
let mut proofs = Vec::new();
for _ in 0..10 {
let p = <DensePolynomial<E::Fr> as UVPolynomial<E::Fr>>::rand(degree, rng);
let comm = KZGUnivariatePCS::<E>::commit(&ck, &p)?;
let point = E::Fr::rand(rng);
let (proof, value) = KZGUnivariatePCS::<E>::open(&ck, &p, &point)?;
assert!(KZGUnivariatePCS::<E>::verify(
&vk, &comm, &point, &value, &proof
)?);
comms.push(comm);
values.push(value);
points.push(point);
proofs.push(proof);
}
assert!(KZGUnivariatePCS::<E>::batch_verify(
&vk, &comms, &points, &values, &proofs, rng
)?);
}
Ok(())
}
#[test]
fn end_to_end_test() {
end_to_end_test_template::<Bls12_381>().expect("test failed for bls12-381");
}
#[test]
fn linear_polynomial_test() {
linear_polynomial_test_template::<Bls12_381>().expect("test failed for bls12-381");
}
#[test]
fn batch_check_test() {
batch_check_test_template::<Bls12_381>().expect("test failed for bls12-381");
}
}

+ 127
- 0
pcs/src/univariate_kzg/srs.rs

@ -0,0 +1,127 @@
//! Implementing Structured Reference Strings for univariate polynomial KZG
use crate::{prelude::PCSErrors, StructuredReferenceString};
use ark_ec::{msm::FixedBaseMSM, AffineCurve, PairingEngine, ProjectiveCurve};
use ark_ff::PrimeField;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize, Read, SerializationError, Write};
use ark_std::{end_timer, rand::RngCore, start_timer, One, UniformRand};
/// `UniversalParams` are the universal parameters for the KZG10 scheme.
/// Adapted from
/// https://github.com/arkworks-rs/poly-commit/blob/master/src/kzg10/data_structures.rs#L20
#[derive(Clone, Debug)]
pub struct UnivariateUniversalParams<E: PairingEngine> {
/// Group elements of the form `{ \beta^i G }`, where `i` ranges from 0 to
/// `degree`.
pub powers_of_g: Vec<E::G1Affine>,
/// The generator of G2.
pub h: E::G2Affine,
/// \beta times the above generator of G2.
pub beta_h: E::G2Affine,
}
/// Prover Parameters
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
pub struct UnivariateProverParam<C: AffineCurve> {
pub powers_of_g: Vec<C>,
}
/// `VerifierKey` is used to check evaluation proofs for a given commitment.
/// https://github.com/arkworks-rs/poly-commit/blob/master/src/kzg10/data_structures.rs#L236
#[derive(Clone, Debug)]
pub struct UnivariateVerifierParam<E: PairingEngine> {
/// The generator of G1.
pub g: E::G1Affine,
/// The generator of G2.
pub h: E::G2Affine,
/// \beta times the above generator of G2.
pub beta_h: E::G2Affine,
}
impl<E: PairingEngine> StructuredReferenceString<E> for UnivariateUniversalParams<E> {
type ProverParam = UnivariateProverParam<E::G1Affine>;
type VerifierParam = UnivariateVerifierParam<E>;
/// Extract the prover parameters from the public parameters.
fn extract_prover_param(&self, supported_log_size: usize) -> Self::ProverParam {
let support_size = 1usize << supported_log_size;
let powers_of_g = self.powers_of_g[..=support_size].to_vec();
Self::ProverParam { powers_of_g }
}
/// Extract the verifier parameters from the public parameters.
fn extract_verifier_param(&self, _supported_log_size: usize) -> Self::VerifierParam {
Self::VerifierParam {
g: self.powers_of_g[0],
h: self.h,
beta_h: self.beta_h,
}
}
/// Trim the universal parameters to specialize the public parameters
/// for univariate polynomials to the given `supported_log_size`, and
/// returns committer key and verifier key. `supported_log_size` should
/// be in range `1..log(params.len())`
fn trim(
&self,
supported_log_size: usize,
) -> Result<(Self::ProverParam, Self::VerifierParam), PCSErrors> {
let support_size = 1usize << supported_log_size;
let powers_of_g = self.powers_of_g[..=support_size].to_vec();
let pk = Self::ProverParam { powers_of_g };
let vk = Self::VerifierParam {
g: self.powers_of_g[0],
h: self.h,
beta_h: self.beta_h,
};
Ok((pk, vk))
}
/// Build SRS for testing.
/// WARNING: THIS FUNCTION IS FOR TESTING PURPOSE ONLY.
/// THE OUTPUT SRS SHOULD NOT BE USED IN PRODUCTION.
fn gen_srs_for_testing<R: RngCore>(rng: &mut R, log_degree: usize) -> Result<Self, PCSErrors> {
let max_degree = 1usize << log_degree;
let setup_time = start_timer!(|| format!("KZG10::Setup with degree {}", max_degree));
let beta = E::Fr::rand(rng);
let g = E::G1Projective::rand(rng);
let h = E::G2Projective::rand(rng);
let mut powers_of_beta = vec![E::Fr::one()];
let mut cur = beta;
for _ in 0..max_degree {
powers_of_beta.push(cur);
cur *= &beta;
}
let window_size = FixedBaseMSM::get_mul_window_size(max_degree + 1);
let scalar_bits = E::Fr::size_in_bits();
let g_time = start_timer!(|| "Generating powers of G");
// TODO: parallelization
let g_table = FixedBaseMSM::get_window_table(scalar_bits, window_size, g);
let powers_of_g = FixedBaseMSM::multi_scalar_mul::<E::G1Projective>(
scalar_bits,
window_size,
&g_table,
&powers_of_beta,
);
end_timer!(g_time);
let powers_of_g = E::G1Projective::batch_normalization_into_affine(&powers_of_g);
let h = h.into_affine();
let beta_h = h.mul(beta).into_affine();
let pp = Self {
powers_of_g,
h,
beta_h,
};
end_timer!(setup_time);
Ok(pp)
}
}

+ 10
- 0
poly-iop/src/transcript.rs

@ -4,6 +4,7 @@
//! TODO(ZZ): decide which APIs need to be public.
use ark_ff::PrimeField;
use ark_serialize::CanonicalSerialize;
use merlin::Transcript;
use std::marker::PhantomData;
@ -67,6 +68,15 @@ impl IOPTranscript {
self.append_message(label, &to_bytes!(field_elem)?)
}
// Append the message to the transcript.
pub fn append_serializable_element<S: CanonicalSerialize>(
&mut self,
label: &'static [u8],
group_elem: &S,
) -> Result<(), PolyIOPErrors> {
self.append_message(label, &to_bytes!(group_elem)?)
}
// Append a prover message to the transcript.
pub(crate) fn append_prover_message(
&mut self,

Loading…
Cancel
Save