Browse Source

dynamic programming for eq(x,r) (#21)

main
zhenfei 2 years ago
committed by GitHub
parent
commit
e881d7fabf
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 108 additions and 33 deletions
  1. +108
    -33
      poly-iop/src/zero_check/mod.rs

+ 108
- 33
poly-iop/src/zero_check/mod.rs

@ -125,7 +125,7 @@ fn build_f_hat(
assert_eq!(poly.domain_info.num_variables, r.len()); assert_eq!(poly.domain_info.num_variables, r.len());
let eq_x_r = build_eq_x_r(r);
let eq_x_r = build_eq_x_r(r)?;
let mut res = poly.clone(); let mut res = poly.clone();
res.mul_by_mle(eq_x_r, F::one())?; res.mul_by_mle(eq_x_r, F::one())?;
@ -137,8 +137,8 @@ fn build_f_hat(
// eq(x,y) = \prod_i=1^num_var (x_i * y_i + (1-x_i)*(1-y_i)) // eq(x,y) = \prod_i=1^num_var (x_i * y_i + (1-x_i)*(1-y_i))
// over r, which is // over r, which is
// eq(x,y) = \prod_i=1^num_var (x_i * r_i + (1-x_i)*(1-r_i)) // eq(x,y) = \prod_i=1^num_var (x_i * r_i + (1-x_i)*(1-r_i))
fn build_eq_x_r<F: PrimeField>(r: &[F]) -> Rc<DenseMultilinearExtension<F>> {
let start = start_timer!(|| "zero check build build eq_x_r");
fn build_eq_x_r<F: PrimeField>(r: &[F]) -> Result<Rc<DenseMultilinearExtension<F>>, PolyIOPErrors> {
let start = start_timer!(|| "zero check build eq_x_r");
// we build eq(x,r) from its evaluations // we build eq(x,r) from its evaluations
// we want to evaluate eq(x,r) over x \in {0, 1}^num_vars // we want to evaluate eq(x,r) over x \in {0, 1}^num_vars
@ -151,49 +151,58 @@ fn build_eq_x_r(r: &[F]) -> Rc> {
// 1 1 1 1 -> r0 * r1 * r2 * r3 // 1 1 1 1 -> r0 * r1 * r2 * r3
// we will need 2^num_var evaluations // we will need 2^num_var evaluations
// First, we build array for {1 - r_i}
let one_minus_r: Vec<F> = r.iter().map(|ri| F::one() - ri).collect();
let mut eval = Vec::new();
build_eq_x_r_helper(r, &mut eval)?;
let num_var = r.len();
let mut eval = vec![];
// TODO: optimize the following code
// currently, a naive implementation requires num_var * 2^num_var
// field multiplications.
for i in 0..1 << num_var {
let mut current_eval = F::one();
let bit_sequence = bit_decompose(i, num_var);
for (&bit, (ri, one_minus_ri)) in bit_sequence.iter().zip(r.iter().zip(one_minus_r.iter()))
{
current_eval *= if bit { *ri } else { *one_minus_ri };
}
eval.push(current_eval);
}
let mle = DenseMultilinearExtension::from_evaluations_vec(num_var, eval);
let mle = DenseMultilinearExtension::from_evaluations_vec(r.len(), eval);
let res = Rc::new(mle); let res = Rc::new(mle);
end_timer!(start); end_timer!(start);
res
Ok(res)
} }
fn bit_decompose(input: u64, num_var: usize) -> Vec<bool> {
let mut res = Vec::with_capacity(num_var);
let mut i = input;
for _ in 0..num_var {
res.push(i & 1 == 1);
i >>= 1;
/// A helper function to build eq(x, r) recursively.
/// This function takes `r.len()` steps, and for each step it requires a maximum
/// `r.len()-1` multiplications.
fn build_eq_x_r_helper<F: PrimeField>(r: &[F], buf: &mut Vec<F>) -> Result<(), PolyIOPErrors> {
if r.is_empty() {
return Err(PolyIOPErrors::InvalidParameters(
"r length is 0".to_string(),
));
} else if r.len() == 1 {
// initializing the buffer with [1-r0, r0]
buf.push(F::one() - r[0]);
buf.push(r[0]);
} else {
build_eq_x_r_helper(&r[1..], buf)?;
// suppose in the previous step we have [b1, ..., b_k]
// for the current step we will need
// if x0 = 0: (1-r0) * [b_1, ..., b_k]
// if x0 = 1: r0 * [b1, ..., b_k]
let mut res = vec![];
for &e in buf.iter() {
let tmp = e * r[0];
res.push(e - tmp);
res.push(tmp);
}
*buf = res;
} }
res
Ok(())
} }
#[cfg(test)] #[cfg(test)]
mod test { mod test {
use super::ZeroCheck;
use super::{build_eq_x_r, ZeroCheck};
use crate::{errors::PolyIOPErrors, PolyIOP, VirtualPolynomial}; use crate::{errors::PolyIOPErrors, PolyIOP, VirtualPolynomial};
use ark_bls12_381::Fr; use ark_bls12_381::Fr;
use ark_std::test_rng;
use ark_ff::{PrimeField, UniformRand};
use ark_poly::DenseMultilinearExtension;
use ark_std::{end_timer, start_timer, test_rng};
use std::rc::Rc;
fn test_zerocheck( fn test_zerocheck(
nv: usize, nv: usize,
@ -260,8 +269,8 @@ mod test {
test_zerocheck(nv, num_multiplicands_range, num_products) test_zerocheck(nv, num_multiplicands_range, num_products)
} }
#[test]
#[test]
fn zero_polynomial_should_error() -> Result<(), PolyIOPErrors> { fn zero_polynomial_should_error() -> Result<(), PolyIOPErrors> {
let nv = 0; let nv = 0;
let num_multiplicands_range = (4, 13); let num_multiplicands_range = (4, 13);
@ -270,4 +279,70 @@ mod test {
assert!(test_zerocheck(nv, num_multiplicands_range, num_products).is_err()); assert!(test_zerocheck(nv, num_multiplicands_range, num_products).is_err());
Ok(()) Ok(())
} }
#[test]
fn test_eq_xr() {
let mut rng = test_rng();
for nv in 4..10 {
let r: Vec<Fr> = (0..nv).map(|_| Fr::rand(&mut rng)).collect();
let eq_x_r = build_eq_x_r(r.as_ref()).unwrap();
let eq_x_r2 = build_eq_x_r_for_test(r.as_ref());
assert_eq!(eq_x_r, eq_x_r2);
}
}
/// Naive method to build eq(x, r).
/// Only used for testing purpose.
// Evaluate
// eq(x,y) = \prod_i=1^num_var (x_i * y_i + (1-x_i)*(1-y_i))
// over r, which is
// eq(x,y) = \prod_i=1^num_var (x_i * r_i + (1-x_i)*(1-r_i))
fn build_eq_x_r_for_test<F: PrimeField>(r: &[F]) -> Rc<DenseMultilinearExtension<F>> {
let start = start_timer!(|| "zero check naive build eq_x_r");
// we build eq(x,r) from its evaluations
// we want to evaluate eq(x,r) over x \in {0, 1}^num_vars
// for example, with num_vars = 4, x is a binary vector of 4, then
// 0 0 0 0 -> (1-r0) * (1-r1) * (1-r2) * (1-r3)
// 1 0 0 0 -> r0 * (1-r1) * (1-r2) * (1-r3)
// 0 1 0 0 -> (1-r0) * r1 * (1-r2) * (1-r3)
// 1 1 0 0 -> r0 * r1 * (1-r2) * (1-r3)
// ....
// 1 1 1 1 -> r0 * r1 * r2 * r3
// we will need 2^num_var evaluations
// First, we build array for {1 - r_i}
let one_minus_r: Vec<F> = r.iter().map(|ri| F::one() - ri).collect();
let num_var = r.len();
let mut eval = vec![];
for i in 0..1 << num_var {
let mut current_eval = F::one();
let bit_sequence = bit_decompose(i, num_var);
for (&bit, (ri, one_minus_ri)) in
bit_sequence.iter().zip(r.iter().zip(one_minus_r.iter()))
{
current_eval *= if bit { *ri } else { *one_minus_ri };
}
eval.push(current_eval);
}
let mle = DenseMultilinearExtension::from_evaluations_vec(num_var, eval);
let res = Rc::new(mle);
end_timer!(start);
res
}
fn bit_decompose(input: u64, num_var: usize) -> Vec<bool> {
let mut res = Vec::with_capacity(num_var);
let mut i = input;
for _ in 0..num_var {
res.push(i & 1 == 1);
i >>= 1;
}
res
}
} }

Loading…
Cancel
Save