You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

513 lines
18 KiB

//! This module defines our main mathematical object `VirtualPolynomial`; and
//! various functions associated with it.
use crate::{errors::ArithErrors, multilinear_polynomial::random_zero_mle_list, random_mle_list};
use ark_ff::PrimeField;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_serialize::{CanonicalSerialize, SerializationError, Write};
use ark_std::{
end_timer,
rand::{Rng, RngCore},
start_timer,
};
use std::{cmp::max, collections::HashMap, marker::PhantomData, ops::Add, rc::Rc};
#[rustfmt::skip]
/// A virtual polynomial is a sum of products of multilinear polynomials;
/// where the multilinear polynomials are stored via their multilinear
/// extensions: `(coefficient, DenseMultilinearExtension)`
///
/// * Number of products n = `polynomial.products.len()`,
/// * Number of multiplicands of ith product m_i =
/// `polynomial.products[i].1.len()`,
/// * Coefficient of ith product c_i = `polynomial.products[i].0`
///
/// The resulting polynomial is
///
/// $$ \sum_{i=0}^{n} c_i \cdot \prod_{j=0}^{m_i} P_{ij} $$
///
/// Example:
/// f = c0 * f0 * f1 * f2 + c1 * f3 * f4
/// where f0 ... f4 are multilinear polynomials
///
/// - flattened_ml_extensions stores the multilinear extension representation of
/// f0, f1, f2, f3 and f4
/// - products is
/// \[
/// (c0, \[0, 1, 2\]),
/// (c1, \[3, 4\])
/// \]
/// - raw_pointers_lookup_table maps fi to i
///
#[derive(Clone, Debug, Default, PartialEq)]
pub struct VirtualPolynomial<F: PrimeField> {
/// Aux information about the multilinear polynomial
pub aux_info: VPAuxInfo<F>,
/// list of reference to products (as usize) of multilinear extension
pub products: Vec<(F, Vec<usize>)>,
/// Stores multilinear extensions in which product multiplicand can refer
/// to.
pub flattened_ml_extensions: Vec<Rc<DenseMultilinearExtension<F>>>,
/// Pointers to the above poly extensions
raw_pointers_lookup_table: HashMap<*const DenseMultilinearExtension<F>, usize>,
}
#[derive(Clone, Debug, Default, PartialEq, Eq, CanonicalSerialize)]
/// Auxiliary information about the multilinear polynomial
pub struct VPAuxInfo<F: PrimeField> {
/// max number of multiplicands in each product
pub max_degree: usize,
/// number of variables of the polynomial
pub num_variables: usize,
/// Associated field
#[doc(hidden)]
pub phantom: PhantomData<F>,
}
impl<F: PrimeField> Add for &VirtualPolynomial<F> {
type Output = VirtualPolynomial<F>;
fn add(self, other: &VirtualPolynomial<F>) -> Self::Output {
let start = start_timer!(|| "virtual poly add");
let mut res = self.clone();
for products in other.products.iter() {
let cur: Vec<Rc<DenseMultilinearExtension<F>>> = products
.1
.iter()
.map(|&x| other.flattened_ml_extensions[x].clone())
.collect();
res.add_mle_list(cur, products.0)
.expect("add product failed");
}
end_timer!(start);
res
}
}
// TODO: convert this into a trait
impl<F: PrimeField> VirtualPolynomial<F> {
/// Creates an empty virtual polynomial with `num_variables`.
pub fn new(num_variables: usize) -> Self {
VirtualPolynomial {
aux_info: VPAuxInfo {
max_degree: 0,
num_variables,
phantom: PhantomData::default(),
},
products: Vec::new(),
flattened_ml_extensions: Vec::new(),
raw_pointers_lookup_table: HashMap::new(),
}
}
/// Creates an new virtual polynomial from a MLE and its coefficient.
pub fn new_from_mle(mle: &Rc<DenseMultilinearExtension<F>>, coefficient: F) -> Self {
let mle_ptr: *const DenseMultilinearExtension<F> = Rc::as_ptr(mle);
let mut hm = HashMap::new();
hm.insert(mle_ptr, 0);
VirtualPolynomial {
aux_info: VPAuxInfo {
// The max degree is the max degree of any individual variable
max_degree: 1,
num_variables: mle.num_vars,
phantom: PhantomData::default(),
},
// here `0` points to the first polynomial of `flattened_ml_extensions`
products: vec![(coefficient, vec![0])],
flattened_ml_extensions: vec![mle.clone()],
raw_pointers_lookup_table: hm,
}
}
/// Add a product of list of multilinear extensions to self
/// Returns an error if the list is empty, or the MLE has a different
/// `num_vars` from self.
///
/// The MLEs will be multiplied together, and then multiplied by the scalar
/// `coefficient`.
pub fn add_mle_list(
&mut self,
mle_list: impl IntoIterator<Item = Rc<DenseMultilinearExtension<F>>>,
coefficient: F,
) -> Result<(), ArithErrors> {
let mle_list: Vec<Rc<DenseMultilinearExtension<F>>> = mle_list.into_iter().collect();
let mut indexed_product = Vec::with_capacity(mle_list.len());
if mle_list.is_empty() {
return Err(ArithErrors::InvalidParameters(
"input mle_list is empty".to_string(),
));
}
self.aux_info.max_degree = max(self.aux_info.max_degree, mle_list.len());
for mle in mle_list {
if mle.num_vars != self.aux_info.num_variables {
return Err(ArithErrors::InvalidParameters(format!(
"product has a multiplicand with wrong number of variables {} vs {}",
mle.num_vars, self.aux_info.num_variables
)));
}
let mle_ptr: *const DenseMultilinearExtension<F> = Rc::as_ptr(&mle);
if let Some(index) = self.raw_pointers_lookup_table.get(&mle_ptr) {
indexed_product.push(*index)
} else {
let curr_index = self.flattened_ml_extensions.len();
self.flattened_ml_extensions.push(mle.clone());
self.raw_pointers_lookup_table.insert(mle_ptr, curr_index);
indexed_product.push(curr_index);
}
}
self.products.push((coefficient, indexed_product));
Ok(())
}
/// Multiple the current VirtualPolynomial by an MLE:
/// - add the MLE to the MLE list;
/// - multiple each product by MLE and its coefficient.
/// Returns an error if the MLE has a different `num_vars` from self.
pub fn mul_by_mle(
&mut self,
mle: Rc<DenseMultilinearExtension<F>>,
coefficient: F,
) -> Result<(), ArithErrors> {
let start = start_timer!(|| "mul by mle");
if mle.num_vars != self.aux_info.num_variables {
return Err(ArithErrors::InvalidParameters(format!(
"product has a multiplicand with wrong number of variables {} vs {}",
mle.num_vars, self.aux_info.num_variables
)));
}
let mle_ptr: *const DenseMultilinearExtension<F> = Rc::as_ptr(&mle);
// check if this mle already exists in the virtual polynomial
let mle_index = match self.raw_pointers_lookup_table.get(&mle_ptr) {
Some(&p) => p,
None => {
self.raw_pointers_lookup_table
.insert(mle_ptr, self.flattened_ml_extensions.len());
self.flattened_ml_extensions.push(mle);
self.flattened_ml_extensions.len() - 1
},
};
for (prod_coef, indices) in self.products.iter_mut() {
// - add the MLE to the MLE list;
// - multiple each product by MLE and its coefficient.
indices.push(mle_index);
*prod_coef *= coefficient;
}
// increase the max degree by one as the MLE has degree 1.
self.aux_info.max_degree += 1;
end_timer!(start);
Ok(())
}
/// Evaluate the virtual polynomial at point `point`.
/// Returns an error is point.len() does not match `num_variables`.
pub fn evaluate(&self, point: &[F]) -> Result<F, ArithErrors> {
let start = start_timer!(|| "evaluation");
if self.aux_info.num_variables != point.len() {
return Err(ArithErrors::InvalidParameters(format!(
"wrong number of variables {} vs {}",
self.aux_info.num_variables,
point.len()
)));
}
let evals: Vec<F> = self
.flattened_ml_extensions
.iter()
.map(|x| {
x.evaluate(point).unwrap() // safe unwrap here since we have
// already checked that num_var
// matches
})
.collect();
let res = self
.products
.iter()
.map(|(c, p)| *c * p.iter().map(|&i| evals[i]).product::<F>())
.sum();
end_timer!(start);
Ok(res)
}
/// Sample a random virtual polynomial, return the polynomial and its sum.
pub fn rand<R: RngCore>(
nv: usize,
num_multiplicands_range: (usize, usize),
num_products: usize,
rng: &mut R,
) -> Result<(Self, F), ArithErrors> {
let start = start_timer!(|| "sample random virtual polynomial");
let mut sum = F::zero();
let mut poly = VirtualPolynomial::new(nv);
for _ in 0..num_products {
let num_multiplicands =
rng.gen_range(num_multiplicands_range.0..num_multiplicands_range.1);
let (product, product_sum) = random_mle_list(nv, num_multiplicands, rng);
let coefficient = F::rand(rng);
poly.add_mle_list(product.into_iter(), coefficient)?;
sum += product_sum * coefficient;
}
end_timer!(start);
Ok((poly, sum))
}
/// Sample a random virtual polynomial that evaluates to zero everywhere
/// over the boolean hypercube.
pub fn rand_zero<R: RngCore>(
nv: usize,
num_multiplicands_range: (usize, usize),
num_products: usize,
rng: &mut R,
) -> Result<Self, ArithErrors> {
let mut poly = VirtualPolynomial::new(nv);
for _ in 0..num_products {
let num_multiplicands =
rng.gen_range(num_multiplicands_range.0..num_multiplicands_range.1);
let product = random_zero_mle_list(nv, num_multiplicands, rng);
let coefficient = F::rand(rng);
poly.add_mle_list(product.into_iter(), coefficient)?;
}
Ok(poly)
}
// Input poly f(x) and a random vector r, output
// \hat f(x) = \sum_{x_i \in eval_x} f(x_i) eq(x, r)
// where
// eq(x,y) = \prod_i=1^num_var (x_i * y_i + (1-x_i)*(1-y_i))
//
// This function is used in ZeroCheck.
pub fn build_f_hat(&self, r: &[F]) -> Result<Self, ArithErrors> {
let start = start_timer!(|| "zero check build hat f");
if self.aux_info.num_variables != r.len() {
return Err(ArithErrors::InvalidParameters(format!(
"r.len() is different from number of variables: {} vs {}",
r.len(),
self.aux_info.num_variables
)));
}
let eq_x_r = build_eq_x_r(r)?;
let mut res = self.clone();
res.mul_by_mle(eq_x_r, F::one())?;
end_timer!(start);
Ok(res)
}
/// Print out the evaluation map for testing. Panic if the num_vars > 5.
pub fn print_evals(&self) {
if self.aux_info.num_variables > 5 {
panic!("this function is used for testing only. cannot print more than 5 num_vars")
}
for i in 0..1 << self.aux_info.num_variables {
let point = bit_decompose(i, self.aux_info.num_variables);
let point_fr: Vec<F> = point.iter().map(|&x| F::from(x)).collect();
println!("{} {}", i, self.evaluate(point_fr.as_ref()).unwrap())
}
println!()
}
}
// This function build the eq(x, r) polynomial for any given r.
//
// Evaluate
// eq(x,y) = \prod_i=1^num_var (x_i * y_i + (1-x_i)*(1-y_i))
// over r, which is
// eq(x,y) = \prod_i=1^num_var (x_i * r_i + (1-x_i)*(1-r_i))
pub fn build_eq_x_r<F: PrimeField>(
r: &[F],
) -> Result<Rc<DenseMultilinearExtension<F>>, ArithErrors> {
let start = start_timer!(|| "zero check build eq_x_r");
// we build eq(x,r) from its evaluations
// we want to evaluate eq(x,r) over x \in {0, 1}^num_vars
// for example, with num_vars = 4, x is a binary vector of 4, then
// 0 0 0 0 -> (1-r0) * (1-r1) * (1-r2) * (1-r3)
// 1 0 0 0 -> r0 * (1-r1) * (1-r2) * (1-r3)
// 0 1 0 0 -> (1-r0) * r1 * (1-r2) * (1-r3)
// 1 1 0 0 -> r0 * r1 * (1-r2) * (1-r3)
// ....
// 1 1 1 1 -> r0 * r1 * r2 * r3
// we will need 2^num_var evaluations
let mut eval = Vec::new();
build_eq_x_r_helper(r, &mut eval)?;
let mle = DenseMultilinearExtension::from_evaluations_vec(r.len(), eval);
let res = Rc::new(mle);
end_timer!(start);
Ok(res)
}
/// A helper function to build eq(x, r) recursively.
/// This function takes `r.len()` steps, and for each step it requires a maximum
/// `r.len()-1` multiplications.
fn build_eq_x_r_helper<F: PrimeField>(r: &[F], buf: &mut Vec<F>) -> Result<(), ArithErrors> {
if r.is_empty() {
return Err(ArithErrors::InvalidParameters("r length is 0".to_string()));
} else if r.len() == 1 {
// initializing the buffer with [1-r_0, r_0]
buf.push(F::one() - r[0]);
buf.push(r[0]);
} else {
build_eq_x_r_helper(&r[1..], buf)?;
// suppose at the previous step we received [b_1, ..., b_k]
// for the current step we will need
// if x_0 = 0: (1-r0) * [b_1, ..., b_k]
// if x_0 = 1: r0 * [b_1, ..., b_k]
let mut res = vec![];
for &b_i in buf.iter() {
let tmp = r[0] * b_i;
res.push(b_i - tmp);
res.push(tmp);
}
*buf = res;
}
Ok(())
}
/// Decompose an integer into a binary vector in little endian.
pub fn bit_decompose(input: u64, num_var: usize) -> Vec<bool> {
let mut res = Vec::with_capacity(num_var);
let mut i = input;
for _ in 0..num_var {
res.push(i & 1 == 1);
i >>= 1;
}
res
}
#[cfg(test)]
mod test {
use super::*;
use ark_bls12_381::Fr;
use ark_ff::UniformRand;
use ark_std::test_rng;
#[test]
fn test_virtual_polynomial_additions() -> Result<(), ArithErrors> {
let mut rng = test_rng();
for nv in 2..5 {
for num_products in 2..5 {
let base: Vec<Fr> = (0..nv).map(|_| Fr::rand(&mut rng)).collect();
let (a, _a_sum) =
VirtualPolynomial::<Fr>::rand(nv, (2, 3), num_products, &mut rng)?;
let (b, _b_sum) =
VirtualPolynomial::<Fr>::rand(nv, (2, 3), num_products, &mut rng)?;
let c = &a + &b;
assert_eq!(
a.evaluate(base.as_ref())? + b.evaluate(base.as_ref())?,
c.evaluate(base.as_ref())?
);
}
}
Ok(())
}
#[test]
fn test_virtual_polynomial_mul_by_mle() -> Result<(), ArithErrors> {
let mut rng = test_rng();
for nv in 2..5 {
for num_products in 2..5 {
let base: Vec<Fr> = (0..nv).map(|_| Fr::rand(&mut rng)).collect();
let (a, _a_sum) =
VirtualPolynomial::<Fr>::rand(nv, (2, 3), num_products, &mut rng)?;
let (b, _b_sum) = random_mle_list(nv, 1, &mut rng);
let b_mle = b[0].clone();
let coeff = Fr::rand(&mut rng);
let b_vp = VirtualPolynomial::new_from_mle(&b_mle, coeff);
let mut c = a.clone();
c.mul_by_mle(b_mle, coeff)?;
assert_eq!(
a.evaluate(base.as_ref())? * b_vp.evaluate(base.as_ref())?,
c.evaluate(base.as_ref())?
);
}
}
Ok(())
}
#[test]
fn test_eq_xr() {
let mut rng = test_rng();
for nv in 4..10 {
let r: Vec<Fr> = (0..nv).map(|_| Fr::rand(&mut rng)).collect();
let eq_x_r = build_eq_x_r(r.as_ref()).unwrap();
let eq_x_r2 = build_eq_x_r_for_test(r.as_ref());
assert_eq!(eq_x_r, eq_x_r2);
}
}
/// Naive method to build eq(x, r).
/// Only used for testing purpose.
// Evaluate
// eq(x,y) = \prod_i=1^num_var (x_i * y_i + (1-x_i)*(1-y_i))
// over r, which is
// eq(x,y) = \prod_i=1^num_var (x_i * r_i + (1-x_i)*(1-r_i))
fn build_eq_x_r_for_test<F: PrimeField>(r: &[F]) -> Rc<DenseMultilinearExtension<F>> {
let start = start_timer!(|| "zero check naive build eq_x_r");
// we build eq(x,r) from its evaluations
// we want to evaluate eq(x,r) over x \in {0, 1}^num_vars
// for example, with num_vars = 4, x is a binary vector of 4, then
// 0 0 0 0 -> (1-r0) * (1-r1) * (1-r2) * (1-r3)
// 1 0 0 0 -> r0 * (1-r1) * (1-r2) * (1-r3)
// 0 1 0 0 -> (1-r0) * r1 * (1-r2) * (1-r3)
// 1 1 0 0 -> r0 * r1 * (1-r2) * (1-r3)
// ....
// 1 1 1 1 -> r0 * r1 * r2 * r3
// we will need 2^num_var evaluations
// First, we build array for {1 - r_i}
let one_minus_r: Vec<F> = r.iter().map(|ri| F::one() - ri).collect();
let num_var = r.len();
let mut eval = vec![];
for i in 0..1 << num_var {
let mut current_eval = F::one();
let bit_sequence = bit_decompose(i, num_var);
for (&bit, (ri, one_minus_ri)) in
bit_sequence.iter().zip(r.iter().zip(one_minus_r.iter()))
{
current_eval *= if bit { *ri } else { *one_minus_ri };
}
eval.push(current_eval);
}
let mle = DenseMultilinearExtension::from_evaluations_vec(num_var, eval);
let res = Rc::new(mle);
end_timer!(start);
res
}
}