@ -0,0 +1,40 @@ |
|||
[package] |
|||
name = "keccak-chain-sonobe" |
|||
version = "0.1.0" |
|||
edition = "2021" |
|||
|
|||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html |
|||
|
|||
[dependencies] |
|||
|
|||
[dev-dependencies] |
|||
ark-groth16 = { version = "^0.4.0" } |
|||
ark-bn254 = { version = "0.4.0", features = ["r1cs"] } |
|||
ark-grumpkin = {version="0.4.0", features=["r1cs"]} |
|||
ark-ec = "0.4.1" |
|||
ark-ff = "0.4.1" |
|||
ark-r1cs-std = { version = "0.4.0", default-features = false } |
|||
ark-relations = { version = "0.4.0", default-features = false } |
|||
ark-poly-commit = "^0.4.0" |
|||
ark-crypto-primitives = { version = "^0.4.0", default-features = false, features = [ |
|||
"r1cs", |
|||
"sponge", |
|||
"crh", |
|||
] } |
|||
ark-std = "0.4.0" |
|||
color-eyre = "0.6.2" |
|||
num-bigint = "0.4.3" |
|||
# folding-schemes = { git = "https://github.com/privacy-scaling-explorations/sonobe", package = "folding-schemes"} |
|||
folding-schemes = { path = "../folding/sonobe_FIX-CIRCOM/folding-schemes", package = "folding-schemes"} |
|||
solidity-verifiers = { git = "https://github.com/privacy-scaling-explorations/sonobe", package = "solidity-verifiers"} |
|||
serde = "1.0.198" |
|||
serde_json = "1.0.116" |
|||
|
|||
rand = "0.8.5" |
|||
|
|||
[patch.crates-io] |
|||
# patch ark_curves to use a cherry-picked version which contains |
|||
# bn254::constraints & grumpkin for v0.4.0 (once arkworks v0.5.0 is released |
|||
# this will no longer be needed) |
|||
ark-bn254 = { git = "https://github.com/arnaucube/ark-curves-cherry-picked", branch="cherry-pick"} |
|||
ark-grumpkin = { git = "https://github.com/arnaucube/ark-curves-cherry-picked", branch="cherry-pick"} |
@ -0,0 +1,21 @@ |
|||
pragma circom 2.0.0; |
|||
|
|||
include "node_modules/keccak256-circom/circuits/keccak.circom"; |
|||
|
|||
template KeccakChain () { |
|||
signal input ivc_input[32*8]; |
|||
signal output ivc_output[32*8]; |
|||
|
|||
component keccak = Keccak(32*8, 32*8); |
|||
|
|||
for (var i=0; i<32*8; i++) { |
|||
keccak.in[i] <== ivc_input[i]; |
|||
} |
|||
for (var i=0; i<32*8; i++) { |
|||
ivc_output[i] <== keccak.out[i]; |
|||
} |
|||
} |
|||
|
|||
// for a input & output of 32 bytes: |
|||
component main { public [ivc_input] } = KeccakChain(); |
|||
|
@ -0,0 +1,18 @@ |
|||
{ |
|||
"name": "fakeid-demo", |
|||
"version": "0.0.1", |
|||
"description": "iden3 circuits", |
|||
"main": "index.js", |
|||
"scripts": { |
|||
"clean": "rm -fR dist", |
|||
"build": "npm run clean && ./node_modules/.bin/tsc --strictNullChecks", |
|||
"test": "./node_modules/.bin/mocha --timeout 5000 -p -r ts-node/register '*.test.ts'", |
|||
"postinstall":"cd node_modules/keccak256-circom && npm install" |
|||
}, |
|||
"license": "GPL-3.0", |
|||
"dependencies": { |
|||
"circomlib": "^2.0.5", |
|||
"keccak256-circom": "git://github.com/vocdoni/keccak256-circom.git" |
|||
|
|||
} |
|||
} |
@ -0,0 +1,12 @@ |
|||
#!/bin/bash |
|||
|
|||
# rm previous files |
|||
rm -r ./circuit/keccak-chain_js |
|||
rm circuit/keccak-chain.r1cs |
|||
rm circuit/keccak-chain.sym |
|||
|
|||
cd circuit |
|||
npm install |
|||
cd .. |
|||
|
|||
circom ./circuit/keccak-chain.circom --O0 --r1cs --sym --wasm --prime bn128 --output ./circuit/ |
@ -0,0 +1,225 @@ |
|||
#![allow(non_snake_case)]
|
|||
#![allow(non_camel_case_types)]
|
|||
#![allow(clippy::upper_case_acronyms)]
|
|||
///
|
|||
/// This example performs the full flow:
|
|||
/// - define the circuit to be folded
|
|||
/// - fold the circuit with Nova+CycleFold's IVC
|
|||
/// - generate a DeciderEthCircuit final proof
|
|||
/// - generate the Solidity contract that verifies the proof
|
|||
/// - verify the proof in the EVM
|
|||
///
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as G1};
|
|||
use ark_grumpkin::{constraints::GVar as GVar2, Projective as G2};
|
|||
|
|||
use ark_crypto_primitives::snark::SNARK;
|
|||
use ark_groth16::{Groth16, ProvingKey, VerifyingKey as G16VerifierKey};
|
|||
use ark_poly_commit::kzg10::VerifierKey as KZGVerifierKey;
|
|||
|
|||
use ark_std::Zero;
|
|||
|
|||
use std::path::PathBuf;
|
|||
use std::time::Instant;
|
|||
|
|||
use folding_schemes::{
|
|||
commitment::{
|
|||
kzg::{ProverKey as KZGProverKey, KZG},
|
|||
pedersen::Pedersen,
|
|||
CommitmentScheme,
|
|||
},
|
|||
folding::nova::{
|
|||
decider_eth::{prepare_calldata, Decider as DeciderEth},
|
|||
decider_eth_circuit::DeciderEthCircuit,
|
|||
get_r1cs, Nova, ProverParams, VerifierParams,
|
|||
},
|
|||
frontend::{circom::CircomFCircuit, FCircuit},
|
|||
transcript::poseidon::poseidon_test_config,
|
|||
Decider, FoldingScheme,
|
|||
};
|
|||
use solidity_verifiers::{
|
|||
evm::{compile_solidity, Evm},
|
|||
utils::get_function_selector_for_nova_cyclefold_verifier,
|
|||
verifiers::nova_cyclefold::get_decider_template_for_cyclefold_decider,
|
|||
NovaCycleFoldVerifierKey,
|
|||
};
|
|||
|
|||
// This method computes the Nova's Prover & Verifier parameters for the example.
|
|||
// Warning: this method is only for testing purposes. For a real world use case those parameters
|
|||
// should be generated carefully (both the PoseidonConfig and the PedersenParams).
|
|||
#[allow(clippy::type_complexity)]
|
|||
fn init_nova_ivc_params<FC: FCircuit<Fr>>(
|
|||
F_circuit: FC,
|
|||
) -> (
|
|||
ProverParams<G1, G2, KZG<'static, Bn254>, Pedersen<G2>>,
|
|||
VerifierParams<G1, G2>,
|
|||
KZGVerifierKey<Bn254>,
|
|||
) {
|
|||
let mut rng = ark_std::test_rng();
|
|||
let poseidon_config = poseidon_test_config::<Fr>();
|
|||
|
|||
// get the CM & CF_CM len
|
|||
let (r1cs, cf_r1cs) =
|
|||
get_r1cs::<G1, GVar, G2, GVar2, FC>(&poseidon_config, F_circuit).unwrap();
|
|||
let cs_len = r1cs.A.n_rows;
|
|||
let cf_cs_len = cf_r1cs.A.n_rows;
|
|||
|
|||
// let (pedersen_params, _) = Pedersen::<G1>::setup(&mut rng, cf_len).unwrap();
|
|||
let (kzg_pk, kzg_vk): (KZGProverKey<G1>, KZGVerifierKey<Bn254>) =
|
|||
KZG::<Bn254>::setup(&mut rng, cs_len).unwrap();
|
|||
let (cf_pedersen_params, _) = Pedersen::<G2>::setup(&mut rng, cf_cs_len).unwrap();
|
|||
|
|||
let fs_prover_params = ProverParams::<G1, G2, KZG<Bn254>, Pedersen<G2>> {
|
|||
poseidon_config: poseidon_config.clone(),
|
|||
cs_params: kzg_pk.clone(),
|
|||
cf_cs_params: cf_pedersen_params,
|
|||
};
|
|||
let fs_verifier_params = VerifierParams::<G1, G2> {
|
|||
poseidon_config: poseidon_config.clone(),
|
|||
r1cs,
|
|||
cf_r1cs,
|
|||
};
|
|||
(fs_prover_params, fs_verifier_params, kzg_vk)
|
|||
}
|
|||
|
|||
/// Initializes Nova parameters and DeciderEth parameters. Only for test purposes.
|
|||
#[allow(clippy::type_complexity)]
|
|||
fn init_ivc_and_decider_params<FC: FCircuit<Fr>>(
|
|||
f_circuit: FC,
|
|||
) -> (
|
|||
ProverParams<G1, G2, KZG<'static, Bn254>, Pedersen<G2>>,
|
|||
KZGVerifierKey<Bn254>,
|
|||
ProvingKey<Bn254>,
|
|||
G16VerifierKey<Bn254>,
|
|||
) {
|
|||
let mut rng = rand::rngs::OsRng;
|
|||
let start = Instant::now();
|
|||
let (fs_prover_params, _, kzg_vk) = init_nova_ivc_params::<FC>(f_circuit.clone());
|
|||
println!("generated Nova folding params: {:?}", start.elapsed());
|
|||
|
|||
pub type NOVA<FC> = Nova<G1, GVar, G2, GVar2, FC, KZG<'static, Bn254>, Pedersen<G2>>;
|
|||
let z_0 = vec![Fr::zero(); f_circuit.state_len()];
|
|||
let nova = NOVA::init(&fs_prover_params, f_circuit, z_0.clone()).unwrap();
|
|||
|
|||
let decider_circuit =
|
|||
DeciderEthCircuit::<G1, GVar, G2, GVar2, KZG<Bn254>, Pedersen<G2>>::from_nova::<FC>(
|
|||
nova.clone(),
|
|||
)
|
|||
.unwrap();
|
|||
let start = Instant::now();
|
|||
let (g16_pk, g16_vk) =
|
|||
Groth16::<Bn254>::circuit_specific_setup(decider_circuit.clone(), &mut rng).unwrap();
|
|||
println!(
|
|||
"generated G16 (Decider circuit) params: {:?}",
|
|||
start.elapsed()
|
|||
);
|
|||
(fs_prover_params, kzg_vk, g16_pk, g16_vk)
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn full_flow() {
|
|||
// set the initial state
|
|||
let z_0_aux: Vec<u32> = vec![0_u32; 32 * 8];
|
|||
let z_0: Vec<Fr> = z_0_aux.iter().map(|v| Fr::from(*v)).collect::<Vec<Fr>>();
|
|||
|
|||
// initialize the Circom circuit
|
|||
let r1cs_path = PathBuf::from("./circuit/keccak-chain.r1cs");
|
|||
let wasm_path = PathBuf::from("./circuit/keccak-chain_js/keccak-chain.wasm");
|
|||
|
|||
let f_circuit_params = (r1cs_path, wasm_path, 32 * 8, 0);
|
|||
let f_circuit = CircomFCircuit::<Fr>::new(f_circuit_params).unwrap();
|
|||
|
|||
let (fs_prover_params, kzg_vk, g16_pk, g16_vk) =
|
|||
init_ivc_and_decider_params::<CircomFCircuit<Fr>>(f_circuit.clone());
|
|||
|
|||
pub type NOVA =
|
|||
Nova<G1, GVar, G2, GVar2, CircomFCircuit<Fr>, KZG<'static, Bn254>, Pedersen<G2>>;
|
|||
pub type DECIDERETH_FCircuit = DeciderEth<
|
|||
G1,
|
|||
GVar,
|
|||
G2,
|
|||
GVar2,
|
|||
CircomFCircuit<Fr>,
|
|||
KZG<'static, Bn254>,
|
|||
Pedersen<G2>,
|
|||
Groth16<Bn254>,
|
|||
NOVA,
|
|||
>;
|
|||
|
|||
// initialize the folding scheme engine, in our case we use Nova
|
|||
let mut nova = NOVA::init(&fs_prover_params, f_circuit.clone(), z_0).unwrap();
|
|||
// run n steps of the folding iteration
|
|||
for i in 0..10 {
|
|||
let start = Instant::now();
|
|||
nova.prove_step(vec![]).unwrap();
|
|||
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
|
|||
}
|
|||
|
|||
let rng = rand::rngs::OsRng;
|
|||
let start = Instant::now();
|
|||
let proof = DECIDERETH_FCircuit::prove(
|
|||
(g16_pk, fs_prover_params.cs_params.clone()),
|
|||
rng,
|
|||
nova.clone(),
|
|||
)
|
|||
.unwrap();
|
|||
println!("generated Decider proof: {:?}", start.elapsed());
|
|||
|
|||
let verified = DECIDERETH_FCircuit::verify(
|
|||
(g16_vk.clone(), kzg_vk.clone()),
|
|||
nova.i,
|
|||
nova.z_0.clone(),
|
|||
nova.z_i.clone(),
|
|||
&nova.U_i,
|
|||
&nova.u_i,
|
|||
&proof,
|
|||
)
|
|||
.unwrap();
|
|||
assert!(verified);
|
|||
println!("Decider proof verification: {}", verified);
|
|||
|
|||
// Now, let's generate the Solidity code that verifies this Decider final proof
|
|||
let function_selector =
|
|||
get_function_selector_for_nova_cyclefold_verifier(nova.z_0.len() * 2 + 1);
|
|||
|
|||
let calldata: Vec<u8> = prepare_calldata(
|
|||
function_selector,
|
|||
nova.i,
|
|||
nova.z_0,
|
|||
nova.z_i,
|
|||
&nova.U_i,
|
|||
&nova.u_i,
|
|||
proof,
|
|||
)
|
|||
.unwrap();
|
|||
|
|||
// prepare the setup params for the solidity verifier
|
|||
let nova_cyclefold_vk =
|
|||
NovaCycleFoldVerifierKey::from((g16_vk, kzg_vk, f_circuit.state_len()));
|
|||
|
|||
// generate the solidity code
|
|||
let decider_solidity_code = get_decider_template_for_cyclefold_decider(nova_cyclefold_vk);
|
|||
|
|||
// verify the proof against the solidity code in the EVM
|
|||
let nova_cyclefold_verifier_bytecode =
|
|||
compile_solidity(&decider_solidity_code, "NovaDecider");
|
|||
let mut evm = Evm::default();
|
|||
let verifier_address = evm.create(nova_cyclefold_verifier_bytecode);
|
|||
let (_, output) = evm.call(verifier_address, calldata.clone());
|
|||
assert_eq!(*output.last().unwrap(), 1);
|
|||
|
|||
// save smart contract and the calldata
|
|||
println!("storing nova-verifier.sol and the calldata into files");
|
|||
use std::fs;
|
|||
fs::write(
|
|||
"./examples/nova-verifier.sol",
|
|||
decider_solidity_code.clone(),
|
|||
)
|
|||
.unwrap();
|
|||
fs::write("./examples/solidity-calldata.calldata", calldata.clone()).unwrap();
|
|||
let s = solidity_verifiers::utils::get_formatted_calldata(calldata.clone());
|
|||
fs::write("./examples/solidity-calldata.inputs", s.join(",\n")).expect("");
|
|||
}
|
|||
}
|