Browse Source

Add IPA impl

main
arnaucube 2 years ago
parent
commit
6f5c10549e
6 changed files with 317 additions and 1 deletions
  1. +11
    -0
      .github/workflows/clippy.yml
  2. +13
    -0
      .github/workflows/test.yml
  3. +2
    -0
      .gitignore
  4. +13
    -0
      Cargo.toml
  5. +1
    -1
      README.md
  6. +277
    -0
      src/lib.rs

+ 11
- 0
.github/workflows/clippy.yml

@ -0,0 +1,11 @@
name: Clippy check
on: [push, pull_request]
jobs:
clippy_check:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v1
- run: rustup component add clippy
- uses: actions-rs/clippy-check@v1
with:
token: ${{ secrets.GITHUB_TOKEN }}

+ 13
- 0
.github/workflows/test.yml

@ -0,0 +1,13 @@
name: Test
on: [push, pull_request]
env:
CARGO_TERM_COLOR: always
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Build
run: cargo build --verbose
- name: Run tests
run: cargo test --verbose

+ 2
- 0
.gitignore

@ -0,0 +1,2 @@
/target
Cargo.lock

+ 13
- 0
Cargo.toml

@ -0,0 +1,13 @@
[package]
name = "ipa-rs"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
ark-std = "0.3.0"
ark-ff = "0.3.0"
ark-ec = "0.3.0"
ark-ed-on-bn254 = "0.3.0"
rand = { version = "0.8", features = [ "std", "std_rng" ] }

+ 1
- 1
README.md

@ -1,6 +1,6 @@
# ipa-rs [![Test](https://github.com/arnaucube/ipa-rs/workflows/Test/badge.svg)](https://github.com/arnaucube/ipa-rs/actions?query=workflow%3ATest) # ipa-rs [![Test](https://github.com/arnaucube/ipa-rs/workflows/Test/badge.svg)](https://github.com/arnaucube/ipa-rs/actions?query=workflow%3ATest)
Inner Product Argument (IPA) version from Halo paper (https://eprint.iacr.org/2019/1021.pdf) implementation done to get familiar with [arkworks](https://arkworks.rs) and the IPA scheme.
Inner Product Argument (IPA) version from Halo paper (https://eprint.iacr.org/2019/1021.pdf) implementation done to get familiar with [arkworks](https://arkworks.rs) and the modified IPA scheme.
> Warning: do not use this code in production. > Warning: do not use this code in production.

+ 277
- 0
src/lib.rs

@ -0,0 +1,277 @@
extern crate ark_ed_on_bn254;
use ark_ec::ProjectiveCurve;
use ark_ed_on_bn254::{EdwardsProjective, Fr};
use ark_ff::{fields::PrimeField, Field}; // BigInteger
use ark_std::{UniformRand, Zero};
#[allow(non_snake_case)]
pub struct IPA {
d: u32,
H: EdwardsProjective,
Gs: Vec<EdwardsProjective>,
rng: rand::rngs::ThreadRng,
}
#[allow(non_snake_case)]
pub struct Proof {
a: Fr,
b: Fr, // TODO not needed
G: EdwardsProjective, // TODO not needed
l: Vec<Fr>,
r: Vec<Fr>,
L: Vec<EdwardsProjective>,
R: Vec<EdwardsProjective>,
}
#[allow(non_snake_case)]
#[allow(clippy::many_single_char_names)]
impl IPA {
pub fn new(d: u32) -> IPA {
let mut rng = ark_std::rand::thread_rng();
let mut gs: Vec<EdwardsProjective> = Vec::new();
for _ in 0..d {
gs.push(EdwardsProjective::rand(&mut rng));
}
IPA {
d,
H: EdwardsProjective::rand(&mut rng),
Gs: gs,
rng,
}
}
pub fn commit(&self, a: &[Fr], r: Fr) -> EdwardsProjective {
inner_product_point(a, &self.Gs) + self.H.mul(r.into_repr())
}
pub fn ipa(&mut self, a: &[Fr], b: &[Fr], u: &[Fr], U: &EdwardsProjective) -> Proof {
let mut a = a.to_owned();
let mut b = b.to_owned();
let mut G = self.Gs.clone();
let k = (f64::from(self.d as u32).log2()) as usize;
let mut l: Vec<Fr> = vec![Fr::zero(); k];
let mut r: Vec<Fr> = vec![Fr::zero(); k];
let mut L: Vec<EdwardsProjective> = vec![EdwardsProjective::zero(); k];
let mut R: Vec<EdwardsProjective> = vec![EdwardsProjective::zero(); k];
for j in (0..k).rev() {
let m = a.len() / 2;
let a_lo = a[..m].to_vec();
let a_hi = a[m..].to_vec();
let b_lo = b[..m].to_vec();
let b_hi = b[m..].to_vec();
let G_lo = G[..m].to_vec();
let G_hi = G[m..].to_vec();
l[j] = Fr::rand(&mut self.rng);
r[j] = Fr::rand(&mut self.rng);
L[j] = inner_product_point(&a_lo, &G_hi)
+ self.H.mul(l[j].into_repr())
+ U.mul(inner_product_field(&a_lo, &b_hi).into_repr());
R[j] = inner_product_point(&a_hi, &G_lo)
+ self.H.mul(r[j].into_repr())
+ U.mul(inner_product_field(&a_hi, &b_lo).into_repr());
let uj = u[j];
let uj_inv = u[j].inverse().unwrap();
a = vec_add(
&vec_scalar_mul_field(&a_lo, &uj),
&vec_scalar_mul_field(&a_hi, &uj_inv),
);
b = vec_add(
&vec_scalar_mul_field(&b_lo, &uj_inv),
&vec_scalar_mul_field(&b_hi, &uj),
);
G = vec_add_point(
&vec_scalar_mul_point(&G_lo, &uj_inv),
&vec_scalar_mul_point(&G_hi, &uj),
);
}
// TODO assert len a,b,G == 1
Proof {
a: a[0],
b: b[0],
G: G[0],
l,
r,
L,
R,
}
}
pub fn verify(
&self,
P: &EdwardsProjective,
p: &Proof,
r: &Fr,
u: &[Fr],
U: &EdwardsProjective,
) -> bool {
let mut q_0 = *P;
let mut r = *r;
// TODO compute b & G without getting them in the proof package
#[allow(clippy::needless_range_loop)]
for j in 0..u.len() {
let uj2 = u[j].square();
let uj_inv2 = u[j].inverse().unwrap().square();
q_0 = q_0 + p.L[j].mul(uj2.into_repr()) + p.R[j].mul(uj_inv2.into_repr());
r = r + p.l[j] * uj2 + p.r[j] * uj_inv2;
}
let q_1 =
p.G.mul(p.a.into_repr()) + self.H.mul(r.into_repr()) + U.mul((p.a * p.b).into_repr());
q_0 == q_1
}
}
fn inner_product_field(a: &[Fr], b: &[Fr]) -> Fr {
// TODO require lens equal
let mut c: Fr = Fr::zero();
for i in 0..a.len() {
c += a[i] * b[i];
}
c
}
fn inner_product_point(a: &[Fr], b: &[EdwardsProjective]) -> EdwardsProjective {
// TODO require lens equal
let mut c: EdwardsProjective = EdwardsProjective::zero();
for i in 0..a.len() {
c += b[i].mul(a[i].into_repr());
}
c
}
fn vec_add(a: &[Fr], b: &[Fr]) -> Vec<Fr> {
// TODO require len equal
let mut c: Vec<Fr> = vec![Fr::zero(); a.len()];
for i in 0..a.len() {
c[i] = a[i] + b[i];
}
c
}
fn vec_add_point(a: &[EdwardsProjective], b: &[EdwardsProjective]) -> Vec<EdwardsProjective> {
// TODO require len equal
let mut c: Vec<EdwardsProjective> = vec![EdwardsProjective::zero(); a.len()];
for i in 0..a.len() {
c[i] = a[i] + b[i];
}
c
}
fn vec_scalar_mul_field(a: &[Fr], b: &Fr) -> Vec<Fr> {
let mut c: Vec<Fr> = vec![Fr::zero(); a.len()];
for i in 0..a.len() {
c[i] = a[i] * b;
}
c
}
fn vec_scalar_mul_point(a: &[EdwardsProjective], b: &Fr) -> Vec<EdwardsProjective> {
let mut c: Vec<EdwardsProjective> = vec![EdwardsProjective::zero(); a.len()];
for i in 0..a.len() {
c[i] = a[i].mul(b.into_repr());
}
c
}
#[allow(dead_code)]
fn powers_of(x: Fr, d: u32) -> Vec<Fr> {
let mut c: Vec<Fr> = vec![Fr::zero(); d as usize];
c[0] = x;
for i in 1..d as usize {
// TODO redo better
c[i] = c[i - 1] * x;
}
c
}
// fn inner_product<T>(a: Vec<T>, b: Vec<T>) -> T {
// // require lens equal
// let mut c: T = Zero();
// for i in 0..a.len() {
// c = c + a[i] * b[i];
// }
// c
// }
#[cfg(test)]
#[allow(non_snake_case)]
mod tests {
use super::*;
#[test]
fn test_utils() {
// let a = Fr::from(1 as u32);
// let b = Fr::one();
// println!("A: {:?}", Fr::from(1 as u32));
// println!("A: {:?}", a);
// println!("B: {:?}", b);
let a = vec![
Fr::from(1 as u32),
Fr::from(2 as u32),
Fr::from(3 as u32),
Fr::from(4 as u32),
];
let b = vec![
Fr::from(1 as u32),
Fr::from(2 as u32),
Fr::from(3 as u32),
Fr::from(4 as u32),
];
let c = inner_product_field(&a, &b);
println!("c: {:?}", c);
// let result = 2 + 2;
// assert_eq!(result, 4);
}
#[test]
fn test_inner_product() {
let d = 8;
let mut ipa = IPA::new(d);
let a = vec![
Fr::from(1 as u32),
Fr::from(2 as u32),
Fr::from(3 as u32),
Fr::from(4 as u32),
Fr::from(5 as u32),
Fr::from(6 as u32),
Fr::from(7 as u32),
Fr::from(8 as u32),
];
let x = Fr::from(3 as u32);
let b = powers_of(x, ipa.d);
let r = Fr::rand(&mut ipa.rng);
let mut P = ipa.commit(&a, r);
let v = inner_product_field(&a, &b);
let U = EdwardsProjective::rand(&mut ipa.rng);
let k = (f64::from(ipa.d as u32).log2()) as usize;
let mut u: Vec<Fr> = vec![Fr::zero(); k];
for j in 0..k {
u[j] = Fr::rand(&mut ipa.rng);
}
P = P + U.mul(v.into_repr());
let proof = ipa.ipa(&a, &b, &u, &U);
let verif = ipa.verify(&P, &proof, &r, &u, &U);
assert!(verif);
}
}

Loading…
Cancel
Save