Browse Source

add full flow using keccak256-circom. The constraint generation fails, debugging circom & sonobe & arkworks/circom-compat

main
arnaucube 5 months ago
parent
commit
ef9679552c
5 changed files with 316 additions and 0 deletions
  1. +40
    -0
      Cargo.toml
  2. +21
    -0
      circuit/keccak-chain.circom
  3. +18
    -0
      circuit/package.json
  4. +12
    -0
      compile-circuit.sh
  5. +225
    -0
      src/lib.rs

+ 40
- 0
Cargo.toml

@ -0,0 +1,40 @@
[package]
name = "keccak-chain-sonobe"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
[dev-dependencies]
ark-groth16 = { version = "^0.4.0" }
ark-bn254 = { version = "0.4.0", features = ["r1cs"] }
ark-grumpkin = {version="0.4.0", features=["r1cs"]}
ark-ec = "0.4.1"
ark-ff = "0.4.1"
ark-r1cs-std = { version = "0.4.0", default-features = false }
ark-relations = { version = "0.4.0", default-features = false }
ark-poly-commit = "^0.4.0"
ark-crypto-primitives = { version = "^0.4.0", default-features = false, features = [
"r1cs",
"sponge",
"crh",
] }
ark-std = "0.4.0"
color-eyre = "0.6.2"
num-bigint = "0.4.3"
# folding-schemes = { git = "https://github.com/privacy-scaling-explorations/sonobe", package = "folding-schemes"}
folding-schemes = { path = "../folding/sonobe_FIX-CIRCOM/folding-schemes", package = "folding-schemes"}
solidity-verifiers = { git = "https://github.com/privacy-scaling-explorations/sonobe", package = "solidity-verifiers"}
serde = "1.0.198"
serde_json = "1.0.116"
rand = "0.8.5"
[patch.crates-io]
# patch ark_curves to use a cherry-picked version which contains
# bn254::constraints & grumpkin for v0.4.0 (once arkworks v0.5.0 is released
# this will no longer be needed)
ark-bn254 = { git = "https://github.com/arnaucube/ark-curves-cherry-picked", branch="cherry-pick"}
ark-grumpkin = { git = "https://github.com/arnaucube/ark-curves-cherry-picked", branch="cherry-pick"}

+ 21
- 0
circuit/keccak-chain.circom

@ -0,0 +1,21 @@
pragma circom 2.0.0;
include "node_modules/keccak256-circom/circuits/keccak.circom";
template KeccakChain () {
signal input ivc_input[32*8];
signal output ivc_output[32*8];
component keccak = Keccak(32*8, 32*8);
for (var i=0; i<32*8; i++) {
keccak.in[i] <== ivc_input[i];
}
for (var i=0; i<32*8; i++) {
ivc_output[i] <== keccak.out[i];
}
}
// for a input & output of 32 bytes:
component main { public [ivc_input] } = KeccakChain();

+ 18
- 0
circuit/package.json

@ -0,0 +1,18 @@
{
"name": "fakeid-demo",
"version": "0.0.1",
"description": "iden3 circuits",
"main": "index.js",
"scripts": {
"clean": "rm -fR dist",
"build": "npm run clean && ./node_modules/.bin/tsc --strictNullChecks",
"test": "./node_modules/.bin/mocha --timeout 5000 -p -r ts-node/register '*.test.ts'",
"postinstall":"cd node_modules/keccak256-circom && npm install"
},
"license": "GPL-3.0",
"dependencies": {
"circomlib": "^2.0.5",
"keccak256-circom": "git://github.com/vocdoni/keccak256-circom.git"
}
}

+ 12
- 0
compile-circuit.sh

@ -0,0 +1,12 @@
#!/bin/bash
# rm previous files
rm -r ./circuit/keccak-chain_js
rm circuit/keccak-chain.r1cs
rm circuit/keccak-chain.sym
cd circuit
npm install
cd ..
circom ./circuit/keccak-chain.circom --O0 --r1cs --sym --wasm --prime bn128 --output ./circuit/

+ 225
- 0
src/lib.rs

@ -0,0 +1,225 @@
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]
///
/// This example performs the full flow:
/// - define the circuit to be folded
/// - fold the circuit with Nova+CycleFold's IVC
/// - generate a DeciderEthCircuit final proof
/// - generate the Solidity contract that verifies the proof
/// - verify the proof in the EVM
///
#[cfg(test)]
mod tests {
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as G1};
use ark_grumpkin::{constraints::GVar as GVar2, Projective as G2};
use ark_crypto_primitives::snark::SNARK;
use ark_groth16::{Groth16, ProvingKey, VerifyingKey as G16VerifierKey};
use ark_poly_commit::kzg10::VerifierKey as KZGVerifierKey;
use ark_std::Zero;
use std::path::PathBuf;
use std::time::Instant;
use folding_schemes::{
commitment::{
kzg::{ProverKey as KZGProverKey, KZG},
pedersen::Pedersen,
CommitmentScheme,
},
folding::nova::{
decider_eth::{prepare_calldata, Decider as DeciderEth},
decider_eth_circuit::DeciderEthCircuit,
get_r1cs, Nova, ProverParams, VerifierParams,
},
frontend::{circom::CircomFCircuit, FCircuit},
transcript::poseidon::poseidon_test_config,
Decider, FoldingScheme,
};
use solidity_verifiers::{
evm::{compile_solidity, Evm},
utils::get_function_selector_for_nova_cyclefold_verifier,
verifiers::nova_cyclefold::get_decider_template_for_cyclefold_decider,
NovaCycleFoldVerifierKey,
};
// This method computes the Nova's Prover & Verifier parameters for the example.
// Warning: this method is only for testing purposes. For a real world use case those parameters
// should be generated carefully (both the PoseidonConfig and the PedersenParams).
#[allow(clippy::type_complexity)]
fn init_nova_ivc_params<FC: FCircuit<Fr>>(
F_circuit: FC,
) -> (
ProverParams<G1, G2, KZG<'static, Bn254>, Pedersen<G2>>,
VerifierParams<G1, G2>,
KZGVerifierKey<Bn254>,
) {
let mut rng = ark_std::test_rng();
let poseidon_config = poseidon_test_config::<Fr>();
// get the CM & CF_CM len
let (r1cs, cf_r1cs) =
get_r1cs::<G1, GVar, G2, GVar2, FC>(&poseidon_config, F_circuit).unwrap();
let cs_len = r1cs.A.n_rows;
let cf_cs_len = cf_r1cs.A.n_rows;
// let (pedersen_params, _) = Pedersen::<G1>::setup(&mut rng, cf_len).unwrap();
let (kzg_pk, kzg_vk): (KZGProverKey<G1>, KZGVerifierKey<Bn254>) =
KZG::<Bn254>::setup(&mut rng, cs_len).unwrap();
let (cf_pedersen_params, _) = Pedersen::<G2>::setup(&mut rng, cf_cs_len).unwrap();
let fs_prover_params = ProverParams::<G1, G2, KZG<Bn254>, Pedersen<G2>> {
poseidon_config: poseidon_config.clone(),
cs_params: kzg_pk.clone(),
cf_cs_params: cf_pedersen_params,
};
let fs_verifier_params = VerifierParams::<G1, G2> {
poseidon_config: poseidon_config.clone(),
r1cs,
cf_r1cs,
};
(fs_prover_params, fs_verifier_params, kzg_vk)
}
/// Initializes Nova parameters and DeciderEth parameters. Only for test purposes.
#[allow(clippy::type_complexity)]
fn init_ivc_and_decider_params<FC: FCircuit<Fr>>(
f_circuit: FC,
) -> (
ProverParams<G1, G2, KZG<'static, Bn254>, Pedersen<G2>>,
KZGVerifierKey<Bn254>,
ProvingKey<Bn254>,
G16VerifierKey<Bn254>,
) {
let mut rng = rand::rngs::OsRng;
let start = Instant::now();
let (fs_prover_params, _, kzg_vk) = init_nova_ivc_params::<FC>(f_circuit.clone());
println!("generated Nova folding params: {:?}", start.elapsed());
pub type NOVA<FC> = Nova<G1, GVar, G2, GVar2, FC, KZG<'static, Bn254>, Pedersen<G2>>;
let z_0 = vec![Fr::zero(); f_circuit.state_len()];
let nova = NOVA::init(&fs_prover_params, f_circuit, z_0.clone()).unwrap();
let decider_circuit =
DeciderEthCircuit::<G1, GVar, G2, GVar2, KZG<Bn254>, Pedersen<G2>>::from_nova::<FC>(
nova.clone(),
)
.unwrap();
let start = Instant::now();
let (g16_pk, g16_vk) =
Groth16::<Bn254>::circuit_specific_setup(decider_circuit.clone(), &mut rng).unwrap();
println!(
"generated G16 (Decider circuit) params: {:?}",
start.elapsed()
);
(fs_prover_params, kzg_vk, g16_pk, g16_vk)
}
#[test]
fn full_flow() {
// set the initial state
let z_0_aux: Vec<u32> = vec![0_u32; 32 * 8];
let z_0: Vec<Fr> = z_0_aux.iter().map(|v| Fr::from(*v)).collect::<Vec<Fr>>();
// initialize the Circom circuit
let r1cs_path = PathBuf::from("./circuit/keccak-chain.r1cs");
let wasm_path = PathBuf::from("./circuit/keccak-chain_js/keccak-chain.wasm");
let f_circuit_params = (r1cs_path, wasm_path, 32 * 8, 0);
let f_circuit = CircomFCircuit::<Fr>::new(f_circuit_params).unwrap();
let (fs_prover_params, kzg_vk, g16_pk, g16_vk) =
init_ivc_and_decider_params::<CircomFCircuit<Fr>>(f_circuit.clone());
pub type NOVA =
Nova<G1, GVar, G2, GVar2, CircomFCircuit<Fr>, KZG<'static, Bn254>, Pedersen<G2>>;
pub type DECIDERETH_FCircuit = DeciderEth<
G1,
GVar,
G2,
GVar2,
CircomFCircuit<Fr>,
KZG<'static, Bn254>,
Pedersen<G2>,
Groth16<Bn254>,
NOVA,
>;
// initialize the folding scheme engine, in our case we use Nova
let mut nova = NOVA::init(&fs_prover_params, f_circuit.clone(), z_0).unwrap();
// run n steps of the folding iteration
for i in 0..10 {
let start = Instant::now();
nova.prove_step(vec![]).unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}
let rng = rand::rngs::OsRng;
let start = Instant::now();
let proof = DECIDERETH_FCircuit::prove(
(g16_pk, fs_prover_params.cs_params.clone()),
rng,
nova.clone(),
)
.unwrap();
println!("generated Decider proof: {:?}", start.elapsed());
let verified = DECIDERETH_FCircuit::verify(
(g16_vk.clone(), kzg_vk.clone()),
nova.i,
nova.z_0.clone(),
nova.z_i.clone(),
&nova.U_i,
&nova.u_i,
&proof,
)
.unwrap();
assert!(verified);
println!("Decider proof verification: {}", verified);
// Now, let's generate the Solidity code that verifies this Decider final proof
let function_selector =
get_function_selector_for_nova_cyclefold_verifier(nova.z_0.len() * 2 + 1);
let calldata: Vec<u8> = prepare_calldata(
function_selector,
nova.i,
nova.z_0,
nova.z_i,
&nova.U_i,
&nova.u_i,
proof,
)
.unwrap();
// prepare the setup params for the solidity verifier
let nova_cyclefold_vk =
NovaCycleFoldVerifierKey::from((g16_vk, kzg_vk, f_circuit.state_len()));
// generate the solidity code
let decider_solidity_code = get_decider_template_for_cyclefold_decider(nova_cyclefold_vk);
// verify the proof against the solidity code in the EVM
let nova_cyclefold_verifier_bytecode =
compile_solidity(&decider_solidity_code, "NovaDecider");
let mut evm = Evm::default();
let verifier_address = evm.create(nova_cyclefold_verifier_bytecode);
let (_, output) = evm.call(verifier_address, calldata.clone());
assert_eq!(*output.last().unwrap(), 1);
// save smart contract and the calldata
println!("storing nova-verifier.sol and the calldata into files");
use std::fs;
fs::write(
"./examples/nova-verifier.sol",
decider_solidity_code.clone(),
)
.unwrap();
fs::write("./examples/solidity-calldata.calldata", calldata.clone()).unwrap();
let s = solidity_verifiers::utils::get_formatted_calldata(calldata.clone());
fs::write("./examples/solidity-calldata.inputs", s.join(",\n")).expect("");
}
}

Loading…
Cancel
Save