You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

367 lines
12 KiB

use crate::{errors::PolyIOPErrors, structs::DomainInfo};
use ark_ff::PrimeField;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_std::{
end_timer,
rand::{Rng, RngCore},
start_timer,
};
use std::{cmp::max, collections::HashMap, marker::PhantomData, ops::Add, rc::Rc};
#[rustfmt::skip]
/// A virtual polynomial is a sum of products of multilinear polynomials;
/// where the multilinear polynomials are stored via their multilinear
/// extensions: `(coefficient, DenseMultilinearExtension)`
///
/// * Number of products n = `polynomial.products.len()`,
/// * Number of multiplicands of ith product m_i =
/// `polynomial.products[i].1.len()`,
/// * Coefficient of ith product c_i = `polynomial.products[i].0`
///
/// The resulting polynomial is
///
/// $$\sum_{i=0}^{n} c_i \cdot \prod_{j=0}^{m_i} P_{ij} $$
///
/// Example:
/// f = c0 * f0 * f1 * f2 + c1 * f3 * f4
/// where f0 ... f4 are multilinear polynomials
///
/// - flattened_ml_extensions stores the multilinear extension representation of
/// f0, f1, f2, f3 and f4
/// - products is
/// \[
/// (c0, \[0, 1, 2\]),
/// (c1, \[3, 4\])
/// \]
/// - raw_pointers_lookup_table maps fi to i
///
#[derive(Clone, Debug, Default, PartialEq)]
pub struct VirtualPolynomial<F: PrimeField> {
/// Aux information about the multilinear polynomial
pub domain_info: DomainInfo<F>,
/// list of reference to products (as usize) of multilinear extension
pub products: Vec<(F, Vec<usize>)>,
/// Stores multilinear extensions in which product multiplicand can refer
/// to.
pub flattened_ml_extensions: Vec<Rc<DenseMultilinearExtension<F>>>,
/// Pointers to the above poly extensions
raw_pointers_lookup_table: HashMap<*const DenseMultilinearExtension<F>, usize>,
}
impl<F: PrimeField> Add for &VirtualPolynomial<F> {
type Output = VirtualPolynomial<F>;
fn add(self, other: &VirtualPolynomial<F>) -> Self::Output {
let start = start_timer!(|| "virtual poly add");
let mut res = self.clone();
for products in other.products.iter() {
let cur: Vec<Rc<DenseMultilinearExtension<F>>> = products
.1
.iter()
.map(|&x| other.flattened_ml_extensions[x].clone())
.collect();
res.add_mle_list(cur, products.0)
.expect("add product failed");
}
end_timer!(start);
res
}
}
impl<F: PrimeField> VirtualPolynomial<F> {
/// Returns an empty polynomial
pub fn new(num_variables: usize) -> Self {
VirtualPolynomial {
domain_info: DomainInfo {
max_degree: 0,
num_variables,
phantom: PhantomData::default(),
},
products: Vec::new(),
flattened_ml_extensions: Vec::new(),
raw_pointers_lookup_table: HashMap::new(),
}
}
/// Returns an new virtual polynomial from a MLE
pub fn new_from_mle(mle: Rc<DenseMultilinearExtension<F>>, coefficient: F) -> Self {
let mle_ptr: *const DenseMultilinearExtension<F> = Rc::as_ptr(&mle);
let mut hm = HashMap::new();
hm.insert(mle_ptr, 0);
VirtualPolynomial {
domain_info: DomainInfo {
// The max degree is the max degree of any individual variable
max_degree: 1,
num_variables: mle.num_vars,
phantom: PhantomData::default(),
},
products: vec![(coefficient, vec![0])],
flattened_ml_extensions: vec![mle],
raw_pointers_lookup_table: hm,
}
}
/// Add a list of multilinear extensions that is meant to be multiplied
/// together. The resulting polynomial will be multiplied by the scalar
/// `coefficient`.
pub fn add_mle_list(
&mut self,
mle_list: impl IntoIterator<Item = Rc<DenseMultilinearExtension<F>>>,
coefficient: F,
) -> Result<(), PolyIOPErrors> {
let mle_list: Vec<Rc<DenseMultilinearExtension<F>>> = mle_list.into_iter().collect();
let mut indexed_product = Vec::with_capacity(mle_list.len());
assert!(!mle_list.is_empty());
self.domain_info.max_degree = max(self.domain_info.max_degree, mle_list.len());
for mle in mle_list {
if mle.num_vars != self.domain_info.num_variables {
return Err(PolyIOPErrors::InvalidParameters(format!(
"product has a multiplicand with wrong number of variables {} vs {}",
mle.num_vars, self.domain_info.num_variables
)));
}
let mle_ptr: *const DenseMultilinearExtension<F> = Rc::as_ptr(&mle);
if let Some(index) = self.raw_pointers_lookup_table.get(&mle_ptr) {
indexed_product.push(*index)
} else {
let curr_index = self.flattened_ml_extensions.len();
self.flattened_ml_extensions.push(mle.clone());
self.raw_pointers_lookup_table.insert(mle_ptr, curr_index);
indexed_product.push(curr_index);
}
}
self.products.push((coefficient, indexed_product));
Ok(())
}
/// Multiple the current VirtualPolynomial by an MLE:
/// - add the MLE to the MLE list
/// - multiple each product by MLE and its coefficient
pub fn mul_by_mle(
&mut self,
mle: Rc<DenseMultilinearExtension<F>>,
coefficient: F,
) -> Result<(), PolyIOPErrors> {
let start = start_timer!(|| "mul by mle");
let mle_ptr: *const DenseMultilinearExtension<F> = Rc::as_ptr(&mle);
let mle_index = match self.raw_pointers_lookup_table.get(&mle_ptr) {
Some(&p) => p,
None => {
self.raw_pointers_lookup_table
.insert(mle_ptr, self.flattened_ml_extensions.len());
self.flattened_ml_extensions.push(mle);
self.flattened_ml_extensions.len() - 1
},
};
for (prod_coef, indices) in self.products.iter_mut() {
indices.push(mle_index);
*prod_coef *= coefficient;
}
self.domain_info.max_degree += 1;
end_timer!(start);
Ok(())
}
/// Evaluate the polynomial at point `point`
pub fn evaluate(&self, point: &[F]) -> Result<F, PolyIOPErrors> {
let start = start_timer!(|| "evaluation");
if self.domain_info.num_variables != point.len() {
return Err(PolyIOPErrors::InvalidParameters(format!(
"wrong number of variables {} vs {}",
self.domain_info.num_variables,
point.len()
)));
}
let evals: Vec<F> = self
.flattened_ml_extensions
.iter()
.map(|x| {
x.evaluate(point).unwrap() // safe unwrap here since we have
// already checked that num_var
// matches
})
.collect();
let res = self
.products
.iter()
.map(|(c, p)| *c * p.iter().map(|&i| evals[i]).product::<F>())
.sum();
end_timer!(start);
Ok(res)
}
/// Sample a random virtual polynomial, return the polynomial and its sum.
pub fn rand<R: RngCore>(
nv: usize,
num_multiplicands_range: (usize, usize),
num_products: usize,
rng: &mut R,
) -> Result<(Self, F), PolyIOPErrors> {
let start = start_timer!(|| "sample random virtual polynomial");
let mut sum = F::zero();
let mut poly = VirtualPolynomial::new(nv);
for _ in 0..num_products {
let num_multiplicands =
rng.gen_range(num_multiplicands_range.0..num_multiplicands_range.1);
let (product, product_sum) = random_mle_list(nv, num_multiplicands, rng);
let coefficient = F::rand(rng);
poly.add_mle_list(product.into_iter(), coefficient)?;
sum += product_sum * coefficient;
}
end_timer!(start);
Ok((poly, sum))
}
/// Sample a random virtual polynomial that evaluates to zero everywhere on
/// the boolean hypercube.
pub fn rand_zero<R: RngCore>(
nv: usize,
num_multiplicands_range: (usize, usize),
num_products: usize,
rng: &mut R,
) -> Result<Self, PolyIOPErrors> {
let mut poly = VirtualPolynomial::new(nv);
for _ in 0..num_products {
let num_multiplicands =
rng.gen_range(num_multiplicands_range.0..num_multiplicands_range.1);
let product = random_zero_mle_list(nv, num_multiplicands, rng);
let coefficient = F::rand(rng);
poly.add_mle_list(product.into_iter(), coefficient).unwrap();
}
Ok(poly)
}
}
/// Sample a random list of multilinear polynomials.
/// Returns
/// - the list of polynomials,
/// - its sum of polynomial evaluations over the boolean hypercube.
fn random_mle_list<F: PrimeField, R: RngCore>(
nv: usize,
degree: usize,
rng: &mut R,
) -> (Vec<Rc<DenseMultilinearExtension<F>>>, F) {
let start = start_timer!(|| "sample random mle list");
let mut multiplicands = Vec::with_capacity(degree);
for _ in 0..degree {
multiplicands.push(Vec::with_capacity(1 << nv))
}
let mut sum = F::zero();
for _ in 0..(1 << nv) {
let mut product = F::one();
for e in multiplicands.iter_mut() {
let val = F::rand(rng);
e.push(val);
product *= val;
}
sum += product;
}
let list = multiplicands
.into_iter()
.map(|x| Rc::new(DenseMultilinearExtension::from_evaluations_vec(nv, x)))
.collect();
end_timer!(start);
(list, sum)
}
// Build a randomize list of mle-s whose sum is zero.
pub fn random_zero_mle_list<F: PrimeField, R: RngCore>(
nv: usize,
degree: usize,
rng: &mut R,
) -> Vec<Rc<DenseMultilinearExtension<F>>> {
let start = start_timer!(|| "sample random zero mle list");
let mut multiplicands = Vec::with_capacity(degree);
for _ in 0..degree {
multiplicands.push(Vec::with_capacity(1 << nv))
}
for _ in 0..(1 << nv) {
multiplicands[0].push(F::zero());
for e in multiplicands.iter_mut().skip(1) {
e.push(F::rand(rng));
}
}
let list = multiplicands
.into_iter()
.map(|x| Rc::new(DenseMultilinearExtension::from_evaluations_vec(nv, x)))
.collect();
end_timer!(start);
list
}
#[cfg(test)]
pub(crate) mod test {
use super::*;
use ark_bls12_381::Fr;
use ark_ff::UniformRand;
use ark_std::test_rng;
#[test]
fn test_virtual_polynomial_additions() -> Result<(), PolyIOPErrors> {
let mut rng = test_rng();
for nv in 2..5 {
for num_products in 2..5 {
let base: Vec<Fr> = (0..nv).map(|_| Fr::rand(&mut rng)).collect();
let (a, _a_sum) =
VirtualPolynomial::<Fr>::rand(nv, (2, 3), num_products, &mut rng)?;
let (b, _b_sum) =
VirtualPolynomial::<Fr>::rand(nv, (2, 3), num_products, &mut rng)?;
let c = &a + &b;
assert_eq!(
a.evaluate(base.as_ref())? + b.evaluate(base.as_ref())?,
c.evaluate(base.as_ref())?
);
}
}
Ok(())
}
#[test]
fn test_virtual_polynomial_mul_by_mle() -> Result<(), PolyIOPErrors> {
let mut rng = test_rng();
for nv in 2..5 {
for num_products in 2..5 {
let base: Vec<Fr> = (0..nv).map(|_| Fr::rand(&mut rng)).collect();
let (a, _a_sum) =
VirtualPolynomial::<Fr>::rand(nv, (2, 3), num_products, &mut rng)?;
let (b, _b_sum) = random_mle_list(nv, 1, &mut rng);
let b_mle = b[0].clone();
let coeff = Fr::rand(&mut rng);
let b_vp = VirtualPolynomial::new_from_mle(b_mle.clone(), coeff);
let mut c = a.clone();
c.mul_by_mle(b_mle, coeff)?;
assert_eq!(
a.evaluate(base.as_ref())? * b_vp.evaluate(base.as_ref())?,
c.evaluate(base.as_ref())?
);
}
}
Ok(())
}
}