Browse Source

polish IOP code base (#24)

main
zhenfei 2 years ago
committed by GitHub
parent
commit
97a89d7ecc
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 445 additions and 361 deletions
  1. +2
    -2
      poly-iop/benches/bench.rs
  2. +13
    -2
      poly-iop/src/lib.rs
  3. +6
    -19
      poly-iop/src/structs.rs
  4. +41
    -46
      poly-iop/src/sum_check/mod.rs
  5. +51
    -47
      poly-iop/src/sum_check/prover.rs
  6. +38
    -27
      poly-iop/src/sum_check/verifier.rs
  7. +40
    -18
      poly-iop/src/transcript.rs
  8. +215
    -21
      poly-iop/src/virtual_poly.rs
  9. +39
    -179
      poly-iop/src/zero_check/mod.rs

+ 2
- 2
poly-iop/benches/bench.rs

@ -23,7 +23,7 @@ fn bench_sum_check() -> Result<(), PolyIOPErrors> {
let (poly, asserted_sum) =
VirtualPolynomial::rand(nv, (degree, degree + 1), 2, &mut rng)?;
let poly_info = poly.domain_info.clone();
let poly_info = poly.aux_info.clone();
let proof = {
let start = Instant::now();
for _ in 0..repetition {
@ -84,7 +84,7 @@ fn bench_zero_check() -> Result<(), PolyIOPErrors> {
};
let poly = VirtualPolynomial::rand_zero(nv, (degree, degree + 1), 2, &mut rng)?;
let poly_info = poly.domain_info.clone();
let poly_info = poly.aux_info.clone();
let proof = {
let start = Instant::now();
let mut transcript = <PolyIOP<Fr> as ZeroCheck<Fr>>::init_transcript();

+ 13
- 2
poly-iop/src/lib.rs

@ -12,12 +12,23 @@ mod zero_check;
pub use errors::PolyIOPErrors;
pub use sum_check::SumCheck;
pub use virtual_poly::VirtualPolynomial;
pub use zero_check::{build_eq_x_r, ZeroCheck};
pub use zero_check::ZeroCheck;
#[derive(Clone, Debug, Default, Copy)]
/// Struct for PolyIOP protocol.
/// It is instantiated with
/// It has an associated type `F` that defines the prime field the multi-variate
/// polynomial operates on.
///
/// An PolyIOP may be instantiated with one of the following:
/// - SumCheck protocol.
/// - ZeroCheck protocol.
/// - PermutationCheck protocol.
///
/// Those individual protocol may have similar or identical APIs.
/// The systematic way to invoke specific protocol is, for example
/// `<PolyIOP<F> as SumCheck<F>>::prove()`
pub struct PolyIOP<F: PrimeField> {
/// Associated field
#[doc(hidden)]
phantom: PhantomData<F>,
}

+ 6
- 19
poly-iop/src/structs.rs

@ -1,22 +1,10 @@
//! Structs for polynomials and extensions.
//! This module defines structs that are shared by all sub protocols.
use crate::VirtualPolynomial;
use ark_ff::PrimeField;
use std::marker::PhantomData;
#[derive(Clone, Debug, Default, PartialEq)]
/// Auxiliary information about the multilinear polynomial
pub struct DomainInfo<F: PrimeField> {
/// max number of multiplicands in each product
pub max_degree: usize,
/// number of variables of the polynomial
pub num_variables: usize,
/// Associated field
#[doc(hidden)]
pub(crate) phantom: PhantomData<F>,
}
/// Subclaim when verifier is convinced
/// A Subclaim is a claim generated by the verifier at the end of verification
/// when it is convinced.
pub struct SubClaim<F: PrimeField> {
/// the multi-dimensional point that this multilinear extension is evaluated
/// to
@ -25,9 +13,8 @@ pub struct SubClaim {
pub expected_evaluation: F,
}
/// An IOP proof is a list of messages from prover to verifier
/// through the interactive protocol.
/// It is a shared struct for both sumcheck and zerocheck protocols.
/// An IOP proof is a collections of messages from prover to verifier at each
/// round through the interactive protocol.
#[derive(Clone, Debug, Default, PartialEq)]
pub struct IOPProof<F: PrimeField> {
pub proofs: Vec<IOPProverMessage<F>>,
@ -40,7 +27,7 @@ pub struct IOPProverMessage {
pub(crate) evaluations: Vec<F>,
}
/// Prover State of a PolyIOP
/// Prover State of a PolyIOP.
pub struct IOPProverState<F: PrimeField> {
/// sampled randomness given by the verifier
pub challenges: Vec<F>,

+ 41
- 46
poly-iop/src/sum_check/mod.rs

@ -1,12 +1,10 @@
//! This module implements the sum check protocol.
//! Currently this is a simple wrapper of the sumcheck protocol
//! from Arkworks.
use crate::{
errors::PolyIOPErrors,
structs::{DomainInfo, IOPProof, IOPProverState, IOPVerifierState, SubClaim},
structs::{IOPProof, IOPProverState, IOPVerifierState, SubClaim},
transcript::IOPTranscript,
virtual_poly::VirtualPolynomial,
virtual_poly::{VPAuxInfo, VirtualPolynomial},
PolyIOP,
};
use ark_ff::PrimeField;
@ -18,12 +16,12 @@ mod verifier;
/// Trait for doing sum check protocols.
pub trait SumCheck<F: PrimeField> {
type Proof;
type PolyList;
type DomainInfo;
type VirtualPolynomial;
type VPAuxInfo;
type SubClaim;
type Transcript;
/// extract sum from the proof
/// Extract sum from the proof
fn extract_sum(proof: &Self::Proof) -> F;
/// Initialize the system with a transcript
@ -38,7 +36,7 @@ pub trait SumCheck {
///
/// The polynomial is represented in the form of a VirtualPolynomial.
fn prove(
poly: &Self::PolyList,
poly: &Self::VirtualPolynomial,
transcript: &mut Self::Transcript,
) -> Result<Self::Proof, PolyIOPErrors>;
@ -46,7 +44,7 @@ pub trait SumCheck {
fn verify(
sum: F,
proof: &Self::Proof,
domain_info: &Self::DomainInfo,
aux_info: &Self::VPAuxInfo,
transcript: &mut Self::Transcript,
) -> Result<Self::SubClaim, PolyIOPErrors>;
}
@ -56,17 +54,15 @@ pub trait SumCheckProver
where
Self: Sized,
{
type PolyList;
type VirtualPolynomial;
type ProverMessage;
/// Initialize the prover to argue for the sum of polynomial over
/// {0,1}^`num_vars`
///
/// The polynomial is represented in the form of a VirtualPolynomial.
fn prover_init(polynomial: &Self::PolyList) -> Result<Self, PolyIOPErrors>;
/// Initialize the prover state to argue for the sum of the input polynomial
/// over {0,1}^`num_vars`.
fn prover_init(polynomial: &Self::VirtualPolynomial) -> Result<Self, PolyIOPErrors>;
/// receive message from verifier, generate prover message, and proceed to
/// next round
/// Receive message from verifier, generate prover message, and proceed to
/// next round.
///
/// Main algorithm used is from section 3.2 of [XZZPS19](https://eprint.iacr.org/2019/317.pdf#subsection.3.2).
fn prove_round_and_update_state(
@ -77,31 +73,33 @@ where
/// Trait for sum check protocol verifier side APIs.
pub trait SumCheckVerifier<F: PrimeField> {
type DomainInfo;
type VPAuxInfo;
type ProverMessage;
type Challenge;
type Transcript;
type SubClaim;
/// initialize the verifier
fn verifier_init(index_info: &Self::DomainInfo) -> Self;
/// Initialize the verifier's state.
fn verifier_init(index_info: &Self::VPAuxInfo) -> Self;
/// Run verifier at current round, given prover message
/// Run verifier for the current round, given a prover message.
///
/// Normally, this function should perform actual verification. Instead,
/// `verify_round` only samples and stores randomness and perform
/// verifications altogether in `check_and_generate_subclaim` at
/// the last step.
/// Note that `verify_round_and_update_state` only samples and stores
/// challenges; and update the verifier's state accordingly. The actual
/// verifications are deferred (in batch) to `check_and_generate_subclaim`
/// at the last step.
fn verify_round_and_update_state(
&mut self,
prover_msg: &Self::ProverMessage,
transcript: &mut Self::Transcript,
) -> Result<Self::Challenge, PolyIOPErrors>;
/// verify the sumcheck phase, and generate the subclaim
/// This function verifies the deferred checks in the interactive version of
/// the protocol; and generate the subclaim. Returns an error if the
/// proof failed to verify.
///
/// If the asserted sum is correct, then the multilinear polynomial
/// evaluated at `subclaim.point` is `subclaim.expected_evaluation`.
/// evaluated at `subclaim.point` will be `subclaim.expected_evaluation`.
/// Otherwise, it is highly unlikely that those two will be equal.
/// Larger field size guarantees smaller soundness error.
fn check_and_generate_subclaim(
@ -112,15 +110,12 @@ pub trait SumCheckVerifier {
impl<F: PrimeField> SumCheck<F> for PolyIOP<F> {
type Proof = IOPProof<F>;
type PolyList = VirtualPolynomial<F>;
type DomainInfo = DomainInfo<F>;
type VirtualPolynomial = VirtualPolynomial<F>;
type VPAuxInfo = VPAuxInfo<F>;
type SubClaim = SubClaim<F>;
type Transcript = IOPTranscript<F>;
/// Extract sum from the proof
fn extract_sum(proof: &Self::Proof) -> F {
let start = start_timer!(|| "extract sum");
let res = proof.proofs[0].evaluations[0] + proof.proofs[0].evaluations[1];
@ -145,17 +140,17 @@ impl SumCheck for PolyIOP {
///
/// The polynomial is represented in the form of a VirtualPolynomial.
fn prove(
poly: &Self::PolyList,
poly: &Self::VirtualPolynomial,
transcript: &mut Self::Transcript,
) -> Result<Self::Proof, PolyIOPErrors> {
let start = start_timer!(|| "sum check prove");
transcript.append_domain_info(&poly.domain_info)?;
transcript.append_aux_info(&poly.aux_info)?;
let mut prover_state = IOPProverState::prover_init(poly)?;
let mut challenge = None;
let mut prover_msgs = Vec::with_capacity(poly.domain_info.num_variables);
for _ in 0..poly.domain_info.num_variables {
let mut prover_msgs = Vec::with_capacity(poly.aux_info.num_variables);
for _ in 0..poly.aux_info.num_variables {
let prover_msg =
IOPProverState::prove_round_and_update_state(&mut prover_state, &challenge)?;
transcript.append_prover_message(&prover_msg)?;
@ -169,18 +164,18 @@ impl SumCheck for PolyIOP {
})
}
/// verify the claimed sum using the proof
/// Verify the claimed sum using the proof
fn verify(
claimed_sum: F,
proof: &Self::Proof,
domain_info: &Self::DomainInfo,
aux_info: &Self::VPAuxInfo,
transcript: &mut Self::Transcript,
) -> Result<Self::SubClaim, PolyIOPErrors> {
let start = start_timer!(|| "sum check verify");
transcript.append_domain_info(domain_info)?;
let mut verifier_state = IOPVerifierState::verifier_init(domain_info);
for i in 0..domain_info.num_variables {
transcript.append_aux_info(aux_info)?;
let mut verifier_state = IOPVerifierState::verifier_init(aux_info);
for i in 0..aux_info.num_variables {
let prover_msg = proof.proofs.get(i).expect("proof is incomplete");
transcript.append_prover_message(prover_msg)?;
IOPVerifierState::verify_round_and_update_state(
@ -218,7 +213,7 @@ mod test {
let (poly, asserted_sum) =
VirtualPolynomial::rand(nv, num_multiplicands_range, num_products, &mut rng)?;
let proof = <PolyIOP<Fr> as SumCheck<Fr>>::prove(&poly, &mut transcript)?;
let poly_info = poly.domain_info.clone();
let poly_info = poly.aux_info.clone();
let mut transcript = <PolyIOP<Fr> as SumCheck<Fr>>::init_transcript();
let subclaim = <PolyIOP<Fr> as SumCheck<Fr>>::verify(
asserted_sum,
@ -241,7 +236,7 @@ mod test {
let mut rng = test_rng();
let (poly, asserted_sum) =
VirtualPolynomial::<Fr>::rand(nv, num_multiplicands_range, num_products, &mut rng)?;
let poly_info = poly.domain_info.clone();
let poly_info = poly.aux_info.clone();
let mut prover_state = IOPProverState::prover_init(&poly)?;
let mut verifier_state = IOPVerifierState::verifier_init(&poly_info);
let mut challenge = None;
@ -249,7 +244,7 @@ mod test {
transcript
.append_message(b"testing", b"initializing transcript for testing")
.unwrap();
for _ in 0..poly.domain_info.num_variables {
for _ in 0..poly.aux_info.num_variables {
let prover_message =
IOPProverState::prove_round_and_update_state(&mut prover_state, &challenge)
.unwrap();
@ -362,7 +357,7 @@ mod test {
drop(prover);
let mut transcript = <PolyIOP<Fr> as SumCheck<Fr>>::init_transcript();
let poly_info = poly.domain_info.clone();
let poly_info = poly.aux_info.clone();
let proof = <PolyIOP<Fr> as SumCheck<Fr>>::prove(&poly, &mut transcript)?;
let asserted_sum = <PolyIOP<Fr> as SumCheck<Fr>>::extract_sum(&proof);

+ 51
- 47
poly-iop/src/sum_check/prover.rs

@ -1,4 +1,4 @@
//! Prover
//! Prover subroutines for a SumCheck protocol.
use super::SumCheckProver;
use crate::{
@ -15,14 +15,14 @@ use std::rc::Rc;
use rayon::iter::{IndexedParallelIterator, IntoParallelRefMutIterator, ParallelIterator};
impl<F: PrimeField> SumCheckProver<F> for IOPProverState<F> {
type PolyList = VirtualPolynomial<F>;
type VirtualPolynomial = VirtualPolynomial<F>;
type ProverMessage = IOPProverMessage<F>;
/// Initialize the prover to argue for the sum of polynomial over
/// {0,1}^`num_vars`
fn prover_init(polynomial: &Self::PolyList) -> Result<Self, PolyIOPErrors> {
/// Initialize the prover state to argue for the sum of the input polynomial
/// over {0,1}^`num_vars`.
fn prover_init(polynomial: &Self::VirtualPolynomial) -> Result<Self, PolyIOPErrors> {
let start = start_timer!(|| "sum check prover init");
if polynomial.domain_info.num_variables == 0 {
if polynomial.aux_info.num_variables == 0 {
return Err(PolyIOPErrors::InvalidParameters(
"Attempt to prove a constant.".to_string(),
));
@ -30,14 +30,14 @@ impl SumCheckProver for IOPProverState {
end_timer!(start);
Ok(Self {
challenges: Vec::with_capacity(polynomial.domain_info.num_variables),
challenges: Vec::with_capacity(polynomial.aux_info.num_variables),
round: 0,
poly: polynomial.clone(),
})
}
/// Receive message from verifier, generate prover message, and proceed to
/// next round
/// next round.
///
/// Main algorithm used is from section 3.2 of [XZZPS19](https://eprint.iacr.org/2019/317.pdf#subsection.3.2).
fn prove_round_and_update_state(
@ -47,8 +47,25 @@ impl SumCheckProver for IOPProverState {
let start =
start_timer!(|| format!("sum check prove {}-th round and update state", self.round));
if self.round >= self.poly.aux_info.num_variables {
return Err(PolyIOPErrors::InvalidProver(
"Prover is not active".to_string(),
));
}
let fix_argument = start_timer!(|| "fix argument");
// Step 1:
// fix argument and evaluate f(x) over x_m = r; where r is the challenge
// for the current round, and m is the round number, indexed from 1
//
// i.e.:
// at round m <=n, for each mle g(x_1, ... x_n) within the flattened_mle
// which has already been evaluated to
//
// g(r_1, ..., r_{m-1}, x_m ... x_n)
//
// eval g over r_m, and mutate g to g(r_1, ... r_m,, x_{m+1}... x_n)
let mut flattened_ml_extensions: Vec<DenseMultilinearExtension<F>> = self
.poly
.flattened_ml_extensions
@ -64,18 +81,16 @@ impl SumCheckProver for IOPProverState {
}
self.challenges.push(*chal);
// fix argument
let i = self.round;
let r = self.challenges[i - 1];
let r = self.challenges[self.round - 1];
#[cfg(feature = "parallel")]
flattened_ml_extensions
.par_iter_mut()
.for_each(|multiplicand| *multiplicand = multiplicand.fix_variables(&[r]));
.for_each(|mle| *mle = mle.fix_variables(&[r]));
#[cfg(not(feature = "parallel"))]
flattened_ml_extensions
.iter_mut()
.for_each(|multiplicand| *multiplicand = multiplicand.fix_variables(&[r]));
.for_each(|mle| *mle = mle.fix_variables(&[r]));
} else if self.round > 0 {
return Err(PolyIOPErrors::InvalidProver(
"verifier message is empty".to_string(),
@ -85,30 +100,22 @@ impl SumCheckProver for IOPProverState {
self.round += 1;
if self.round > self.poly.domain_info.num_variables {
return Err(PolyIOPErrors::InvalidProver(
"Prover is not active".to_string(),
));
}
let products_list = self.poly.products.clone();
let i = self.round;
let nv = self.poly.domain_info.num_variables;
let degree = self.poly.domain_info.max_degree; // the degree of univariate polynomial sent by prover at this round
let mut products_sum = Vec::with_capacity(degree + 1);
products_sum.resize(degree + 1, F::zero());
let mut products_sum = Vec::with_capacity(self.poly.aux_info.max_degree + 1);
products_sum.resize(self.poly.aux_info.max_degree + 1, F::zero());
let compute_sum = start_timer!(|| "compute sum");
// generate sum
// Step 2: generate sum for the partial evaluated polynomial:
// f(r_1, ... r_m,, x_{m+1}... x_n)
#[cfg(feature = "parallel")]
products_sum.par_iter_mut().enumerate().for_each(|(t, e)| {
for b in 0..1 << (nv - i) {
for b in 0..1 << (self.poly.aux_info.num_variables - self.round) {
// evaluate P_round(t)
for (coefficient, products) in products_list.iter() {
let num_multiplicands = products.len();
let num_mles = products.len();
let mut product = *coefficient;
for &f in products.iter().take(num_multiplicands) {
for &f in products.iter().take(num_mles) {
let table = &flattened_ml_extensions[f]; // f's range is checked in init
product *= table[b << 1] * (F::one() - F::from(t as u64))
+ table[(b << 1) + 1] * F::from(t as u64);
@ -119,26 +126,23 @@ impl SumCheckProver for IOPProverState {
});
#[cfg(not(feature = "parallel"))]
for b in 0..1 << (nv - i) {
products_sum
.iter_mut()
.take(degree + 1)
.enumerate()
.for_each(|(t, e)| {
// evaluate P_round(t)
for (coefficient, products) in products_list.iter() {
let num_multiplicands = products.len();
let mut product = *coefficient;
for &f in products.iter().take(num_multiplicands) {
let table = &flattened_ml_extensions[f]; // f's range is checked in init
product *= table[b << 1] * (F::one() - F::from(t as u64))
+ table[(b << 1) + 1] * F::from(t as u64);
}
*e += product;
products_sum.iter_mut().enumerate().for_each(|(t, e)| {
for b in 0..1 << (self.poly.aux_info.num_variables - self.round) {
// evaluate P_round(t)
for (coefficient, products) in products_list.iter() {
let num_mles = products.len();
let mut product = *coefficient;
for &f in products.iter().take(num_mles) {
let table = &flattened_ml_extensions[f]; // f's range is checked in init
product *= table[b << 1] * (F::one() - F::from(t as u64))
+ table[(b << 1) + 1] * F::from(t as u64);
}
});
}
*e += product;
}
}
});
// update prover's state to the partial evaluated polynomial
self.poly.flattened_ml_extensions = flattened_ml_extensions
.iter()
.map(|x| Rc::new(x.clone()))

+ 38
- 27
poly-iop/src/sum_check/verifier.rs

@ -1,11 +1,11 @@
// TODO: some of the struct is generic for Sum Checks and Zero Checks.
// If so move them to src/structs.rs
//! Verifier subroutines for a SumCheck protocol.
use super::SumCheckVerifier;
use crate::{
errors::PolyIOPErrors,
structs::{DomainInfo, IOPProverMessage, IOPVerifierState, SubClaim},
structs::{IOPProverMessage, IOPVerifierState, SubClaim},
transcript::IOPTranscript,
virtual_poly::VPAuxInfo,
};
use ark_ff::PrimeField;
use ark_std::{end_timer, start_timer};
@ -14,14 +14,14 @@ use ark_std::{end_timer, start_timer};
use rayon::iter::{IndexedParallelIterator, IntoParallelIterator, ParallelIterator};
impl<F: PrimeField> SumCheckVerifier<F> for IOPVerifierState<F> {
type DomainInfo = DomainInfo<F>;
type VPAuxInfo = VPAuxInfo<F>;
type ProverMessage = IOPProverMessage<F>;
type Challenge = F;
type Transcript = IOPTranscript<F>;
type SubClaim = SubClaim<F>;
/// initialize the verifier
fn verifier_init(index_info: &Self::DomainInfo) -> Self {
/// Initialize the verifier's state.
fn verifier_init(index_info: &Self::VPAuxInfo) -> Self {
let start = start_timer!(|| "sum check verifier init");
let res = Self {
round: 1,
@ -35,12 +35,12 @@ impl SumCheckVerifier for IOPVerifierState {
res
}
/// Run verifier at current round, given prover message
/// Run verifier for the current round, given a prover message.
///
/// Normally, this function should perform actual verification. Instead,
/// `verify_round` only samples and stores randomness and perform
/// verifications altogether in `check_and_generate_subclaim` at
/// the last step.
/// Note that `verify_round_and_update_state` only samples and stores
/// challenges; and update the verifier's state accordingly. The actual
/// verifications are deferred (in batch) to `check_and_generate_subclaim`
/// at the last step.
fn verify_round_and_update_state(
&mut self,
prover_msg: &Self::ProverMessage,
@ -55,23 +55,24 @@ impl SumCheckVerifier for IOPVerifierState {
));
}
// Now, verifier should check if the received P(0) + P(1) = expected. The check
// is moved to `check_and_generate_subclaim`, and will be done after the
// last round.
// In an interactive protocol, the verifier should
//
// 1. check if the received 'P(0) + P(1) = expected`.
// 2. set `expected` to P(r)`
//
// When we turn the protocol to a non-interactive one, it is sufficient to defer
// such checks to `check_and_generate_subclaim` after the last round.
let challenge = transcript.get_and_append_challenge(b"Internal round")?;
self.challenges.push(challenge);
self.polynomials_received
.push(prover_msg.evaluations.to_vec());
// Now, verifier should set `expected` to P(r).
// This operation is also moved to `check_and_generate_subclaim`,
// and will be done after the last round.
if self.round == self.num_vars {
// accept and close
self.finished = true;
} else {
// proceed to the next round
self.round += 1;
}
@ -79,10 +80,12 @@ impl SumCheckVerifier for IOPVerifierState {
Ok(challenge)
}
/// verify the sumcheck phase, and generate the subclaim
/// This function verifies the deferred checks in the interactive version of
/// the protocol; and generate the subclaim. Returns an error if the
/// proof failed to verify.
///
/// If the asserted sum is correct, then the multilinear polynomial
/// evaluated at `subclaim.point` is `subclaim.expected_evaluation`.
/// evaluated at `subclaim.point` will be `subclaim.expected_evaluation`.
/// Otherwise, it is highly unlikely that those two will be equal.
/// Larger field size guarantees smaller soundness error.
fn check_and_generate_subclaim(
@ -102,6 +105,8 @@ impl SumCheckVerifier for IOPVerifierState {
));
}
// the deferred check during the interactive phase:
// 2. set `expected` to P(r)`
#[cfg(feature = "parallel")]
let mut expected_vec = self
.polynomials_received
@ -137,6 +142,7 @@ impl SumCheckVerifier for IOPVerifierState {
interpolate_uni_poly::<F>(&evaluations, challenge)
})
.collect::<Result<Vec<_>, PolyIOPErrors>>()?;
// insert the asserted_sum to the first position of the expected vector
expected_vec.insert(0, *asserted_sum);
@ -146,6 +152,8 @@ impl SumCheckVerifier for IOPVerifierState {
.zip(expected_vec.iter())
.take(self.num_vars)
{
// the deferred check during the interactive phase:
// 1. check if the received 'P(0) + P(1) = expected`.
if evaluations[0] + evaluations[1] != expected {
return Err(PolyIOPErrors::InvalidProof(
"Prover message is not consistent with the claim.".to_string(),
@ -154,8 +162,9 @@ impl SumCheckVerifier for IOPVerifierState {
}
end_timer!(start);
Ok(SubClaim {
point: self.challenges.to_vec(),
// the last expected value (unchecked) will be included in the subclaim
point: self.challenges.clone(),
// the last expected value (not checked within this function) will be included in the
// subclaim
expected_evaluation: expected_vec[self.num_vars],
})
}
@ -163,19 +172,20 @@ impl SumCheckVerifier for IOPVerifierState {
/// Interpolate a uni-variate degree-`p_i.len()-1` polynomial and evaluate this
/// polynomial at `eval_at`:
///
/// \sum_{i=0}^len p_i * (\prod_{j!=i} (eval_at - j)/(i-j) )
///
/// This implementation is linear in number of inputs in terms of field
/// operations. It also has a quadratic term in primitive operations which is
/// negligible compared to field operations.
pub(crate) fn interpolate_uni_poly<F: PrimeField>(
p_i: &[F],
eval_at: F,
) -> Result<F, PolyIOPErrors> {
fn interpolate_uni_poly<F: PrimeField>(p_i: &[F], eval_at: F) -> Result<F, PolyIOPErrors> {
let start = start_timer!(|| "sum check interpolate uni poly opt");
let mut res = F::zero();
// prod = \prod_{j!=i} (eval_at - j)
// compute
// - prod = \prod (eval_at - j)
// - evals = [eval_at - j]
let mut evals = vec![];
let len = p_i.len();
let mut prod = eval_at;
@ -188,6 +198,7 @@ pub(crate) fn interpolate_uni_poly(
}
for i in 0..len {
// res += p_i * prod / (divisor * (eval_at - j))
let divisor = get_divisor(i, len)?;
let divisor_f = {
if divisor < 0 {

+ 40
- 18
poly-iop/src/transcript.rs

@ -1,14 +1,24 @@
use std::marker::PhantomData;
//! Module for PolyIOP transcript.
//! TODO(ZZ): move this module to HyperPlonk where the transcript will also be
//! useful.
//! TODO(ZZ): decide which APIs need to be public.
use ark_ff::PrimeField;
use merlin::Transcript;
use std::marker::PhantomData;
use crate::{
errors::PolyIOPErrors,
structs::{DomainInfo, IOPProverMessage},
to_bytes,
};
use crate::{errors::PolyIOPErrors, structs::IOPProverMessage, to_bytes, virtual_poly::VPAuxInfo};
/// An IOP transcript consists of a Merlin transcript and a flag `is_empty` to
/// indicate that if the transcript is empty.
///
/// It is associated with a prime field `F` for which challenges are generated
/// over.
///
/// The `is_empty` flag is useful in the case where a protocol is initiated by
/// the verifier, in which case the prover should start its phase by receiving a
/// `non-empty` transcript.
#[derive(Clone)]
pub struct IOPTranscript<F: PrimeField> {
transcript: Transcript,
is_empty: bool,
@ -17,7 +27,7 @@ pub struct IOPTranscript {
}
impl<F: PrimeField> IOPTranscript<F> {
/// create a new IOP transcript
/// Create a new IOP transcript.
pub(crate) fn new(label: &'static [u8]) -> Self {
Self {
transcript: Transcript::new(label),
@ -26,7 +36,7 @@ impl IOPTranscript {
}
}
// append the message to the transcript
// Append the message to the transcript.
pub fn append_message(
&mut self,
label: &'static [u8],
@ -37,20 +47,18 @@ impl IOPTranscript {
Ok(())
}
pub(crate) fn append_domain_info(
&mut self,
domain_info: &DomainInfo<F>,
) -> Result<(), PolyIOPErrors> {
// Append the aux information for a virtual polynomial.
pub(crate) fn append_aux_info(&mut self, aux_info: &VPAuxInfo<F>) -> Result<(), PolyIOPErrors> {
let message = format!(
"max_mul {} num_var {}",
domain_info.max_degree, domain_info.num_variables
aux_info.max_degree, aux_info.num_variables
);
self.append_message(b"aux info", message.as_bytes())?;
Ok(())
}
// append the message to the transcript
// Append the message to the transcript.
pub(crate) fn append_field_element(
&mut self,
label: &'static [u8],
@ -59,6 +67,7 @@ impl IOPTranscript {
self.append_message(label, &to_bytes!(field_elem)?)
}
// Append a prover message to the transcript.
pub(crate) fn append_prover_message(
&mut self,
prover_message: &IOPProverMessage<F>,
@ -69,12 +78,16 @@ impl IOPTranscript {
Ok(())
}
// generate the challenge for the current transcript
// and append it to the transcript
// Generate the challenge from the current transcript
// and append it to the transcript.
//
// The output field element is statistical uniform as long
// as the field has a size less than 2^384.
pub(crate) fn get_and_append_challenge(
&mut self,
label: &'static [u8],
) -> Result<F, PolyIOPErrors> {
// we need to reject when transcript is empty
if self.is_empty {
return Err(PolyIOPErrors::InvalidTranscript(
"transcript is empty".to_string(),
@ -89,14 +102,23 @@ impl IOPTranscript {
Ok(challenge)
}
// generate a list of challenges for the current transcript
// and append it to the transcript
// Generate a list of challenges from the current transcript
// and append them to the transcript.
//
// The output field element are statistical uniform as long
// as the field has a size less than 2^384.
pub(crate) fn get_and_append_challenge_vectors(
&mut self,
label: &'static [u8],
len: usize,
) -> Result<Vec<F>, PolyIOPErrors> {
// we need to reject when transcript is empty
if self.is_empty {
return Err(PolyIOPErrors::InvalidTranscript(
"transcript is empty".to_string(),
));
}
let mut res = vec![];
for _ in 0..len {
res.push(self.get_and_append_challenge(label)?)

+ 215
- 21
poly-iop/src/virtual_poly.rs

@ -1,4 +1,7 @@
use crate::{errors::PolyIOPErrors, structs::DomainInfo};
//! This module defines our main mathematical object `VirtualPolynomial`; and
//! various functions associated with it.
use crate::errors::PolyIOPErrors;
use ark_ff::PrimeField;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_std::{
@ -38,7 +41,7 @@ use std::{cmp::max, collections::HashMap, marker::PhantomData, ops::Add, rc::Rc}
#[derive(Clone, Debug, Default, PartialEq)]
pub struct VirtualPolynomial<F: PrimeField> {
/// Aux information about the multilinear polynomial
pub domain_info: DomainInfo<F>,
pub aux_info: VPAuxInfo<F>,
/// list of reference to products (as usize) of multilinear extension
pub products: Vec<(F, Vec<usize>)>,
/// Stores multilinear extensions in which product multiplicand can refer
@ -48,6 +51,18 @@ pub struct VirtualPolynomial {
raw_pointers_lookup_table: HashMap<*const DenseMultilinearExtension<F>, usize>,
}
#[derive(Clone, Debug, Default, PartialEq)]
/// Auxiliary information about the multilinear polynomial
pub struct VPAuxInfo<F: PrimeField> {
/// max number of multiplicands in each product
pub max_degree: usize,
/// number of variables of the polynomial
pub num_variables: usize,
/// Associated field
#[doc(hidden)]
pub(crate) phantom: PhantomData<F>,
}
impl<F: PrimeField> Add for &VirtualPolynomial<F> {
type Output = VirtualPolynomial<F>;
fn add(self, other: &VirtualPolynomial<F>) -> Self::Output {
@ -69,10 +84,10 @@ impl Add for &VirtualPolynomial {
}
impl<F: PrimeField> VirtualPolynomial<F> {
/// Returns an empty polynomial
/// Creates an empty virtual polynomial with `num_variables`.
pub fn new(num_variables: usize) -> Self {
VirtualPolynomial {
domain_info: DomainInfo {
aux_info: VPAuxInfo {
max_degree: 0,
num_variables,
phantom: PhantomData::default(),
@ -83,27 +98,31 @@ impl VirtualPolynomial {
}
}
/// Returns an new virtual polynomial from a MLE
/// Creates an new virtual polynomial from a MLE and its coefficient.
pub fn new_from_mle(mle: Rc<DenseMultilinearExtension<F>>, coefficient: F) -> Self {
let mle_ptr: *const DenseMultilinearExtension<F> = Rc::as_ptr(&mle);
let mut hm = HashMap::new();
hm.insert(mle_ptr, 0);
VirtualPolynomial {
domain_info: DomainInfo {
aux_info: VPAuxInfo {
// The max degree is the max degree of any individual variable
max_degree: 1,
num_variables: mle.num_vars,
phantom: PhantomData::default(),
},
// here `0` points to the first polynomial of `flattened_ml_extensions`
products: vec![(coefficient, vec![0])],
flattened_ml_extensions: vec![mle],
raw_pointers_lookup_table: hm,
}
}
/// Add a list of multilinear extensions that is meant to be multiplied
/// together. The resulting polynomial will be multiplied by the scalar
/// Add a product of list of multilinear extensions to self
/// Returns an error if the list is empty, or the MLE has a different
/// `num_vars` from self.
///
/// The MLEs will be multiplied together, and then multiplied by the scalar
/// `coefficient`.
pub fn add_mle_list(
&mut self,
@ -112,13 +131,20 @@ impl VirtualPolynomial {
) -> Result<(), PolyIOPErrors> {
let mle_list: Vec<Rc<DenseMultilinearExtension<F>>> = mle_list.into_iter().collect();
let mut indexed_product = Vec::with_capacity(mle_list.len());
assert!(!mle_list.is_empty());
self.domain_info.max_degree = max(self.domain_info.max_degree, mle_list.len());
if mle_list.is_empty() {
return Err(PolyIOPErrors::InvalidParameters(
"input mle_list is empty".to_string(),
));
}
self.aux_info.max_degree = max(self.aux_info.max_degree, mle_list.len());
for mle in mle_list {
if mle.num_vars != self.domain_info.num_variables {
if mle.num_vars != self.aux_info.num_variables {
return Err(PolyIOPErrors::InvalidParameters(format!(
"product has a multiplicand with wrong number of variables {} vs {}",
mle.num_vars, self.domain_info.num_variables
mle.num_vars, self.aux_info.num_variables
)));
}
@ -137,16 +163,26 @@ impl VirtualPolynomial {
}
/// Multiple the current VirtualPolynomial by an MLE:
/// - add the MLE to the MLE list
/// - multiple each product by MLE and its coefficient
/// - add the MLE to the MLE list;
/// - multiple each product by MLE and its coefficient.
/// Returns an error if the MLE has a different `num_vars` from self.
pub fn mul_by_mle(
&mut self,
mle: Rc<DenseMultilinearExtension<F>>,
coefficient: F,
) -> Result<(), PolyIOPErrors> {
let start = start_timer!(|| "mul by mle");
if mle.num_vars != self.aux_info.num_variables {
return Err(PolyIOPErrors::InvalidParameters(format!(
"product has a multiplicand with wrong number of variables {} vs {}",
mle.num_vars, self.aux_info.num_variables
)));
}
let mle_ptr: *const DenseMultilinearExtension<F> = Rc::as_ptr(&mle);
// check if this mle already exists in the virtual polynomial
let mle_index = match self.raw_pointers_lookup_table.get(&mle_ptr) {
Some(&p) => p,
None => {
@ -158,22 +194,27 @@ impl VirtualPolynomial {
};
for (prod_coef, indices) in self.products.iter_mut() {
// - add the MLE to the MLE list;
// - multiple each product by MLE and its coefficient.
indices.push(mle_index);
*prod_coef *= coefficient;
}
self.domain_info.max_degree += 1;
// increase the max degree by one as the MLE has degree 1.
self.aux_info.max_degree += 1;
end_timer!(start);
Ok(())
}
/// Evaluate the polynomial at point `point`
/// Evaluate the virtual polynomial at point `point`.
/// Returns an error is point.len() does not match `num_variables`.
pub fn evaluate(&self, point: &[F]) -> Result<F, PolyIOPErrors> {
let start = start_timer!(|| "evaluation");
if self.domain_info.num_variables != point.len() {
if self.aux_info.num_variables != point.len() {
return Err(PolyIOPErrors::InvalidParameters(format!(
"wrong number of variables {} vs {}",
self.domain_info.num_variables,
self.aux_info.num_variables,
point.len()
)));
}
@ -222,8 +263,8 @@ impl VirtualPolynomial {
Ok((poly, sum))
}
/// Sample a random virtual polynomial that evaluates to zero everywhere on
/// the boolean hypercube.
/// Sample a random virtual polynomial that evaluates to zero everywhere
/// over the boolean hypercube.
pub fn rand_zero<R: RngCore>(
nv: usize,
num_multiplicands_range: (usize, usize),
@ -236,11 +277,36 @@ impl VirtualPolynomial {
rng.gen_range(num_multiplicands_range.0..num_multiplicands_range.1);
let product = random_zero_mle_list(nv, num_multiplicands, rng);
let coefficient = F::rand(rng);
poly.add_mle_list(product.into_iter(), coefficient).unwrap();
poly.add_mle_list(product.into_iter(), coefficient)?;
}
Ok(poly)
}
// Input poly f(x) and a random vector r, output
// \hat f(x) = \sum_{x_i \in eval_x} f(x_i) eq(x, r)
// where
// eq(x,y) = \prod_i=1^num_var (x_i * y_i + (1-x_i)*(1-y_i))
//
// This function is used in ZeroCheck.
pub(crate) fn build_f_hat(&self, r: &[F]) -> Result<Self, PolyIOPErrors> {
let start = start_timer!(|| "zero check build hat f");
if self.aux_info.num_variables != r.len() {
return Err(PolyIOPErrors::InvalidParameters(format!(
"r.len() is different from number of variables: {} vs {}",
r.len(),
self.aux_info.num_variables
)));
}
let eq_x_r = build_eq_x_r(r)?;
let mut res = self.clone();
res.mul_by_mle(eq_x_r, F::one())?;
end_timer!(start);
Ok(res)
}
}
/// Sample a random list of multilinear polynomials.
@ -307,6 +373,68 @@ pub fn random_zero_mle_list(
list
}
// This function build the eq(x, r) polynomial for any given r.
//
// Evaluate
// eq(x,y) = \prod_i=1^num_var (x_i * y_i + (1-x_i)*(1-y_i))
// over r, which is
// eq(x,y) = \prod_i=1^num_var (x_i * r_i + (1-x_i)*(1-r_i))
fn build_eq_x_r<F: PrimeField>(r: &[F]) -> Result<Rc<DenseMultilinearExtension<F>>, PolyIOPErrors> {
let start = start_timer!(|| "zero check build eq_x_r");
// we build eq(x,r) from its evaluations
// we want to evaluate eq(x,r) over x \in {0, 1}^num_vars
// for example, with num_vars = 4, x is a binary vector of 4, then
// 0 0 0 0 -> (1-r0) * (1-r1) * (1-r2) * (1-r3)
// 1 0 0 0 -> r0 * (1-r1) * (1-r2) * (1-r3)
// 0 1 0 0 -> (1-r0) * r1 * (1-r2) * (1-r3)
// 1 1 0 0 -> r0 * r1 * (1-r2) * (1-r3)
// ....
// 1 1 1 1 -> r0 * r1 * r2 * r3
// we will need 2^num_var evaluations
let mut eval = Vec::new();
build_eq_x_r_helper(r, &mut eval)?;
let mle = DenseMultilinearExtension::from_evaluations_vec(r.len(), eval);
let res = Rc::new(mle);
end_timer!(start);
Ok(res)
}
/// A helper function to build eq(x, r) recursively.
/// This function takes `r.len()` steps, and for each step it requires a maximum
/// `r.len()-1` multiplications.
fn build_eq_x_r_helper<F: PrimeField>(r: &[F], buf: &mut Vec<F>) -> Result<(), PolyIOPErrors> {
if r.is_empty() {
return Err(PolyIOPErrors::InvalidParameters(
"r length is 0".to_string(),
));
} else if r.len() == 1 {
// initializing the buffer with [1-r_0, r_0]
buf.push(F::one() - r[0]);
buf.push(r[0]);
} else {
build_eq_x_r_helper(&r[1..], buf)?;
// suppose at the previous step we received [b_1, ..., b_k]
// for the current step we will need
// if x_0 = 0: (1-r0) * [b_1, ..., b_k]
// if x_0 = 1: r0 * [b_1, ..., b_k]
let mut res = vec![];
for &b_i in buf.iter() {
let tmp = r[0] * b_i;
res.push(b_i - tmp);
res.push(tmp);
}
*buf = res;
}
Ok(())
}
#[cfg(test)]
pub(crate) mod test {
use super::*;
@ -364,4 +492,70 @@ pub(crate) mod test {
Ok(())
}
#[test]
fn test_eq_xr() {
let mut rng = test_rng();
for nv in 4..10 {
let r: Vec<Fr> = (0..nv).map(|_| Fr::rand(&mut rng)).collect();
let eq_x_r = build_eq_x_r(r.as_ref()).unwrap();
let eq_x_r2 = build_eq_x_r_for_test(r.as_ref());
assert_eq!(eq_x_r, eq_x_r2);
}
}
/// Naive method to build eq(x, r).
/// Only used for testing purpose.
// Evaluate
// eq(x,y) = \prod_i=1^num_var (x_i * y_i + (1-x_i)*(1-y_i))
// over r, which is
// eq(x,y) = \prod_i=1^num_var (x_i * r_i + (1-x_i)*(1-r_i))
fn build_eq_x_r_for_test<F: PrimeField>(r: &[F]) -> Rc<DenseMultilinearExtension<F>> {
let start = start_timer!(|| "zero check naive build eq_x_r");
// we build eq(x,r) from its evaluations
// we want to evaluate eq(x,r) over x \in {0, 1}^num_vars
// for example, with num_vars = 4, x is a binary vector of 4, then
// 0 0 0 0 -> (1-r0) * (1-r1) * (1-r2) * (1-r3)
// 1 0 0 0 -> r0 * (1-r1) * (1-r2) * (1-r3)
// 0 1 0 0 -> (1-r0) * r1 * (1-r2) * (1-r3)
// 1 1 0 0 -> r0 * r1 * (1-r2) * (1-r3)
// ....
// 1 1 1 1 -> r0 * r1 * r2 * r3
// we will need 2^num_var evaluations
// First, we build array for {1 - r_i}
let one_minus_r: Vec<F> = r.iter().map(|ri| F::one() - ri).collect();
let num_var = r.len();
let mut eval = vec![];
for i in 0..1 << num_var {
let mut current_eval = F::one();
let bit_sequence = bit_decompose(i, num_var);
for (&bit, (ri, one_minus_ri)) in
bit_sequence.iter().zip(r.iter().zip(one_minus_r.iter()))
{
current_eval *= if bit { *ri } else { *one_minus_ri };
}
eval.push(current_eval);
}
let mle = DenseMultilinearExtension::from_evaluations_vec(num_var, eval);
let res = Rc::new(mle);
end_timer!(start);
res
}
fn bit_decompose(input: u64, num_var: usize) -> Vec<bool> {
let mut res = Vec::with_capacity(num_var);
let mut i = input;
for _ in 0..num_var {
res.push(i & 1 == 1);
i >>= 1;
}
res
}
}

+ 39
- 179
poly-iop/src/zero_check/mod.rs

@ -1,21 +1,20 @@
use ark_ff::PrimeField;
use ark_poly::DenseMultilinearExtension;
use ark_std::{end_timer, start_timer};
use std::rc::Rc;
//! Main module for the ZeroCheck protocol.
use crate::{
errors::PolyIOPErrors,
structs::{DomainInfo, IOPProof, SubClaim},
structs::{IOPProof, SubClaim},
sum_check::SumCheck,
transcript::IOPTranscript,
virtual_poly::VirtualPolynomial,
virtual_poly::{VPAuxInfo, VirtualPolynomial},
PolyIOP,
};
use ark_ff::PrimeField;
use ark_std::{end_timer, start_timer};
pub trait ZeroCheck<F: PrimeField> {
type Proof;
type PolyList;
type DomainInfo;
type VirtualPolynomial;
type VPAuxInfo;
type SubClaim;
type Transcript;
@ -30,22 +29,22 @@ pub trait ZeroCheck {
/// initialize the prover to argue for the sum of polynomial over
/// {0,1}^`num_vars` is zero.
fn prove(
poly: &Self::PolyList,
poly: &Self::VirtualPolynomial,
transcript: &mut Self::Transcript,
) -> Result<Self::Proof, PolyIOPErrors>;
/// verify the claimed sum using the proof
fn verify(
proof: &Self::Proof,
domain_info: &Self::DomainInfo,
aux_info: &Self::VPAuxInfo,
transcript: &mut Self::Transcript,
) -> Result<Self::SubClaim, PolyIOPErrors>;
}
impl<F: PrimeField> ZeroCheck<F> for PolyIOP<F> {
type Proof = IOPProof<F>;
type PolyList = VirtualPolynomial<F>;
type DomainInfo = DomainInfo<F>;
type VirtualPolynomial = VirtualPolynomial<F>;
type VPAuxInfo = VPAuxInfo<F>;
/// A ZeroCheck SubClaim consists of
/// - the SubClaim from the ZeroCheck
@ -63,29 +62,41 @@ impl ZeroCheck for PolyIOP {
IOPTranscript::<F>::new(b"Initializing ZeroCheck transcript")
}
/// initialize the prover to argue for the sum of polynomial over
/// Initialize the prover to argue for the sum of polynomial f(x) over
/// {0,1}^`num_vars` is zero.
///
/// f(x) is zero if \hat f(x) := f(x) * eq(x,r) is also a zero polynomial
/// for a random r sampled from transcript.
///
/// This function will build the \hat f(x) and then invoke the sumcheck
/// protocol to generate a proof for which the sum of \hat f(x) is zero
fn prove(
poly: &Self::PolyList,
poly: &Self::VirtualPolynomial,
transcript: &mut Self::Transcript,
) -> Result<Self::Proof, PolyIOPErrors> {
let start = start_timer!(|| "zero check prove");
let length = poly.domain_info.num_variables;
let length = poly.aux_info.num_variables;
let r = transcript.get_and_append_challenge_vectors(b"vector r", length)?;
let f_hat = build_f_hat(poly, r.as_ref())?;
let f_hat = poly.build_f_hat(r.as_ref())?;
let res = <Self as SumCheck<F>>::prove(&f_hat, transcript);
end_timer!(start);
res
}
/// Verify the claimed sum using the proof.
/// the initial challenge `r` is also returned.
/// The caller needs to makes sure that `\hat f = f * eq(x, r)`
/// Verify that the polynomial's sum is zero using the proof.
/// Return a Self::Subclaim that consists of the
///
/// - a Subclaim that the sum is zero
/// - the initial challenge `r` that is used to build `eq(x, r)`
///
/// This function will check that \hat f(x)'s sum is zero. It does not check
/// `\hat f(x)` is build correctly. The caller needs to makes sure that
/// `\hat f(x) = f(x) * eq(x, r)`
fn verify(
proof: &Self::Proof,
fx_domain_info: &Self::DomainInfo,
fx_aux_info: &Self::VPAuxInfo,
transcript: &mut Self::Transcript,
) -> Result<Self::SubClaim, PolyIOPErrors> {
let start = start_timer!(|| "zero check verify");
@ -99,112 +110,27 @@ impl ZeroCheck for PolyIOP {
}
// generate `r` and pass it to the caller for correctness check
let length = fx_domain_info.num_variables;
let length = fx_aux_info.num_variables;
let r = transcript.get_and_append_challenge_vectors(b"vector r", length)?;
// hat_fx's max degree is increased by eq(x, r).degree() which is 1
let mut hat_fx_domain_info = fx_domain_info.clone();
hat_fx_domain_info.max_degree += 1;
let mut hat_fx_aux_info = fx_aux_info.clone();
hat_fx_aux_info.max_degree += 1;
let subclaim =
<Self as SumCheck<F>>::verify(F::zero(), proof, &hat_fx_domain_info, transcript)?;
<Self as SumCheck<F>>::verify(F::zero(), proof, &hat_fx_aux_info, transcript)?;
end_timer!(start);
Ok((subclaim, r))
}
}
// Input poly f(x) and a random vector r, output
// \hat f(x) = \sum_{x_i \in eval_x} f(x_i) eq(x, r)
// where
// eq(x,y) = \prod_i=1^num_var (x_i * y_i + (1-x_i)*(1-y_i))
fn build_f_hat<F: PrimeField>(
poly: &VirtualPolynomial<F>,
r: &[F],
) -> Result<VirtualPolynomial<F>, PolyIOPErrors> {
let start = start_timer!(|| "zero check build hat f");
assert_eq!(poly.domain_info.num_variables, r.len());
let eq_x_r = build_eq_x_r(r)?;
let mut res = poly.clone();
res.mul_by_mle(eq_x_r, F::one())?;
end_timer!(start);
Ok(res)
}
// Evaluate
// eq(x,y) = \prod_i=1^num_var (x_i * y_i + (1-x_i)*(1-y_i))
// over r, which is
// eq(x,y) = \prod_i=1^num_var (x_i * r_i + (1-x_i)*(1-r_i))
pub fn build_eq_x_r<F: PrimeField>(
r: &[F],
) -> Result<Rc<DenseMultilinearExtension<F>>, PolyIOPErrors> {
let start = start_timer!(|| "zero check build eq_x_r");
// we build eq(x,r) from its evaluations
// we want to evaluate eq(x,r) over x \in {0, 1}^num_vars
// for example, with num_vars = 4, x is a binary vector of 4, then
// 0 0 0 0 -> (1-r0) * (1-r1) * (1-r2) * (1-r3)
// 1 0 0 0 -> r0 * (1-r1) * (1-r2) * (1-r3)
// 0 1 0 0 -> (1-r0) * r1 * (1-r2) * (1-r3)
// 1 1 0 0 -> r0 * r1 * (1-r2) * (1-r3)
// ....
// 1 1 1 1 -> r0 * r1 * r2 * r3
// we will need 2^num_var evaluations
let mut eval = Vec::new();
build_eq_x_r_helper(r, &mut eval)?;
let mle = DenseMultilinearExtension::from_evaluations_vec(r.len(), eval);
let res = Rc::new(mle);
end_timer!(start);
Ok(res)
}
/// A helper function to build eq(x, r) recursively.
/// This function takes `r.len()` steps, and for each step it requires a maximum
/// `r.len()-1` multiplications.
fn build_eq_x_r_helper<F: PrimeField>(r: &[F], buf: &mut Vec<F>) -> Result<(), PolyIOPErrors> {
if r.is_empty() {
return Err(PolyIOPErrors::InvalidParameters(
"r length is 0".to_string(),
));
} else if r.len() == 1 {
// initializing the buffer with [1-r0, r0]
buf.push(F::one() - r[0]);
buf.push(r[0]);
} else {
build_eq_x_r_helper(&r[1..], buf)?;
// suppose in the previous step we have [b1, ..., b_k]
// for the current step we will need
// if x0 = 0: (1-r0) * [b_1, ..., b_k]
// if x0 = 1: r0 * [b1, ..., b_k]
let mut res = vec![];
for &e in buf.iter() {
let tmp = e * r[0];
res.push(e - tmp);
res.push(tmp);
}
*buf = res;
}
Ok(())
}
#[cfg(test)]
mod test {
use super::{build_eq_x_r, ZeroCheck};
use super::ZeroCheck;
use crate::{errors::PolyIOPErrors, PolyIOP, VirtualPolynomial};
use ark_bls12_381::Fr;
use ark_ff::{PrimeField, UniformRand};
use ark_poly::DenseMultilinearExtension;
use ark_std::{end_timer, start_timer, test_rng};
use std::rc::Rc;
use ark_std::test_rng;
fn test_zerocheck(
nv: usize,
@ -222,7 +148,7 @@ mod test {
transcript.append_message(b"testing", b"initializing transcript for testing")?;
let proof = <PolyIOP<Fr> as ZeroCheck<Fr>>::prove(&poly, &mut transcript)?;
let poly_info = poly.domain_info.clone();
let poly_info = poly.aux_info.clone();
let mut transcript = <PolyIOP<Fr> as ZeroCheck<Fr>>::init_transcript();
transcript.append_message(b"testing", b"initializing transcript for testing")?;
let subclaim =
@ -242,7 +168,7 @@ mod test {
transcript.append_message(b"testing", b"initializing transcript for testing")?;
let proof = <PolyIOP<Fr> as ZeroCheck<Fr>>::prove(&poly, &mut transcript)?;
let poly_info = poly.domain_info.clone();
let poly_info = poly.aux_info.clone();
let mut transcript = <PolyIOP<Fr> as ZeroCheck<Fr>>::init_transcript();
transcript.append_message(b"testing", b"initializing transcript for testing")?;
@ -281,70 +207,4 @@ mod test {
assert!(test_zerocheck(nv, num_multiplicands_range, num_products).is_err());
Ok(())
}
#[test]
fn test_eq_xr() {
let mut rng = test_rng();
for nv in 4..10 {
let r: Vec<Fr> = (0..nv).map(|_| Fr::rand(&mut rng)).collect();
let eq_x_r = build_eq_x_r(r.as_ref()).unwrap();
let eq_x_r2 = build_eq_x_r_for_test(r.as_ref());
assert_eq!(eq_x_r, eq_x_r2);
}
}
/// Naive method to build eq(x, r).
/// Only used for testing purpose.
// Evaluate
// eq(x,y) = \prod_i=1^num_var (x_i * y_i + (1-x_i)*(1-y_i))
// over r, which is
// eq(x,y) = \prod_i=1^num_var (x_i * r_i + (1-x_i)*(1-r_i))
fn build_eq_x_r_for_test<F: PrimeField>(r: &[F]) -> Rc<DenseMultilinearExtension<F>> {
let start = start_timer!(|| "zero check naive build eq_x_r");
// we build eq(x,r) from its evaluations
// we want to evaluate eq(x,r) over x \in {0, 1}^num_vars
// for example, with num_vars = 4, x is a binary vector of 4, then
// 0 0 0 0 -> (1-r0) * (1-r1) * (1-r2) * (1-r3)
// 1 0 0 0 -> r0 * (1-r1) * (1-r2) * (1-r3)
// 0 1 0 0 -> (1-r0) * r1 * (1-r2) * (1-r3)
// 1 1 0 0 -> r0 * r1 * (1-r2) * (1-r3)
// ....
// 1 1 1 1 -> r0 * r1 * r2 * r3
// we will need 2^num_var evaluations
// First, we build array for {1 - r_i}
let one_minus_r: Vec<F> = r.iter().map(|ri| F::one() - ri).collect();
let num_var = r.len();
let mut eval = vec![];
for i in 0..1 << num_var {
let mut current_eval = F::one();
let bit_sequence = bit_decompose(i, num_var);
for (&bit, (ri, one_minus_ri)) in
bit_sequence.iter().zip(r.iter().zip(one_minus_r.iter()))
{
current_eval *= if bit { *ri } else { *one_minus_ri };
}
eval.push(current_eval);
}
let mle = DenseMultilinearExtension::from_evaluations_vec(num_var, eval);
let res = Rc::new(mle);
end_timer!(start);
res
}
fn bit_decompose(input: u64, num_var: usize) -> Vec<bool> {
let mut res = Vec::with_capacity(num_var);
let mut i = input;
for _ in 0..num_var {
res.push(i & 1 == 1);
i >>= 1;
}
res
}
}

Loading…
Cancel
Save