Browse Source

add poseidon_chain, update to last sonobe dependency version

main
arnaucube 2 months ago
parent
commit
b5dfb945f1
7 changed files with 523 additions and 19 deletions
  1. +12
    -2
      Cargo.toml
  2. +12
    -5
      README.md
  3. +7
    -2
      src/lib.rs
  4. +131
    -0
      src/naive_approach_poseidon_chain.rs
  5. +173
    -0
      src/poseidon_chain.rs
  6. +182
    -0
      src/sha_chain_offchain.rs
  7. +6
    -10
      src/sha_chain_onchain.rs

+ 12
- 2
Cargo.toml

@ -6,9 +6,9 @@ edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
[dev-dependencies]
ark-groth16 = { version = "^0.4.0" }
ark-pallas = {version="0.4.0", features=["r1cs"]}
ark-vesta = {version="0.4.0", features=["r1cs"]}
ark-bn254 = { version = "0.4.0", features = ["r1cs"] }
ark-grumpkin = {version="0.4.0", features=["r1cs"]}
ark-ec = "0.4.1"
@ -30,6 +30,7 @@ num-bigint = "0.4.3"
# this feature (but then the DeciderETH circuit is bigger and takes more time
# to compute).
folding-schemes = { git = "https://github.com/privacy-scaling-explorations/sonobe", package = "folding-schemes", features=["light-test"]}
folding-schemes-circom = { git = "https://github.com/privacy-scaling-explorations/sonobe", package = "frontends", optional=true}
solidity-verifiers = { git = "https://github.com/privacy-scaling-explorations/sonobe", package = "solidity-verifiers"}
serde = "1.0.198"
serde_json = "1.0.116"
@ -37,6 +38,15 @@ tiny-keccak = { version = "2.0", features = ["keccak"] }
rand = "0.8.5"
[dev-dependencies]
[features]
default = []
experimental-frontends = ["dep:folding-schemes-circom"]
[patch.crates-io]
# patch ark_curves to use a cherry-picked version which contains
# bn254::constraints & grumpkin for v0.4.0 (once arkworks v0.5.0 is released

+ 12
- 5
README.md

@ -13,10 +13,15 @@ For more info about Sonobe, check out [Sonobe's docs](https://privacy-scaling-ex
### Usage
### sha_chain.rs (arkworks circuit)
### poseidon_chain.rs (arkworks circuit)
Proves a chain of Poseidon hashes, using the [arkworks/poseidon](https://github.com/arkworks-rs/crypto-primitives/blob/main/crypto-primitives/src/sponge/poseidon/constraints.rs) circuit, with [Nova](https://eprint.iacr.org/2021/370.pdf)+[CycleFold](https://eprint.iacr.org/2023/1192.pdf).
- `cargo test --release poseidon_chain -- --nocapture`
### sha_chain_offchain.rs (arkworks circuit)
Proves a chain of SHA256 hashes, using the [arkworks/sha256](https://github.com/arkworks-rs/crypto-primitives/blob/main/crypto-primitives/src/crh/sha256/constraints.rs) circuit, with [Nova](https://eprint.iacr.org/2021/370.pdf)+[CycleFold](https://eprint.iacr.org/2023/1192.pdf).
- `cargo test --release sha_chain -- --nocapture`
- `cargo test --release sha_chain_offchain -- --nocapture`
### keccak_chain.rs (circom circuit)
Proves a chain of keccak256 hashes, using the [vocdoni/keccak256-circom](https://github.com/vocdoni/keccak256-circom) circuit, with [Nova](https://eprint.iacr.org/2021/370.pdf)+[CycleFold](https://eprint.iacr.org/2023/1192.pdf).
@ -29,11 +34,13 @@ Note: the Circom variant currently has a bit of extra overhead since at each fol
### Repo structure
- the Circom circuit (that defines the keccak-chain) to be folded is defined at [./circuit/keccak-chain.circom](https://github.com/arnaucube/hash-chain-sonobe/blob/main/circuit/keccak-chain.circom)
- the logic to fold the circuit using Sonobe is defined at [src/{sha_chain, keccak_chain}.rs](https://github.com/arnaucube/hash-chain-sonobe/blob/main/src)
- the logic to fold the circuit using Sonobe is defined at [src/{poseidon_chain, sha_chain_{offchain, onchain}, keccak_chain}.rs](https://github.com/arnaucube/hash-chain-sonobe/blob/main/src)
## Other
Additionally there is the `src/naive_approach_sha_chain.rs` file, which mimics the amount of hashes computed by the `src/sha_chain.rs` file, but instead of folding it does it by building a big circuit that does all the hashes at once, as we would do before folding existed.
Additionally there is the `src/naive_approach_{poseidon,sha}_chain.rs` file, which mimics the amount of hashes computed by the `src/{poseidon,sha}_chain.rs` file, but instead of folding it does it by building a big circuit that does all the hashes at once, as we would do before folding existed.
To run it: `cargo test --release naive_approach_sha_chain -- --nocapture`
To run it:
- `cargo test --release naive_approach_sha_chain -- --nocapture`
- `cargo test --release naive_approach_poseidon_chain -- --nocapture`

+ 7
- 2
src/lib.rs

@ -2,7 +2,12 @@
#![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]
mod keccak_chain;
mod naive_approach_poseidon_chain;
mod naive_approach_sha_chain;
mod sha_chain;
mod poseidon_chain;
mod sha_chain_offchain;
mod sha_chain_onchain;
mod utils;
#[cfg(feature = "experimental-frontends")]
mod keccak_chain;

+ 131
- 0
src/naive_approach_poseidon_chain.rs

@ -0,0 +1,131 @@
/// This example does the hash chain but in the naive approach: instead of using folding, it does a
/// big circuit containing n instantiations of the Poseidon constraints.
#[cfg(test)]
mod tests {
use ark_bn254::{Bn254, Fr};
use ark_groth16::Groth16;
use ark_snark::SNARK;
use ark_ff::PrimeField;
use std::time::Instant;
use ark_crypto_primitives::sponge::{
constraints::CryptographicSpongeVar,
poseidon::{constraints::PoseidonSpongeVar, PoseidonConfig, PoseidonSponge},
Absorb, CryptographicSponge,
};
use ark_r1cs_std::fields::fp::FpVar;
use ark_r1cs_std::{alloc::AllocVar, eq::EqGadget};
use ark_r1cs_std::{bits::uint8::UInt8, boolean::Boolean, ToBitsGadget, ToBytesGadget};
use ark_relations::r1cs::{
ConstraintSynthesizer, ConstraintSystem, ConstraintSystemRef, SynthesisError,
};
use folding_schemes::transcript::poseidon::poseidon_canonical_config;
use crate::utils::tests::*;
/// Test circuit to be folded
#[derive(Clone, Debug)]
pub struct PoseidonChainCircuit<F: PrimeField, const N: usize, const HASHES_PER_STEP: usize> {
z_0: Option<Vec<F>>,
z_n: Option<Vec<F>>,
config: PoseidonConfig<F>,
}
impl<F: PrimeField, const N: usize, const HASHES_PER_STEP: usize> ConstraintSynthesizer<F>
for PoseidonChainCircuit<F, N, HASHES_PER_STEP>
{
fn generate_constraints(self, cs: ConstraintSystemRef<F>) -> Result<(), SynthesisError> {
let z_0 = Vec::<FpVar<F>>::new_witness(cs.clone(), || {
Ok(self.z_0.unwrap_or(vec![F::zero()]))
})?;
let z_n =
Vec::<FpVar<F>>::new_input(cs.clone(), || Ok(self.z_n.unwrap_or(vec![F::zero()])))?;
let mut sponge = PoseidonSpongeVar::<F>::new(cs.clone(), &self.config);
let mut z_i: Vec<FpVar<F>> = z_0.clone();
for _ in 0..N {
for _ in 0..HASHES_PER_STEP {
sponge.absorb(&z_i)?;
z_i = sponge.squeeze_field_elements(1)?;
}
}
z_i.enforce_equal(&z_n)?;
Ok(())
}
}
// compute natively in rust the expected result
fn rust_native_result(
poseidon_config: &PoseidonConfig<Fr>,
z_0: Vec<Fr>,
n_steps: usize,
hashes_per_step: usize,
) -> Vec<Fr> {
let mut z_i: Vec<Fr> = z_0.clone();
for _ in 0..n_steps {
let mut sponge = PoseidonSponge::<Fr>::new(&poseidon_config);
for _ in 0..hashes_per_step {
sponge.absorb(&z_i);
z_i = sponge.squeeze_field_elements(1);
}
}
z_i.clone()
}
#[test]
fn full_flow() {
// set how many iterations of the PoseidonChainCircuit circuit internal loop we want to
// compute
const N_STEPS: usize = 10;
const HASHES_PER_STEP: usize = 400;
println!("running the 'naive' PoseidonChainCircuit, with N_STEPS={}, HASHES_PER_STEP={}. Total hashes = {}", N_STEPS, HASHES_PER_STEP, N_STEPS* HASHES_PER_STEP);
let poseidon_config = poseidon_canonical_config::<Fr>();
// set the initial state
// let z_0_aux: Vec<u32> = vec![0_u32; 32 * 8];
let z_0_aux: Vec<u8> = vec![0_u8; 32];
let z_0: Vec<Fr> = z_0_aux.iter().map(|v| Fr::from(*v)).collect::<Vec<Fr>>();
// run the N iterations 'natively' in rust to compute the expected `z_n`
let z_n = rust_native_result(&poseidon_config, z_0.clone(), N_STEPS, HASHES_PER_STEP);
let circuit = PoseidonChainCircuit::<Fr, N_STEPS, HASHES_PER_STEP> {
z_0: Some(z_0),
z_n: Some(z_n.clone()),
config: poseidon_config,
};
let cs = ConstraintSystem::<Fr>::new_ref();
circuit.clone().generate_constraints(cs.clone()).unwrap();
println!(
"number of constraints of the (naive) PoseidonChainCircuit with N_STEPS*HASHES_PER_STEP={} poseidon hashes in total: {} (num constraints)",
N_STEPS * HASHES_PER_STEP,
cs.num_constraints()
);
// now let's generate an actual Groth16 proof
let mut rng = rand::rngs::OsRng;
let (g16_pk, g16_vk) =
Groth16::<Bn254>::circuit_specific_setup(circuit.clone(), &mut rng).unwrap();
let start = Instant::now();
let proof = Groth16::<Bn254>::prove(&g16_pk, circuit.clone(), &mut rng).unwrap();
println!(
"Groth16 proof generation (for the naive PoseidonChainCircuit): {:?}",
start.elapsed()
);
let public_inputs = z_n;
let valid_proof = Groth16::<Bn254>::verify(&g16_vk, &public_inputs, &proof).unwrap();
assert!(valid_proof);
println!("finished running the 'naive' PoseidonChainCircuit, with N_STEPS={}, HASHES_PER_STEP={}. Total hashes = {}", N_STEPS, HASHES_PER_STEP, N_STEPS* HASHES_PER_STEP);
}
}

+ 173
- 0
src/poseidon_chain.rs

@ -0,0 +1,173 @@
///
/// This example performs the IVC:
/// - define the circuit to be folded
/// - fold the circuit with Nova+CycleFold's IVC
/// - verify the IVC proof
///
#[cfg(test)]
mod tests {
use ark_pallas::{constraints::GVar, Fr, Projective as G1};
use ark_vesta::{constraints::GVar as GVar2, Projective as G2};
use ark_crypto_primitives::sponge::{
constraints::CryptographicSpongeVar,
poseidon::{constraints::PoseidonSpongeVar, PoseidonConfig, PoseidonSponge},
Absorb, CryptographicSponge,
};
use ark_r1cs_std::fields::fp::FpVar;
use ark_ff::PrimeField;
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use std::time::Instant;
use folding_schemes::{
commitment::pedersen::Pedersen,
folding::nova::{Nova, PreprocessorParam},
frontend::FCircuit,
transcript::poseidon::poseidon_canonical_config,
Error, FoldingScheme,
};
/// Test circuit to be folded
#[derive(Clone, Debug)]
pub struct PoseidonFoldStepCircuit<F: PrimeField, const HASHES_PER_STEP: usize> {
config: PoseidonConfig<F>,
}
impl<F: PrimeField, const HASHES_PER_STEP: usize> FCircuit<F>
for PoseidonFoldStepCircuit<F, HASHES_PER_STEP>
where
F: Absorb,
{
type Params = PoseidonConfig<F>;
fn new(config: Self::Params) -> Result<Self, Error> {
Ok(Self { config })
}
fn state_len(&self) -> usize {
1
}
fn external_inputs_len(&self) -> usize {
0
}
fn step_native(
&self,
_i: usize,
z_i: Vec<F>,
_external_inputs: Vec<F>,
) -> Result<Vec<F>, Error> {
let mut sponge = PoseidonSponge::<F>::new(&self.config);
let mut v = z_i.clone();
for _ in 0..HASHES_PER_STEP {
sponge.absorb(&v);
v = sponge.squeeze_field_elements(1);
}
Ok(v)
}
fn generate_step_constraints(
&self,
cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>,
_external_inputs: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let mut sponge = PoseidonSpongeVar::<F>::new(cs.clone(), &self.config);
let mut v = z_i.clone();
for _ in 0..HASHES_PER_STEP {
sponge.absorb(&v)?;
v = sponge.squeeze_field_elements(1)?;
}
Ok(v)
}
}
#[test]
fn full_flow() {
// set how many steps of folding we want to compute
const N_STEPS: usize = 10;
const HASHES_PER_STEP: usize = 400;
println!("running Nova folding scheme on PoseidonFoldStepCircuit, with N_STEPS={}, HASHES_PER_STEP={}. Total hashes = {}", N_STEPS, HASHES_PER_STEP, N_STEPS* HASHES_PER_STEP);
// set the initial state
// let z_0_aux: Vec<u32> = vec![0_u32; 32 * 8];
let z_0_aux: Vec<u8> = vec![0_u8; 1];
let z_0: Vec<Fr> = z_0_aux.iter().map(|v| Fr::from(*v)).collect::<Vec<Fr>>();
let poseidon_config = poseidon_canonical_config::<Fr>();
let f_circuit =
PoseidonFoldStepCircuit::<Fr, HASHES_PER_STEP>::new(poseidon_config).unwrap();
// ----------------
// Sanity check
// check that the f_circuit produces valid R1CS constraints
use ark_r1cs_std::alloc::AllocVar;
use ark_r1cs_std::fields::fp::FpVar;
use ark_r1cs_std::R1CSVar;
use ark_relations::r1cs::ConstraintSystem;
let cs = ConstraintSystem::<Fr>::new_ref();
let z_0_var = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_0.clone())).unwrap();
let z_1_var = f_circuit
.generate_step_constraints(cs.clone(), 1, z_0_var, vec![])
.unwrap();
// check z_1_var against the native z_1
let z_1_native = f_circuit.step_native(1, z_0.clone(), vec![]).unwrap();
assert_eq!(z_1_var.value().unwrap(), z_1_native);
// check that the constraint system is satisfied
assert!(cs.is_satisfied().unwrap());
println!(
"number of constraints of a single instantiation of the PoseidonFoldStepCircuit: {}",
cs.num_constraints()
);
// ----------------
// define type aliases for the FoldingScheme (FS) and Decider (D), to avoid writting the
// whole type each time
pub type FS = Nova<
G1,
GVar,
G2,
GVar2,
PoseidonFoldStepCircuit<Fr, HASHES_PER_STEP>,
Pedersen<G1>,
Pedersen<G2>,
false,
>;
let mut rng = rand::rngs::OsRng;
// prepare the Nova prover & verifier params
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, f_circuit.clone());
let start = Instant::now();
let nova_params = FS::preprocess(&mut rng, &nova_preprocess_params).unwrap();
println!("Nova params generated: {:?}", start.elapsed());
// initialize the folding scheme engine, in our case we use Nova
let mut nova = FS::init(&nova_params, f_circuit, z_0.clone()).unwrap();
// run n steps of the folding iteration
let start_full = Instant::now();
for _ in 0..N_STEPS {
let start = Instant::now();
nova.prove_step(rng, vec![], None).unwrap();
println!(
"Nova::prove_step (poseidon) {}: {:?}",
nova.i,
start.elapsed()
);
}
println!(
"Nova's all {} steps time: {:?}",
N_STEPS,
start_full.elapsed()
);
// verify the last IVC proof
let ivc_proof = nova.ivc_proof();
FS::verify(
nova_params.1.clone(), // Nova's verifier params
ivc_proof,
)
.unwrap();
}
}

+ 182
- 0
src/sha_chain_offchain.rs

@ -0,0 +1,182 @@
///
/// This example performs the IVC:
/// - define the circuit to be folded
/// - fold the circuit with Nova+CycleFold's IVC
/// - verify the IVC proof
///
#[cfg(test)]
mod tests {
use ark_pallas::{constraints::GVar, Fr, Projective as G1};
use ark_vesta::{constraints::GVar as GVar2, Projective as G2};
use ark_crypto_primitives::crh::sha256::{constraints::Sha256Gadget, digest::Digest, Sha256};
use ark_ff::PrimeField;
use ark_r1cs_std::fields::fp::FpVar;
use ark_r1cs_std::{bits::uint8::UInt8, boolean::Boolean, ToBitsGadget, ToBytesGadget};
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use std::marker::PhantomData;
use std::time::Instant;
use folding_schemes::{
commitment::pedersen::Pedersen,
folding::nova::{Nova, PreprocessorParam},
frontend::FCircuit,
transcript::poseidon::poseidon_canonical_config,
Error, FoldingScheme,
};
use crate::utils::tests::*;
/// Test circuit to be folded
#[derive(Clone, Copy, Debug)]
pub struct SHA256FoldStepCircuit<F: PrimeField, const HASHES_PER_STEP: usize> {
_f: PhantomData<F>,
}
impl<F: PrimeField, const HASHES_PER_STEP: usize> FCircuit<F>
for SHA256FoldStepCircuit<F, HASHES_PER_STEP>
{
type Params = ();
fn new(_params: Self::Params) -> Result<Self, Error> {
Ok(Self { _f: PhantomData })
}
fn state_len(&self) -> usize {
32
}
fn external_inputs_len(&self) -> usize {
0
}
fn step_native(
&self,
_i: usize,
z_i: Vec<F>,
_external_inputs: Vec<F>,
) -> Result<Vec<F>, Error> {
let mut b = f_vec_to_bytes(z_i.to_vec());
for _ in 0..HASHES_PER_STEP {
let mut sha256 = Sha256::default();
sha256.update(b);
b = sha256.finalize().to_vec();
}
bytes_to_f_vec(b.to_vec()) // z_{i+1}
}
fn generate_step_constraints(
&self,
_cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>,
_external_inputs: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let mut b: Vec<UInt8<F>> = z_i
.iter()
.map(|f| UInt8::<F>::from_bits_le(&f.to_bits_le().unwrap()[..8]))
.collect::<Vec<_>>();
for _ in 0..HASHES_PER_STEP {
let mut sha256_var = Sha256Gadget::default();
sha256_var.update(&b).unwrap();
b = sha256_var.finalize()?.to_bytes()?;
}
let z_i1: Vec<FpVar<F>> = b
.iter()
.map(|e| {
let bits = e.to_bits_le().unwrap();
Boolean::<F>::le_bits_to_fp_var(&bits).unwrap()
})
.collect();
Ok(z_i1)
}
}
#[test]
fn full_flow() {
// set how many steps of folding we want to compute
const N_STEPS: usize = 5;
const HASHES_PER_STEP: usize = 20;
println!("running Nova folding scheme on SHA256FoldStepCircuit, with N_STEPS={}, HASHES_PER_STEP={}. Total hashes = {}", N_STEPS, HASHES_PER_STEP, N_STEPS* HASHES_PER_STEP);
// set the initial state
// let z_0_aux: Vec<u32> = vec![0_u32; 32 * 8];
let z_0_aux: Vec<u8> = vec![0_u8; 32];
let z_0: Vec<Fr> = z_0_aux.iter().map(|v| Fr::from(*v)).collect::<Vec<Fr>>();
let f_circuit = SHA256FoldStepCircuit::<Fr, HASHES_PER_STEP>::new(()).unwrap();
// ----------------
// Sanity check
// check that the f_circuit produces valid R1CS constraints
use ark_r1cs_std::alloc::AllocVar;
use ark_r1cs_std::fields::fp::FpVar;
use ark_r1cs_std::R1CSVar;
use ark_relations::r1cs::ConstraintSystem;
let cs = ConstraintSystem::<Fr>::new_ref();
let z_0_var = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_0.clone())).unwrap();
let z_1_var = f_circuit
.generate_step_constraints(cs.clone(), 1, z_0_var, vec![])
.unwrap();
// check z_1_var against the native z_1
let z_1_native = f_circuit.step_native(1, z_0.clone(), vec![]).unwrap();
assert_eq!(z_1_var.value().unwrap(), z_1_native);
// check that the constraint system is satisfied
assert!(cs.is_satisfied().unwrap());
println!(
"number of constraints of a single instantiation of the SHA256FoldStepCircuit: {}",
cs.num_constraints()
);
// ----------------
// define type aliases for the FoldingScheme (FS) and Decider (D), to avoid writting the
// whole type each time
pub type FS = Nova<
G1,
GVar,
G2,
GVar2,
SHA256FoldStepCircuit<Fr, HASHES_PER_STEP>,
Pedersen<G1>,
Pedersen<G2>,
false,
>;
let poseidon_config = poseidon_canonical_config::<Fr>();
let mut rng = rand::rngs::OsRng;
// prepare the Nova prover & verifier params
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, f_circuit);
let start = Instant::now();
let nova_params = FS::preprocess(&mut rng, &nova_preprocess_params).unwrap();
println!("Nova params generated: {:?}", start.elapsed());
// initialize the folding scheme engine, in our case we use Nova
let mut nova = FS::init(&nova_params, f_circuit, z_0.clone()).unwrap();
// run n steps of the folding iteration
let start_full = Instant::now();
for _ in 0..N_STEPS {
let start = Instant::now();
nova.prove_step(rng, vec![], None).unwrap();
println!(
"Nova::prove_step (sha256) {}: {:?}",
nova.i,
start.elapsed()
);
}
println!(
"Nova's all {} steps time: {:?}",
N_STEPS,
start_full.elapsed()
);
// verify the last IVC proof
let ivc_proof = nova.ivc_proof();
FS::verify(
nova_params.1.clone(), // Nova's verifier params
ivc_proof,
)
.unwrap();
}
}

src/sha_chain.rs → src/sha_chain_onchain.rs

@ -2,6 +2,7 @@
/// This example performs the full flow:
/// - define the circuit to be folded
/// - fold the circuit with Nova+CycleFold's IVC
/// - verify the IVC proof
/// - generate a DeciderEthCircuit final proof
/// - generate the Solidity contract that verifies the proof
/// - verify the proof in the EVM
@ -60,8 +61,6 @@ mod tests {
fn external_inputs_len(&self) -> usize {
0
}
// function to compute the next state of the folding via rust-native code (not Circom). Used to
// check the Circom values.
fn step_native(
&self,
_i: usize,
@ -176,6 +175,7 @@ mod tests {
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, f_circuit);
let start = Instant::now();
let nova_params = FS::preprocess(&mut rng, &nova_preprocess_params).unwrap();
let pp_hash = nova_params.1.pp_hash().unwrap();
println!("Nova params generated: {:?}", start.elapsed());
// initialize the folding scheme engine, in our case we use Nova
@ -202,22 +202,17 @@ mod tests {
// Sanity check
// The following lines contain a sanity check that checks the IVC proof (before going into
// the zkSNARK proof)
let (running_instance, incoming_instance, cyclefold_instance) = nova.instances();
let ivc_proof = nova.ivc_proof();
FS::verify(
nova_params.1.clone(), // Nova's verifier params
z_0,
nova.z_i.clone(),
nova.i,
running_instance,
incoming_instance,
cyclefold_instance,
ivc_proof,
)
.unwrap();
// ----------------
// prepare the Decider prover & verifier params
let start = Instant::now();
let (decider_pp, decider_vp) = D::preprocess(&mut rng, &nova_params, nova.clone()).unwrap();
let (decider_pp, decider_vp) = D::preprocess(&mut rng, nova_params, nova.clone()).unwrap();
println!("Decider params generated: {:?}", start.elapsed());
let rng = rand::rngs::OsRng;
@ -244,6 +239,7 @@ mod tests {
let calldata: Vec<u8> = prepare_calldata(
function_selector,
pp_hash,
nova.i,
nova.z_0,
nova.z_i,

Loading…
Cancel
Save