Browse Source

multi-commiting/opening (#34)

main
zhenfei 2 years ago
committed by GitHub
parent
commit
d41a0cf623
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 1049 additions and 34 deletions
  1. +6
    -1
      pcs/Cargo.toml
  2. +1
    -1
      pcs/benches/bench.rs
  3. +380
    -22
      pcs/src/commit.rs
  4. +12
    -2
      pcs/src/errors.rs
  5. +33
    -1
      pcs/src/lib.rs
  6. +1
    -0
      pcs/src/param.rs
  7. +610
    -0
      pcs/src/util.rs
  8. +2
    -0
      poly-iop/src/lib.rs
  9. +3
    -6
      poly-iop/src/transcript.rs
  10. +1
    -1
      poly-iop/src/utils.rs

+ 6
- 1
pcs/Cargo.toml

@ -17,6 +17,9 @@ ark-bls12-381 = { version = "0.3.0", default-features = false, features = [ "cur
displaydoc = { version = "0.2.3", default-features = false }
poly-iop = { path = "../poly-iop" }
# Benchmarks
[[bench]]
name = "pcs-benches"
@ -31,7 +34,9 @@ parallel = [
"ark-ff/parallel",
"ark-poly/parallel",
"ark-ec/parallel",
"poly-iop/parallel"
]
print-trace = [
"ark-std/print-trace"
"ark-std/print-trace",
"poly-iop/print-trace"
]

+ 1
- 1
pcs/benches/bench.rs

@ -65,7 +65,7 @@ fn bench_pcs() -> Result<(), PCSErrors> {
{
let start = Instant::now();
for _ in 0..repetition {
assert!(KZGMultilinearPC::verify(&vk, &com, &point, value, &proof)?);
assert!(KZGMultilinearPC::verify(&vk, &com, &point, &value, &proof)?);
}
println!(
"KZG verify for {} variables: {} ns",

+ 380
- 22
pcs/src/commit.rs

@ -1,16 +1,17 @@
use crate::{
util::{build_l, compute_w_circ_l, merge_polynomials},
KZGMultilinearPC, MultilinearCommitmentScheme, PCSErrors, ProverParam, UniversalParams,
VerifierParam,
};
use ark_ec::{
msm::{FixedBaseMSM, VariableBaseMSM},
AffineCurve, PairingEngine, ProjectiveCurve,
};
use ark_ff::PrimeField;
use ark_poly::MultilinearExtension;
use ark_poly::{univariate::DensePolynomial, MultilinearExtension, Polynomial, UVPolynomial};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize, Read, SerializationError, Write};
use ark_std::{end_timer, rand::RngCore, start_timer, vec::Vec, One, Zero};
use crate::{
KZGMultilinearPC, MultilinearCommitmentScheme, PCSErrors, ProverParam, UniversalParams,
VerifierParam,
};
use ark_std::{end_timer, log2, rand::RngCore, start_timer, vec::Vec, One, Zero};
use poly_iop::IOPTranscript;
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
/// commitment
@ -28,12 +29,30 @@ pub struct Proof {
pub proofs: Vec<E::G1Affine>,
}
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
/// proof of batch opening
pub struct BatchProof<E: PairingEngine> {
/// The actual proof
pub proof: Proof<E>,
/// The value which is `w` evaluated at `p:= l(r)`, where
/// - `w` is the merged MLE
/// - `l` is the list of univariate polys that goes through all points
/// - `r` is sampled from the transcript.
pub value: E::Fr,
/// Commitment to q(x)
// This is currently set to the entire coefficient list of q(x)
// TODO: replace me with a KZG commit
pub q_x_com: Vec<E::Fr>,
}
impl<E: PairingEngine> MultilinearCommitmentScheme<E> for KZGMultilinearPC<E> {
type ProverParam = ProverParam<E>;
type VerifierParam = VerifierParam<E>;
type SRS = UniversalParams<E>;
type Commitment = Commitment<E>;
type Proof = Proof<E>;
type Transcript = IOPTranscript<E::Fr>;
type BatchProof = BatchProof<E>;
/// Generate SRS from RNG.
/// WARNING: THIS FUNCTION IS FOR TESTING PURPOSE ONLY.
@ -71,12 +90,42 @@ impl MultilinearCommitmentScheme for KZGMultilinearPC {
Ok(Commitment { nv, g_product })
}
/// Generate a commitment for a list of polynomials.
///
/// This function takes `2^(num_vars + log(polys.len())` number of scalar
/// multiplications over G1.
fn multi_commit(
prover_param: &Self::ProverParam,
polys: &[impl MultilinearExtension<E::Fr>],
) -> Result<Self::Commitment, PCSErrors> {
let commit_timer = start_timer!(|| "multi commit");
let poly = merge_polynomials(polys)?;
let scalars: Vec<_> = poly
.to_evaluations()
.iter()
.map(|x| x.into_repr())
.collect();
let g_product = VariableBaseMSM::multi_scalar_mul(
&prover_param.powers_of_g[0].evals,
scalars.as_slice(),
)
.into_affine();
end_timer!(commit_timer);
Ok(Commitment {
nv: poly.num_vars,
g_product,
})
}
/// On input a polynomial `p` and a point `point`, outputs a proof for the
/// same. This function does not need to take the evaluation value as an
/// input.
///
/// This function takes 2^{num_var +1} number of scalar multiplications over
/// G2:
/// G1:
/// - it proceeds with `num_var` number of rounds,
/// - at round i, we compute an MSM for `2^{num_var - i + 1}` number of G2
/// elements.
@ -136,6 +185,117 @@ impl MultilinearCommitmentScheme for KZGMultilinearPC {
Ok(Proof { proofs })
}
/// Input
/// - the prover parameters,
/// - a list of MLEs,
/// - and a same number of points,
/// - and a transcript,
/// compute a multi-opening for all the polynomials.
///
/// For simplicity, this API requires each MLE to have only one point. If
/// the caller wish to use more than one points per MLE, it should be
/// handled at the caller layer.
///
/// Returns an error if the lengths do not match.
///
/// Returns:
/// - the proof,
/// - q(x), which is a univariate polynomial `w circ l` where `w` is the
/// merged MLE, and `l` is a list of polynomials that go through all the
/// points. TODO: change this field to a commitment to `q(x)`
/// - and a value which is `w` evaluated at `p:= l(r)` from some `r` from
/// the transcript.
///
/// Steps:
/// 1. build `l(points)` which is a list of univariate polynomials that goes
/// through the points
/// 2. build MLE `w` which is the merge of all MLEs.
/// 3. build `q(x)` which is a univariate polynomial `W circ l`
/// 4. output `q(x)`' and put it into transcript
/// 5. sample `r` from transcript
/// 6. get a point `p := l(r)`
/// 7. output an opening of `w` over point `p`
/// 8. output `w(p)`
fn multi_open(
prover_param: &Self::ProverParam,
polynomials: &[impl MultilinearExtension<E::Fr>],
points: &[&[E::Fr]],
transcript: &mut IOPTranscript<E::Fr>,
) -> Result<Self::BatchProof, PCSErrors> {
let open_timer = start_timer!(|| "multi open");
if points.len() != polynomials.len() {
return Err(PCSErrors::InvalidParameters(
"polynomial length does not match point length".to_string(),
));
}
let num_var = polynomials[0].num_vars();
for poly in polynomials.iter().skip(1) {
if poly.num_vars() != num_var {
return Err(PCSErrors::InvalidParameters(
"polynomials do not have same num_vars".to_string(),
));
}
}
for &point in points.iter() {
if point.len() != num_var {
return Err(PCSErrors::InvalidParameters(
"points do not have same num_vars".to_string(),
));
}
}
// 1. build `l(points)` which is a list of univariate polynomials that goes
// through the points
let uni_polys = build_l(num_var, points)?;
// 2. build MLE `w` which is the merge of all MLEs.
let merge_poly = merge_polynomials(polynomials)?;
// 3. build `q(x)` which is a univariate polynomial `W circ l`
let q_x = compute_w_circ_l(&merge_poly, &uni_polys)?;
// 4. output `q(x)`' and put it into transcript
//
// TODO: use KZG commit for q(x)
// TODO: unwrap
q_x.coeffs
.iter()
.for_each(|x| transcript.append_field_element(b"q(x)", x).unwrap());
// 5. sample `r` from transcript
let r = transcript.get_and_append_challenge(b"r")?;
// 6. get a point `p := l(r)`
let point: Vec<E::Fr> = uni_polys
.iter()
.rev()
.map(|poly| poly.evaluate(&r))
.collect();
// 7. output an opening of `w` over point `p`
let opening = Self::open(prover_param, &merge_poly, &point)?;
// 8. output value that is `w` evaluated at `p` (which should match `q(r)`)
let value = merge_poly.evaluate(&point).unwrap();
let value2 = q_x.evaluate(&r);
if value != value2 {
return Err(PCSErrors::InvalidProver(
"Q(r) does not match W(l(r))".to_string(),
));
}
end_timer!(open_timer);
Ok(Self::BatchProof {
proof: opening,
q_x_com: q_x.coeffs,
value,
})
}
/// Verifies that `value` is the evaluation at `x` of the polynomial
/// committed inside `comm`.
///
@ -146,7 +306,7 @@ impl MultilinearCommitmentScheme for KZGMultilinearPC {
verifier_param: &Self::VerifierParam,
commitment: &Self::Commitment,
point: &[E::Fr],
value: E::Fr,
value: &E::Fr,
proof: &Self::Proof,
) -> Result<bool, PCSErrors> {
let verify_timer = start_timer!(|| "verify");
@ -185,7 +345,7 @@ impl MultilinearCommitmentScheme for KZGMultilinearPC {
pairings.push((
E::G1Prepared::from(
(verifier_param.g.mul(value) - commitment.g_product.into_projective())
(verifier_param.g.mul(*value) - commitment.g_product.into_projective())
.into_affine(),
),
E::G2Prepared::from(verifier_param.h),
@ -197,19 +357,98 @@ impl MultilinearCommitmentScheme for KZGMultilinearPC {
end_timer!(verify_timer);
Ok(res)
}
/// Verifies that `value` is the evaluation at `x_i` of the polynomial
/// `poly_i` committed inside `comm`.
/// steps:
///
/// 1. put `q(x)`'s evaluations over `(1, omega,...)` into transcript
/// 2. sample `r` from transcript
/// 3. check `q(r) == value`
/// 4. build `l(points)` which is a list of univariate polynomials that goes
/// through the points
/// 5. get a point `p := l(r)`
/// 6. verifies `p` is verifies against proof
fn batch_verify(
verifier_param: &Self::VerifierParam,
multi_commitment: &Self::Commitment,
points: &[&[E::Fr]],
batch_proof: &Self::BatchProof,
transcript: &mut IOPTranscript<E::Fr>,
) -> Result<bool, PCSErrors> {
let verify_timer = start_timer!(|| "batch verify");
let num_var = points[0].len();
for &point in points.iter().skip(1) {
if point.len() != num_var {
return Err(PCSErrors::InvalidParameters(format!(
"points do not have same num_vars ({} vs {})",
point.len(),
num_var,
)));
}
}
if num_var + log2(points.len()) as usize != multi_commitment.nv {
return Err(PCSErrors::InvalidParameters(format!(
"points and multi_commitment do not have same num_vars ({} vs {})",
num_var + log2(points.len()) as usize,
num_var,
)));
}
// TODO: verify commitment of `q(x)` instead of receiving full `q(x)`
// 1. put `q(x)`'s evaluations over `(1, omega,...)` into transcript
// TODO: unwrap
batch_proof
.q_x_com
.iter()
.for_each(|x| transcript.append_field_element(b"q(x)", x).unwrap());
// 2. sample `r` from transcript
let r = transcript.get_and_append_challenge(b"r")?;
// 3. check `q(r) == value`
let q_x = DensePolynomial::from_coefficients_slice(&batch_proof.q_x_com);
let q_r = q_x.evaluate(&r);
if q_r != batch_proof.value {
return Ok(false);
}
// 4. build `l(points)` which is a list of univariate polynomials that goes
// through the points
let uni_polys = build_l(num_var, points)?;
// 5. get a point `p := l(r)`
let point: Vec<E::Fr> = uni_polys.iter().rev().map(|x| x.evaluate(&r)).collect();
// 6. verifies `p` is verifies against proof
let res = Self::verify(
verifier_param,
multi_commitment,
&point,
&batch_proof.value,
&batch_proof.proof,
);
end_timer!(verify_timer);
res
}
}
#[cfg(test)]
mod tests {
use crate::util::get_batched_nv;
use super::*;
use ark_bls12_381::Bls12_381;
use ark_ec::PairingEngine;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension, SparseMultilinearExtension};
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_std::{rand::RngCore, test_rng, vec::Vec, UniformRand};
type E = Bls12_381;
type Fr = <E as PairingEngine>::Fr;
fn test_kzg_mlpc_helper<R: RngCore>(
fn test_single_helper<R: RngCore>(
uni_params: &UniversalParams<E>,
poly: &impl MultilinearExtension<Fr>,
rng: &mut R,
@ -222,33 +461,152 @@ mod tests {
let proof = KZGMultilinearPC::open(&ck, poly, &point)?;
let value = poly.evaluate(&point).unwrap();
assert!(KZGMultilinearPC::verify(&vk, &com, &point, value, &proof)?);
assert!(KZGMultilinearPC::verify(&vk, &com, &point, &value, &proof)?);
let value = Fr::rand(rng);
assert!(!KZGMultilinearPC::verify(&vk, &com, &point, value, &proof)?);
assert!(!KZGMultilinearPC::verify(
&vk, &com, &point, &value, &proof
)?);
Ok(())
}
#[test]
fn setup_commit_verify_correct_polynomials() -> Result<(), PCSErrors> {
fn test_single_commit() -> Result<(), PCSErrors> {
let mut rng = test_rng();
let uni_params = KZGMultilinearPC::<E>::setup(&mut rng, 10)?;
// normal polynomials
let poly1 = DenseMultilinearExtension::rand(8, &mut rng);
test_kzg_mlpc_helper(&uni_params, &poly1, &mut rng)?;
test_single_helper(&uni_params, &poly1, &mut rng)?;
let poly2 = SparseMultilinearExtension::rand_with_config(9, 1 << 5, &mut rng);
test_kzg_mlpc_helper(&uni_params, &poly2, &mut rng)?;
// single-variate polynomials
let poly2 = DenseMultilinearExtension::rand(1, &mut rng);
test_single_helper(&uni_params, &poly2, &mut rng)?;
Ok(())
}
fn test_multi_commit_helper<R: RngCore>(
uni_params: &UniversalParams<E>,
polys: &[impl MultilinearExtension<Fr>],
rng: &mut R,
) -> Result<(), PCSErrors> {
let mut transcript = IOPTranscript::new(b"test");
let nv = get_batched_nv(polys[0].num_vars(), polys.len());
let (ck, vk) = uni_params.trim(nv)?;
let mut points = Vec::new();
for poly in polys.iter() {
let point = (0..poly.num_vars())
.map(|_| Fr::rand(rng))
.collect::<Vec<Fr>>();
points.push(point);
}
let points_ref: Vec<&[Fr]> = points.iter().map(|x| x.as_ref()).collect();
let com = KZGMultilinearPC::multi_commit(&ck, polys)?;
let batch_proof = KZGMultilinearPC::multi_open(&ck, polys, &points_ref, &mut transcript)?;
// good path
let mut transcript = IOPTranscript::new(b"test");
assert!(KZGMultilinearPC::batch_verify(
&vk,
&com,
&points_ref,
&batch_proof,
&mut transcript
)?);
// bad commitment
assert!(KZGMultilinearPC::batch_verify(
&vk,
&Commitment {
nv: 0,
g_product: <E as PairingEngine>::G1Affine::default()
},
&points_ref,
&batch_proof,
&mut transcript
)
.is_err());
// bad points
let points_ref: Vec<&[Fr]> = points.iter().skip(1).map(|x| x.as_ref()).collect();
assert!(KZGMultilinearPC::batch_verify(
&vk,
&com,
&points_ref,
&batch_proof,
&mut transcript
)
.is_err());
// bad proof
assert!(KZGMultilinearPC::batch_verify(
&vk,
&com,
&points_ref,
&BatchProof {
proof: Proof { proofs: Vec::new() },
value: batch_proof.value,
q_x_com: batch_proof.q_x_com.clone()
},
&mut transcript
)
.is_err());
// bad value
assert!(KZGMultilinearPC::batch_verify(
&vk,
&com,
&points_ref,
&BatchProof {
proof: batch_proof.proof.clone(),
value: Fr::one(),
q_x_com: batch_proof.q_x_com
},
&mut transcript
)
.is_err());
// bad q(x) commit
assert!(KZGMultilinearPC::batch_verify(
&vk,
&com,
&points_ref,
&BatchProof {
proof: batch_proof.proof,
value: batch_proof.value,
q_x_com: Vec::new()
},
&mut transcript
)
.is_err());
Ok(())
}
#[test]
fn test_multi_commit() -> Result<(), PCSErrors> {
let mut rng = test_rng();
let uni_params = KZGMultilinearPC::<E>::setup(&mut rng, 15)?;
// normal polynomials
let polys1: Vec<_> = (0..2)
.map(|_| DenseMultilinearExtension::rand(4, &mut rng))
.collect();
test_multi_commit_helper(&uni_params, &polys1, &mut rng)?;
// single-variate polynomials
let poly3 = DenseMultilinearExtension::rand(1, &mut rng);
test_kzg_mlpc_helper(&uni_params, &poly3, &mut rng)?;
let polys1: Vec<_> = (0..5)
.map(|_| DenseMultilinearExtension::rand(1, &mut rng))
.collect();
test_multi_commit_helper(&uni_params, &polys1, &mut rng)?;
let poly4 = SparseMultilinearExtension::rand_with_config(1, 1 << 1, &mut rng);
test_kzg_mlpc_helper(&uni_params, &poly4, &mut rng)?;
Ok(())
}

+ 12
- 2
pcs/src/errors.rs

@ -1,7 +1,9 @@
//! Error module.
use ark_serialize::SerializationError;
use ark_std::string::String;
use displaydoc::Display;
use poly_iop::PolyIOPErrors;
/// A `enum` specifying the possible failure modes of the PCS.
#[derive(Display, Debug)]
@ -15,11 +17,19 @@ pub enum PCSErrors {
/// Invalid parameters: {0}
InvalidParameters(String),
/// An error during (de)serialization: {0}
SerializationError(ark_serialize::SerializationError),
SerializationError(SerializationError),
/// PolyIOP error {0}
PolyIOPErrors(PolyIOPErrors),
}
impl From<ark_serialize::SerializationError> for PCSErrors {
impl From<SerializationError> for PCSErrors {
fn from(e: ark_serialize::SerializationError) -> Self {
Self::SerializationError(e)
}
}
impl From<PolyIOPErrors> for PCSErrors {
fn from(e: PolyIOPErrors) -> Self {
Self::PolyIOPErrors(e)
}
}

+ 33
- 1
pcs/src/lib.rs

@ -1,10 +1,12 @@
mod commit;
mod errors;
mod param;
mod util;
use ark_ec::PairingEngine;
use ark_poly::MultilinearExtension;
use ark_std::rand::RngCore;
use poly_iop::IOPTranscript;
use std::marker::PhantomData;
pub use errors::PCSErrors;
@ -12,6 +14,7 @@ pub use param::{ProverParam, UniversalParams, VerifierParam};
/// KZG Polynomial Commitment Scheme on multilinear extensions.
pub struct KZGMultilinearPC<E: PairingEngine> {
#[doc(hidden)]
phantom: PhantomData<E>,
}
@ -21,6 +24,8 @@ pub trait MultilinearCommitmentScheme {
type SRS;
type Commitment;
type Proof;
type BatchProof;
type Transcript;
/// Generate SRS from RNG.
/// WARNING: THIS FUNCTION IS FOR TESTING PURPOSE ONLY.
@ -33,6 +38,12 @@ pub trait MultilinearCommitmentScheme {
poly: &impl MultilinearExtension<E::Fr>,
) -> Result<Self::Commitment, PCSErrors>;
/// Generate a commitment for a list of polynomials
fn multi_commit(
prover_param: &Self::ProverParam,
polys: &[impl MultilinearExtension<E::Fr>],
) -> Result<Self::Commitment, PCSErrors>;
/// On input a polynomial `p` and a point `point`, outputs a proof for the
/// same.
fn open(
@ -41,13 +52,34 @@ pub trait MultilinearCommitmentScheme {
point: &[E::Fr],
) -> Result<Self::Proof, PCSErrors>;
/// Input a list of MLEs, and a same number of points, and a transcript,
/// compute a multi-opening for all the polynomials.
#[allow(clippy::type_complexity)]
// TODO: remove after we KZG-commit q(x)
fn multi_open(
prover_param: &Self::ProverParam,
polynomials: &[impl MultilinearExtension<E::Fr>],
point: &[&[E::Fr]],
transcript: &mut Self::Transcript,
) -> Result<Self::BatchProof, PCSErrors>;
/// Verifies that `value` is the evaluation at `x` of the polynomial
/// committed inside `comm`.
fn verify(
verifier_param: &Self::VerifierParam,
commitment: &Self::Commitment,
point: &[E::Fr],
value: E::Fr,
value: &E::Fr,
proof: &Self::Proof,
) -> Result<bool, PCSErrors>;
/// Verifies that `value_i` is the evaluation at `x_i` of the polynomial
/// `poly_i` committed inside `comm`.
fn batch_verify(
verifier_param: &Self::VerifierParam,
multi_commitment: &Self::Commitment,
points: &[&[E::Fr]],
batch_proof: &Self::BatchProof,
transcript: &mut IOPTranscript<E::Fr>,
) -> Result<bool, PCSErrors>;
}

+ 1
- 0
pcs/src/param.rs

@ -10,6 +10,7 @@ use ark_std::{end_timer, rand::RngCore, start_timer, vec::Vec, UniformRand};
/// Evaluations over {0,1}^n for G1 or G2
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
pub struct Evaluations<C: AffineCurve> {
/// The evaluations.
pub evals: Vec<C>,
}

+ 610
- 0
pcs/src/util.rs

@ -0,0 +1,610 @@
//! Useful utilities for KZG PCS
use crate::PCSErrors;
use ark_ff::PrimeField;
use ark_poly::{
univariate::DensePolynomial, DenseMultilinearExtension, EvaluationDomain, Evaluations,
MultilinearExtension, Polynomial, Radix2EvaluationDomain,
};
use ark_std::{end_timer, log2, start_timer};
use poly_iop::bit_decompose;
/// Compute W \circ l.
///
/// Given an MLE W, and a list of univariate polynomials l, generate the
/// univariate polynomial that composes W with l.
///
/// Returns an error if l's length does not matches number of variables in W.
pub(crate) fn compute_w_circ_l<F: PrimeField>(
w: &DenseMultilinearExtension<F>,
l: &[DensePolynomial<F>],
) -> Result<DensePolynomial<F>, PCSErrors> {
let timer = start_timer!(|| "compute W \\circ l");
if w.num_vars != l.len() {
return Err(PCSErrors::InvalidParameters(format!(
"l's length ({}) does not match num_variables ({})",
l.len(),
w.num_vars(),
)));
}
let mut res_eval: Vec<F> = vec![];
// TODO: consider to pass this in from caller
// uni_degree is (product of each prefix's) + (2 * MLEs)
// = (l.len() - (num_vars - log(l.len())) + 2) * l[0].degree
let uni_degree = (l.len() - w.num_vars + log2(l.len()) as usize + 2) * l[0].degree();
let domain = match Radix2EvaluationDomain::<F>::new(uni_degree) {
Some(p) => p,
None => {
return Err(PCSErrors::InvalidParameters(
"failed to build radix 2 domain".to_string(),
))
},
};
for point in domain.elements() {
// we reverse the order here because the coefficient vec are stored in
// bit-reversed order
let l_eval: Vec<F> = l.iter().rev().map(|x| x.evaluate(&point)).collect();
res_eval.push(w.evaluate(l_eval.as_ref()).unwrap())
}
let evaluation = Evaluations::from_vec_and_domain(res_eval, domain);
let res = evaluation.interpolate();
end_timer!(timer);
Ok(res)
}
/// Return the number of variables that one need for an MLE to
/// batch the list of MLEs
#[inline]
pub(crate) fn get_batched_nv(num_var: usize, polynomials_len: usize) -> usize {
num_var + log2(polynomials_len) as usize
}
/// merge a set of polynomials. Returns an error if the
/// polynomials do not share a same number of nvs.
pub(crate) fn merge_polynomials<F: PrimeField>(
polynomials: &[impl MultilinearExtension<F>],
) -> Result<DenseMultilinearExtension<F>, PCSErrors> {
let nv = polynomials[0].num_vars();
for poly in polynomials.iter() {
if nv != poly.num_vars() {
return Err(PCSErrors::InvalidParameters(
"num_vars do not match for polynomials".to_string(),
));
}
}
let merged_nv = get_batched_nv(nv, polynomials.len());
let mut scalars = vec![];
for poly in polynomials.iter() {
scalars.extend_from_slice(poly.to_evaluations().as_slice());
}
scalars.extend_from_slice(vec![F::zero(); (1 << merged_nv) - scalars.len()].as_ref());
Ok(DenseMultilinearExtension::from_evaluations_vec(
merged_nv, scalars,
))
}
/// Given a list of points, build `l(points)` which is a list of univariate
/// polynomials that goes through the points
pub(crate) fn build_l<F: PrimeField>(
num_var: usize,
points: &[&[F]],
) -> Result<Vec<DensePolynomial<F>>, PCSErrors> {
let prefix_len = log2(points.len()) as usize;
let uni_degree = points.len();
let small_domain = match Radix2EvaluationDomain::<F>::new(uni_degree) {
Some(p) => p,
None => {
return Err(PCSErrors::InvalidParameters(
"failed to build radix 2 domain".to_string(),
))
},
};
// The following code print out the roots for testing
// println!("domain root0: {}", small_domain.element(0));
// println!("domain root1: {}", small_domain.element(1));
// println!("domain root2: {}", small_domain.element(2));
// println!("domain root3: {}", small_domain.element(3));
let mut uni_polys = Vec::new();
// 1.1 build the indexes and the univariate polys that go through the indexes
let indexes: Vec<Vec<bool>> = (0..points.len())
.map(|x| bit_decompose(x as u64, prefix_len))
.collect();
for i in 0..prefix_len {
let eval: Vec<F> = indexes
.iter()
.map(|x| F::from(x[prefix_len - i - 1]))
.collect();
uni_polys.push(Evaluations::from_vec_and_domain(eval, small_domain).interpolate());
}
// 1.2 build the actual univariate polys that go through the points
for i in 0..num_var {
let mut eval: Vec<F> = points.iter().map(|x| x[i]).collect();
eval.extend_from_slice(vec![F::zero(); small_domain.size as usize - eval.len()].as_slice());
uni_polys.push(Evaluations::from_vec_and_domain(eval, small_domain).interpolate())
}
Ok(uni_polys)
}
#[cfg(test)]
mod test {
use super::*;
use ark_bls12_381::Fr;
use ark_ff::field_new;
use ark_poly::UVPolynomial;
use ark_std::{One, Zero};
#[test]
fn test_w_circ_l() -> Result<(), PCSErrors> {
test_w_circ_l_helper::<Fr>()
}
fn test_w_circ_l_helper<F: PrimeField>() -> Result<(), PCSErrors> {
{
// Example from page 53:
// W = 3x1x2 + 2x2 whose evaluations are
// 0, 0 |-> 0
// 0, 1 |-> 2
// 1, 0 |-> 0
// 1, 1 |-> 5
let w_eval = vec![F::zero(), F::from(2u64), F::zero(), F::from(5u64)];
let w = DenseMultilinearExtension::from_evaluations_vec(2, w_eval);
// l0 = t + 2
// l1 = -2t + 4
let l0 = DensePolynomial::from_coefficients_vec(vec![F::from(2u64), F::one()]);
let l1 = DensePolynomial::from_coefficients_vec(vec![F::from(4u64), -F::from(2u64)]);
// res = -6t^2 - 4t + 32
let res = compute_w_circ_l(&w, [l0, l1].as_ref())?;
let res_rec = DensePolynomial::from_coefficients_vec(vec![
F::from(32u64),
-F::from(4u64),
-F::from(6u64),
]);
assert_eq!(res, res_rec);
}
{
// A random example
// W = x1x2x3 - 2x1x2 + 3x2x3 - 4x1x3 + 5x1 - 6x2 + 7x3
// 0, 0, 0 |-> 0
// 0, 0, 1 |-> 7
// 0, 1, 0 |-> -6
// 0, 1, 1 |-> 4
// 1, 0, 0 |-> 5
// 1, 0, 1 |-> 8
// 1, 1, 0 |-> -3
// 1, 1, 1 |-> 4
let w_eval = vec![
F::zero(),
F::from(7u64),
-F::from(6u64),
F::from(4u64),
F::from(5u64),
F::from(8u64),
-F::from(3u64),
F::from(4u64),
];
let w = DenseMultilinearExtension::from_evaluations_vec(3, w_eval);
// l0 = t + 2
// l1 = 3t - 4
// l2 = -5t + 6
let l0 = DensePolynomial::from_coefficients_vec(vec![F::from(2u64), F::one()]);
let l1 = DensePolynomial::from_coefficients_vec(vec![-F::from(4u64), F::from(3u64)]);
let l2 = DensePolynomial::from_coefficients_vec(vec![F::from(6u64), -F::from(5u64)]);
let res = compute_w_circ_l(&w, [l0, l1, l2].as_ref())?;
// res = -15t^3 - 23t^2 + 130t - 76
let res_rec = DensePolynomial::from_coefficients_vec(vec![
-F::from(76u64),
F::from(130u64),
-F::from(23u64),
-F::from(15u64),
]);
assert_eq!(res, res_rec);
}
Ok(())
}
#[test]
fn test_merge_poly() -> Result<(), PCSErrors> {
test_merge_poly_helper::<Fr>()
}
fn test_merge_poly_helper<F: PrimeField>() -> Result<(), PCSErrors> {
// Example from page 53:
// W1 = 3x1x2 + 2x2 whose evaluations are
// 0, 0 |-> 0
// 0, 1 |-> 2
// 1, 0 |-> 0
// 1, 1 |-> 5
let w_eval = vec![F::zero(), F::from(2u64), F::zero(), F::from(5u64)];
let w1 = DenseMultilinearExtension::from_evaluations_vec(2, w_eval);
// W2 = x1x2 + x1 whose evaluations are
// 0, 0 |-> 0
// 0, 1 |-> 0
// 1, 0 |-> 1
// 1, 1 |-> 2
let w_eval = vec![F::zero(), F::zero(), F::from(1u64), F::from(2u64)];
let w2 = DenseMultilinearExtension::from_evaluations_vec(2, w_eval);
// W3 = x1 + x2 whose evaluations are
// 0, 0 |-> 0
// 0, 1 |-> 1
// 1, 0 |-> 1
// 1, 1 |-> 2
let w_eval = vec![F::zero(), F::one(), F::from(1u64), F::from(2u64)];
let w3 = DenseMultilinearExtension::from_evaluations_vec(2, w_eval);
{
// W = (3x1x2 + 2x2)(1-x0) + (x1x2 + x1)x0
// = -2x0x1x2 + x0x1 - 2x0x2 + 3x1x2 + 2x2
// with evaluation map
//
// x0 x1 x2
// 0, 0, 0 |-> 0
// 0, 0, 1 |-> 2
// 0, 1, 0 |-> 0
// 0, 1, 1 |-> 5
// 1, 0, 0 |-> 0
// 1, 0, 1 |-> 0
// 1, 1, 0 |-> 1
// 1, 1, 1 |-> 2
//
let w = merge_polynomials(&[w1.clone(), w2.clone()])?;
// w is [0,2,0,5,0,0,1,2]
let w_eval = vec![
F::zero(),
F::from(2u64),
F::zero(),
F::from(5u64),
F::zero(),
F::zero(),
F::from(1u64),
F::from(2u64),
];
let w_rec = DenseMultilinearExtension::from_evaluations_vec(3, w_eval);
assert_eq!(w, w_rec);
}
{
// W = (3x1x2 + 2x2) * (1-y1) * (1-y2)
// + (x1x2 + x1) * (1-y1) * y2
// + (x1 + x2) * y1 * (1-y2)
//
// with evaluation map
//
// y1 y2 x1 x2
// 0, 0, 0, 0 |-> 0
// 0, 0, 0, 1 |-> 2
// 0, 0, 1, 0 |-> 0
// 0, 0, 1, 1 |-> 5
// 0, 1, 0, 0 |-> 0
// 0, 1, 0, 1 |-> 0
// 0, 1, 1, 0 |-> 1
// 0, 1, 1, 1 |-> 2
// 1, 0, 0, 0 |-> 0
// 1, 0, 0, 1 |-> 1
// 1, 0, 1, 0 |-> 1
// 1, 0, 1, 1 |-> 2
// 1, 1, 0, 0 |-> 0
// 1, 1, 0, 1 |-> 0
// 1, 1, 1, 0 |-> 0
// 1, 1, 1, 1 |-> 0
//
let w = merge_polynomials(&[w1, w2, w3])?;
// w is [0,2,0,5,0,0,1,2, 0,1,1,2]
let w_eval = vec![
F::zero(),
F::from(2u64),
F::zero(),
F::from(5u64),
F::zero(),
F::zero(),
F::from(1u64),
F::from(2u64),
F::zero(),
F::one(),
F::from(1u64),
F::from(2u64),
F::zero(),
F::zero(),
F::zero(),
F::zero(),
];
let w_rec = DenseMultilinearExtension::from_evaluations_vec(4, w_eval);
assert_eq!(w, w_rec);
}
Ok(())
}
#[test]
fn test_build_l() -> Result<(), PCSErrors> {
test_build_l_helper::<Fr>()
}
fn test_build_l_helper<F: PrimeField>() -> Result<(), PCSErrors> {
// point 1 is [1, 2]
let point1 = [Fr::from(1u64), Fr::from(2u64)];
// point 2 is [3, 4]
let point2 = [Fr::from(3u64), Fr::from(4u64)];
// point 3 is [5, 6]
let point3 = [Fr::from(5u64), Fr::from(6u64)];
{
let l = build_l(2, &[&point1, &point2])?;
// roots: [1, -1]
// l0 = -1/2 * x + 1/2
// l1 = -x + 2
// l2 = -x + 3
let l0 = DensePolynomial::from_coefficients_vec(vec![
Fr::one() / Fr::from(2u64),
-Fr::one() / Fr::from(2u64),
]);
let l1 = DensePolynomial::from_coefficients_vec(vec![Fr::from(2u64), -Fr::one()]);
let l2 = DensePolynomial::from_coefficients_vec(vec![Fr::from(3u64), -Fr::one()]);
assert_eq!(l0, l[0], "l0 not equal");
assert_eq!(l1, l[1], "l1 not equal");
assert_eq!(l2, l[2], "l2 not equal");
}
{
let l = build_l(2, &[&point1, &point2, &point3])?;
// sage: q = 52435875175126190479447740508185965837690552500527637822603658699938581184513
// sage: P.<x> = PolynomialRing(Zmod(q))
// sage: root1 = 1
// sage: root2 = 0x8D51CCCE760304D0EC030002760300000001000000000000
// sage: root3 = -1
// sage: root4 = -root2
// Arkwork's code is a bit wired: it also interpolate (root4, 0)
// which returns a degree 3 polynomial, instead of degree 2
// ========================
// l0: [0, 0, 1]
// ========================
// sage: points = [(root1, 0), (root2, 0), (root3, 1), (root4, 0)]
// sage: P.lagrange_polynomial(points)
// 13108968793781547619861935127046491459422638125131909455650914674984645296128*x^3 +
// 39326906381344642859585805381139474378267914375395728366952744024953935888385*x^2 +
// 13108968793781547619861935127046491459422638125131909455650914674984645296128*x +
// 39326906381344642859585805381139474378267914375395728366952744024953935888385
let l0 = DensePolynomial::from_coefficients_vec(vec![
field_new!(
Fr,
"39326906381344642859585805381139474378267914375395728366952744024953935888385"
),
field_new!(
Fr,
"13108968793781547619861935127046491459422638125131909455650914674984645296128"
),
field_new!(
Fr,
"39326906381344642859585805381139474378267914375395728366952744024953935888385"
),
field_new!(
Fr,
"13108968793781547619861935127046491459422638125131909455650914674984645296128"
),
]);
// ========================
// l1: [0, 1, 0]
// ========================
// sage: points = [(root1, 0), (root2, 1), (root3, 0), (root4, 0)]
// sage: P.lagrange_polynomial(points)
// 866286206518413079694067382671935694567563117191340490752*x^3 +
// 13108968793781547619861935127046491459422638125131909455650914674984645296128*x^2 +
// 52435875175126190478581454301667552757996485117855702128036095582747240693761*x +
// 39326906381344642859585805381139474378267914375395728366952744024953935888385
let l1 = DensePolynomial::from_coefficients_vec(vec![
field_new!(
Fr,
"39326906381344642859585805381139474378267914375395728366952744024953935888385"
),
field_new!(
Fr,
"52435875175126190478581454301667552757996485117855702128036095582747240693761"
),
field_new!(
Fr,
"13108968793781547619861935127046491459422638125131909455650914674984645296128"
),
field_new!(
Fr,
"866286206518413079694067382671935694567563117191340490752"
),
]);
// ========================
// l2: [1, 3, 5]
// ========================
// sage: points = [(root1, 1), (root2, 3), (root3, 5), (root4, 0)]
// sage: P.lagrange_polynomial(points)
// 2598858619555239239082202148015807083702689351574021472255*x^3 +
// 13108968793781547619861935127046491459422638125131909455650914674984645296129*x^2 +
// 52435875175126190476848881888630726598608350352511830738900969348364559712256*x +
// 39326906381344642859585805381139474378267914375395728366952744024953935888387
let l2 = DensePolynomial::from_coefficients_vec(vec![
field_new!(
Fr,
"39326906381344642859585805381139474378267914375395728366952744024953935888387"
),
field_new!(
Fr,
"52435875175126190476848881888630726598608350352511830738900969348364559712256"
),
field_new!(
Fr,
"13108968793781547619861935127046491459422638125131909455650914674984645296129"
),
field_new!(
Fr,
"2598858619555239239082202148015807083702689351574021472255"
),
]);
// ========================
// l3: [2, 4, 6]
// ========================
// sage: points = [(root1, 2), (root2, 4), (root3, 6), (root4, 0)]
// sage: P.lagrange_polynomial(points)
// 3465144826073652318776269530687742778270252468765361963007*x^3 +
// x^2 +
// 52435875175126190475982595682112313518914282969839895044333406231173219221504*x +
// 3
let l3 = DensePolynomial::from_coefficients_vec(vec![
Fr::from(3u64),
field_new!(
Fr,
"52435875175126190475982595682112313518914282969839895044333406231173219221504"
),
Fr::one(),
field_new!(
Fr,
"3465144826073652318776269530687742778270252468765361963007"
),
]);
assert_eq!(l0, l[0], "l0 not equal");
assert_eq!(l1, l[1], "l1 not equal");
assert_eq!(l2, l[2], "l2 not equal");
assert_eq!(l3, l[3], "l3 not equal");
}
Ok(())
}
#[test]
fn test_qx() -> Result<(), PCSErrors> {
// Example from page 53:
// W1 = 3x1x2 + 2x2
let w_eval = vec![Fr::zero(), Fr::from(2u64), Fr::zero(), Fr::from(5u64)];
let w1 = DenseMultilinearExtension::from_evaluations_vec(2, w_eval);
// W2 = x1x2 + x1
let w_eval = vec![Fr::zero(), Fr::zero(), Fr::from(1u64), Fr::from(2u64)];
let w2 = DenseMultilinearExtension::from_evaluations_vec(2, w_eval);
// W3 = x1 + x2
let w_eval = vec![Fr::zero(), Fr::one(), Fr::from(1u64), Fr::from(2u64)];
let w3 = DenseMultilinearExtension::from_evaluations_vec(2, w_eval);
let r = Fr::from(42u64);
// point 1 is [1, 2]
let point1 = [Fr::from(1u64), Fr::from(2u64)];
// point 2 is [3, 4]
let point2 = [Fr::from(3u64), Fr::from(4u64)];
// point 3 is [5, 6]
let point3 = [Fr::from(5u64), Fr::from(6u64)];
{
// w = (3x1x2 + 2x2)(1-x0) + (x1x2 + x1)x0
// with evaluations: [0,2,0,5,0,0,1,2]
let w = merge_polynomials(&[w1.clone(), w2.clone()])?;
let l = build_l(2, &[&point1, &point2])?;
// sage: P.<x> = PolynomialRing(ZZ)
// sage: l0 = -1/2 * x + 1/2
// sage: l1 = -x + 2
// sage: l2 = -x + 3
// sage: w = (3 * l1 * l2 + 2 * l2) * (1-l0) + (l1 * l2 + l1) * l0
// sage: w
// x^3 - 7/2*x^2 - 7/2*x + 16
//
// q(x) = x^3 - 7/2*x^2 - 7/2*x + 16
let q_x = compute_w_circ_l(&w, &l)?;
let point: Vec<Fr> = l.iter().rev().map(|poly| poly.evaluate(&r)).collect();
assert_eq!(
q_x.evaluate(&r),
w.evaluate(&point).unwrap(),
"q(r) != w(l(r))"
);
}
{
// W = (3x1x2 + 2x2) * (1-y1) * (1-y2)
// + (x1x2 + x1) * (1-y1) * y2
// + (x1 + x2) * y1 * (1-y2)
let w = merge_polynomials(&[w1, w2, w3])?;
let l = build_l(2, &[&point1, &point2, &point3])?;
// l0 =
// 13108968793781547619861935127046491459422638125131909455650914674984645296128*x^3 +
// 39326906381344642859585805381139474378267914375395728366952744024953935888385*x^2 +
// 13108968793781547619861935127046491459422638125131909455650914674984645296128*x +
// 39326906381344642859585805381139474378267914375395728366952744024953935888385
//
// l1 =
// 866286206518413079694067382671935694567563117191340490752*x^3 +
// 13108968793781547619861935127046491459422638125131909455650914674984645296128*x^2 +
// 52435875175126190478581454301667552757996485117855702128036095582747240693761*x +
// 39326906381344642859585805381139474378267914375395728366952744024953935888385
//
// l2 =
// 2598858619555239239082202148015807083702689351574021472255*x^3 +
// 13108968793781547619861935127046491459422638125131909455650914674984645296129*x^2 +
// 52435875175126190476848881888630726598608350352511830738900969348364559712256*x +
// 39326906381344642859585805381139474378267914375395728366952744024953935888387
//
// l3 =
// 3465144826073652318776269530687742778270252468765361963007*x^3 +
// x^2 +
// 52435875175126190475982595682112313518914282969839895044333406231173219221504*x +
// 3
//
// q_x = (3*l2*l3 + 2*l3) * (1-l0) *(1-l1)
// + (l2*l3+l2)*(1-l0)*l1
// + (l2+l3)*l0*(1-l1)
// q_x(42) = 42675783400755005965526147011103024780845819057955866345013183657072368533932
let q_x = compute_w_circ_l(&w, &l)?;
let point: Vec<Fr> = vec![
l[3].evaluate(&r),
l[2].evaluate(&r),
l[1].evaluate(&r),
l[0].evaluate(&r),
];
assert_eq!(
q_x.evaluate(&r),
field_new!(
Fr,
"42675783400755005965526147011103024780845819057955866345013183657072368533932"
),
);
assert_eq!(
q_x.evaluate(&r),
w.evaluate(&point).unwrap(),
"q(r) != w(l(r))"
);
}
Ok(())
}
}

+ 2
- 0
poly-iop/src/lib.rs

@ -16,6 +16,8 @@ pub use perm_check::{
PermutationCheck,
};
pub use sum_check::SumCheck;
pub use transcript::IOPTranscript;
pub use utils::*;
pub use virtual_poly::{VPAuxInfo, VirtualPolynomial};
pub use zero_check::ZeroCheck;

+ 3
- 6
poly-iop/src/transcript.rs

@ -28,7 +28,7 @@ pub struct IOPTranscript {
impl<F: PrimeField> IOPTranscript<F> {
/// Create a new IOP transcript.
pub(crate) fn new(label: &'static [u8]) -> Self {
pub fn new(label: &'static [u8]) -> Self {
Self {
transcript: Transcript::new(label),
is_empty: true,
@ -59,7 +59,7 @@ impl IOPTranscript {
}
// Append the message to the transcript.
pub(crate) fn append_field_element(
pub fn append_field_element(
&mut self,
label: &'static [u8],
field_elem: &F,
@ -83,10 +83,7 @@ impl IOPTranscript {
//
// The output field element is statistical uniform as long
// as the field has a size less than 2^384.
pub(crate) fn get_and_append_challenge(
&mut self,
label: &'static [u8],
) -> Result<F, PolyIOPErrors> {
pub fn get_and_append_challenge(&mut self, label: &'static [u8]) -> Result<F, PolyIOPErrors> {
// we need to reject when transcript is empty
if self.is_empty {
return Err(PolyIOPErrors::InvalidTranscript(

+ 1
- 1
poly-iop/src/utils.rs

@ -13,7 +13,7 @@ macro_rules! to_bytes {
/// Decompose an integer into a binary vector in little endian.
#[allow(dead_code)]
pub(crate) fn bit_decompose(input: u64, num_var: usize) -> Vec<bool> {
pub fn bit_decompose(input: u64, num_var: usize) -> Vec<bool> {
let mut res = Vec::with_capacity(num_var);
let mut i = input;
for _ in 0..num_var {

Loading…
Cancel
Save