You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

253 lines
8.6 KiB

// Copyright (c) 2023 Espresso Systems (espressosys.com)
// This file is part of the HyperPlonk library.
// You should have received a copy of the MIT License
// along with the HyperPlonk library. If not, see <https://mit-license.org/>.
//! Implementing Structured Reference Strings for multilinear polynomial KZG
use crate::pcs::{
multilinear_kzg::util::{eq_eval, eq_extension},
prelude::PCSError,
StructuredReferenceString,
};
use ark_ec::{pairing::Pairing, scalar_mul::fixed_base::FixedBase, AffineRepr, CurveGroup};
use ark_ff::{Field, PrimeField, Zero};
use ark_poly::DenseMultilinearExtension;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::{
collections::LinkedList, end_timer, format, rand::Rng, start_timer, string::ToString, vec::Vec,
UniformRand,
};
use core::iter::FromIterator;
/// Evaluations over {0,1}^n for G1 or G2
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
pub struct Evaluations<C: AffineRepr> {
/// The evaluations.
pub evals: Vec<C>,
}
/// Universal Parameter
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
pub struct MultilinearUniversalParams<E: Pairing> {
/// prover parameters
pub prover_param: MultilinearProverParam<E>,
/// h^randomness: h^t1, h^t2, ..., **h^{t_nv}**
pub h_mask: Vec<E::G2Affine>,
}
/// Prover Parameters
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
pub struct MultilinearProverParam<E: Pairing> {
/// number of variables
pub num_vars: usize,
/// `pp_{0}`, `pp_{1}`, ...,pp_{nu_vars} defined
/// by XZZPD19 where pp_{nv-0}=g and
/// pp_{nv-i}=g^{eq((t_1,..t_i),(X_1,..X_i))}
pub powers_of_g: Vec<Evaluations<E::G1Affine>>,
/// generator for G1
pub g: E::G1Affine,
/// generator for G2
pub h: E::G2Affine,
}
/// Verifier Parameters
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
pub struct MultilinearVerifierParam<E: Pairing> {
/// number of variables
pub num_vars: usize,
/// generator of G1
pub g: E::G1Affine,
/// generator of G2
pub h: E::G2Affine,
/// h^randomness: h^t1, h^t2, ..., **h^{t_nv}**
pub h_mask: Vec<E::G2Affine>,
}
impl<E: Pairing> StructuredReferenceString<E> for MultilinearUniversalParams<E> {
type ProverParam = MultilinearProverParam<E>;
type VerifierParam = MultilinearVerifierParam<E>;
/// Extract the prover parameters from the public parameters.
fn extract_prover_param(&self, supported_num_vars: usize) -> Self::ProverParam {
let to_reduce = self.prover_param.num_vars - supported_num_vars;
Self::ProverParam {
powers_of_g: self.prover_param.powers_of_g[to_reduce..].to_vec(),
g: self.prover_param.g,
h: self.prover_param.h,
num_vars: supported_num_vars,
}
}
/// Extract the verifier parameters from the public parameters.
fn extract_verifier_param(&self, supported_num_vars: usize) -> Self::VerifierParam {
let to_reduce = self.prover_param.num_vars - supported_num_vars;
Self::VerifierParam {
num_vars: supported_num_vars,
g: self.prover_param.g,
h: self.prover_param.h,
h_mask: self.h_mask[to_reduce..].to_vec(),
}
}
/// Trim the universal parameters to specialize the public parameters
/// for multilinear polynomials to the given `supported_num_vars`, and
/// returns committer key and verifier key. `supported_num_vars` should
/// be in range `1..=params.num_vars`
fn trim(
&self,
supported_num_vars: usize,
) -> Result<(Self::ProverParam, Self::VerifierParam), PCSError> {
if supported_num_vars > self.prover_param.num_vars {
return Err(PCSError::InvalidParameters(format!(
"SRS does not support target number of vars {}",
supported_num_vars
)));
}
let to_reduce = self.prover_param.num_vars - supported_num_vars;
let ck = Self::ProverParam {
powers_of_g: self.prover_param.powers_of_g[to_reduce..].to_vec(),
g: self.prover_param.g,
h: self.prover_param.h,
num_vars: supported_num_vars,
};
let vk = Self::VerifierParam {
num_vars: supported_num_vars,
g: self.prover_param.g,
h: self.prover_param.h,
h_mask: self.h_mask[to_reduce..].to_vec(),
};
Ok((ck, vk))
}
/// Build SRS for testing.
/// WARNING: THIS FUNCTION IS FOR TESTING PURPOSE ONLY.
/// THE OUTPUT SRS SHOULD NOT BE USED IN PRODUCTION.
fn gen_srs_for_testing<R: Rng>(rng: &mut R, num_vars: usize) -> Result<Self, PCSError> {
if num_vars == 0 {
return Err(PCSError::InvalidParameters(
"constant polynomial not supported".to_string(),
));
}
let total_timer = start_timer!(|| "SRS generation");
let pp_generation_timer = start_timer!(|| "Prover Param generation");
let g = E::G1::rand(rng);
let h = E::G2::rand(rng);
let mut powers_of_g = Vec::new();
let t: Vec<_> = (0..num_vars).map(|_| E::ScalarField::rand(rng)).collect();
let scalar_bits = E::ScalarField::MODULUS_BIT_SIZE as usize;
let mut eq: LinkedList<DenseMultilinearExtension<E::ScalarField>> =
LinkedList::from_iter(eq_extension(&t).into_iter());
let mut eq_arr = LinkedList::new();
let mut base = eq.pop_back().unwrap().evaluations;
for i in (0..num_vars).rev() {
eq_arr.push_front(remove_dummy_variable(&base, i)?);
if i != 0 {
let mul = eq.pop_back().unwrap().evaluations;
base = base
.into_iter()
.zip(mul.into_iter())
.map(|(a, b)| a * b)
.collect();
}
}
let mut pp_powers = Vec::new();
let mut total_scalars = 0;
for i in 0..num_vars {
let eq = eq_arr.pop_front().unwrap();
let pp_k_powers = (0..(1 << (num_vars - i))).map(|x| eq[x]);
pp_powers.extend(pp_k_powers);
total_scalars += 1 << (num_vars - i);
}
let window_size = FixedBase::get_mul_window_size(total_scalars);
let g_table = FixedBase::get_window_table(scalar_bits, window_size, g);
let pp_g = E::G1::normalize_batch(&FixedBase::msm(
scalar_bits,
window_size,
&g_table,
&pp_powers,
));
let mut start = 0;
for i in 0..num_vars {
let size = 1 << (num_vars - i);
let pp_k_g = Evaluations {
evals: pp_g[start..(start + size)].to_vec(),
};
// check correctness of pp_k_g
let t_eval_0 = eq_eval(&vec![E::ScalarField::zero(); num_vars - i], &t[i..num_vars])?;
assert_eq!((g * t_eval_0).into(), pp_k_g.evals[0]);
powers_of_g.push(pp_k_g);
start += size;
}
let gg = Evaluations {
evals: [g.into_affine()].to_vec(),
};
powers_of_g.push(gg);
let pp = Self::ProverParam {
num_vars,
g: g.into_affine(),
h: h.into_affine(),
powers_of_g,
};
end_timer!(pp_generation_timer);
let vp_generation_timer = start_timer!(|| "VP generation");
let h_mask = {
let window_size = FixedBase::get_mul_window_size(num_vars);
let h_table = FixedBase::get_window_table(scalar_bits, window_size, h);
E::G2::normalize_batch(&FixedBase::msm(scalar_bits, window_size, &h_table, &t))
};
end_timer!(vp_generation_timer);
end_timer!(total_timer);
Ok(Self {
prover_param: pp,
h_mask,
})
}
}
/// fix first `pad` variables of `poly` represented in evaluation form to zero
fn remove_dummy_variable<F: Field>(poly: &[F], pad: usize) -> Result<Vec<F>, PCSError> {
if pad == 0 {
return Ok(poly.to_vec());
}
if !poly.len().is_power_of_two() {
return Err(PCSError::InvalidParameters(
"Size of polynomial should be power of two.".to_string(),
));
}
let nv = ark_std::log2(poly.len()) as usize - pad;
Ok((0..(1 << nv)).map(|x| poly[x << pad]).collect())
}
#[cfg(test)]
mod tests {
use super::*;
use ark_bls12_381::Bls12_381;
use ark_std::test_rng;
type E = Bls12_381;
#[test]
fn test_srs_gen() -> Result<(), PCSError> {
let mut rng = test_rng();
for nv in 4..10 {
let _ = MultilinearUniversalParams::<E>::gen_srs_for_testing(&mut rng, nv)?;
}
Ok(())
}
}