
Small Powers of TauSmall Powers of Tau

Sep 20th, 2022

KZG10 Ceremony Audit ReportKZG10 Ceremony Audit Report

1. Introduction1. Introduction

Small Powers of Tau provides a solution for Ethereum's Powers of Tau (PoT) setup

ceremony. From August 15th to September 10th, 2022, SECBIT Labs conducted a review of

both the technical specification and the Rust implementation. Our assessment reveals no

critical issues in either the specification or the implementation. We have reported some

potential risks in the code and have comments on optimizing the code and the

documentation (see section 5 for details).

https://github.com/ethereum/kzg-ceremony-specs
https://github.com/crate-crypto/small-powers-of-tau

NameName Small Powers of TauSmall Powers of Tau

Source https://github.com/crate-crypto/small-powers-of-tau

Initial Commit 168ec297cc45799754d5760c30ad64c44d8a975e

Final Commit 7792ca98041b6e07b10f12efdfee8c9b712b33bf

Languages Rust

Specification https://github.com/ethereum/kzg-ceremony-specs

Initial Commit 5c562eb2b754456105ae254d44c0fdea54f3e360

Final Commit 5e5d714079aa0b80641edb8ca11367b1211bc479

2. Overview2. Overview

This part provides an overview of our assessment.

2.1 Basic Information2.1 Basic Information

Our review covers the following repositories:

https://github.com/crate-crypto/small-powers-of-tau
https://github.com/ethereum/kzg-ceremony-specs

NameName LinesLines DescriptionDescription

lib.rs 8 Crate root with its modules

srs.rs 378 SRS struct with its implementation

update_proofs.rs 36 UpdateProof struct with its implementation

shared_secrets.rs 115 SharedSecretChain struct with its implementation

serialisation.rs 225 serialization for SRS and UpdateProof

sdk.rs 72 Transcript struct with its update and subgroup check

NameName LinesLines DescriptionDescription

BLS.md 63 BLS12-381 curve.

coordinator.md 111 Behavior of a coordinator.

participant.md 119 Behavior of a participant.

sdk.md 64 SDK interface (optional).

2.2 File Lists2.2 File Lists

The files listed below are the source code files of Small Powers of Tau that are considered

within the scope of the audit:

We have also conducted a review for the following specification documents in the kzg-

ceremony-specs repository:

https://github.com/crate-crypto/small-powers-of-tau
https://github.com/ethereum/kzg-ceremony-specs

No.No. Issue Tit leIssue Tit le Ty peTy pe Le velLe vel StatusStatus

1 Potential overflow or array out-of-bounds errors may cause panic Security Risk Medium Fixed

2 Redundant array allocation Code Optimization Low Fixed

3 Unfixed dependencies versions Code Optimization Low Fixed

4 Redundant file Code Optimization Info Fixed

5 Redundant functions Code Optimization Info Fixed

6 Typo in kzg-ceremony-specs(Correct construction of G1/G2 Powers) Document Optimization Low Fixed

7 Typo in kzg-ceremony-specs(Running Product Subgroup check) Document Optimization Low Fixed

8 Inconsistency between Rust code and kzg-ceremony-specs about 'Witness Subgroup
checks'

Document Optimization Info Discussed

9 Inconsistency between Rust code and kzg-ceremony-specs about Transcript Document Optimization Info Discussed

2.3 Findings2.3 Findings

We would like to outline the issues found in the rust implementation and the specification

as follows:

3. Project Analysis3. Project Analysis

This part contains an overview of the Small Powers of Tau ceremony, followed by a

function-level analysis of the rust implementation.

3.1 Overview of PoT ceremonies3.1 Overview of PoT ceremonies

A PoT Ceremony collaboratively computes a structured reference string that takes the form

of

Herein and mark elements of two distinctive groups and both of prime order

, and upon them a bilinear pairing operation is defined . The value of

 is determined as the product of all participant's private keys s.t. .

The mainstream of existing PoT implementations follows the specifications of BGM17.

However, recent theoretical studies (KMSV21 in particular) have demonstrated that under

the algebraic group model with integrated random oracles, some components of BGM17 are

redundant, including

hashes of protocol views in proofs of knowledge for private keys;

reliance on external random beacons.

Small Powers of Tau honors these conclusions and hence enjoys significant simplifications

over BGM17. For an overview of Small Powers of Tau, we summarized the behaviors of the

two involving roles, the participant and the coordinator, as follows:

Participant

A participant's task is to

1. Generate a key pair

https://eprint.iacr.org/2021/219.pdf
https://github.com/crate-crypto/small-powers-of-tau

The participant chooses a value as his private key and computes

 as his public key.

2. Update the reference string

To contribute to the ceremony, the participant receives from the coordinate the

latest reference string , parse it as as , and update each

element of using his private key

It submits the the updated to the coordinator.

3. Produce an update proof

Each update should be accompanied by an update proof . It is

essentially a proof of knowledge for the private key .

This minimalist update proof features significant simplifications over that of BGM17.
In BGM17, the participant has to collect the protocol view up to this moment, employs
a hash-to-group step to produce , and uses as the proof of
knowledge for the private key .

Coordinator

The coordinator acts as the middle man of the ceremony. His tasks are to

1. Initiate the ceremony

The coordinator initiate the ceremony by creating a clean-slate with .

2. Sequence participants

The coordinator sends the latest to a participant and collects the updated

and the accompanying proof in due time. It has to decide whether to accept or

discard the update. Then the coordinator proceeds the ceremony by sending

either the updated or the original to the next contributor.

3. Verify updates

To verify whether an update is valid, the coordinator has to check that all

elements of the updated are non-empty, non-zero, and in the correct prime-

ordered subgroups. Then it parses the update proof as , and

confirms that agrees with the degree-1 element of . It check

whether is corrected related to by pairing equation

and whether conforms with the powers of tau structure.

The update will be thrown away when any checks fail.

Specific to Ethereum's PoT setup, there are four sets of to be generated. They spell out in

the transmitted between the coordinator and the participants as

The values are produced by four separate sets of private keys provided by the

participants. The implementation is based on curve BLS12-381

3.2 Function Description3.2 Function Description

This section presents a detailed analysis of the Rust implementation of Small Powers of Tau.

The source code consists of 7 main structures distributed in 8 files.

lib.rslib.rs

The root of the crate.

keypair.rskeypair.rs

The keypair.rs defines a struct PrivateKey which stores the secret value tau.

Four methods are implemented for the PrivateKey struct to create a cryptographically

secure secret value and compute the corresponding public key.

pub struct PrivateKey {
 pub(crate) tau: Fr,
}

https://docs.rs/crate/ark-bls12-381/0.3.0

1. rand<R: Rng>(mut rand: R) -> Self

It generates a PrivateKey using entropy from an RNG.

2. from_bytes(bytes: &[u8]) -> Self

It converts the input byte array to a PrivateKey.

3. to_public(self) -> G2Projective

It generates the corresponding public key.

4. from_u64(int: u64) -> Self

It converts the input to a PrivateKey. This function is only used for testing.

srs.rssrs.rs

The srs.rs defines structs SRS and Parameters.

The struct Parameters specifies the length of SRS, i.e., the numbers of elements in and

.

The struct SRS stores the powers of tau in and .

Nine methods are implemented for the SRS so that users can create, update and verify an

SRS. All the checks defined in the kzg-ceremony-specs are included.

1. new(parameters: Parameters) -> SRS

It creates a PoT ceremony using parameters in Parameters. In the clean-slate SRS,

all elements of tau_g1 and tau_g2 equal the respective generators of and .

2. new_for_kzg(num_coefficients: usize) -> SRS

It creates a powers-of-tau ceremony with num_g2_elements_needed=2. This

function is only used for testing.

3. update(&mut self, private_key: PrivateKey) -> UpdateProof

pub struct Parameters {
 pub num_g1_elements_needed: usize,
 pub num_g2_elements_needed: usize,
}

pub struct SRS {
 pub(crate) tau_g1: Vec<G1Projective>,
 pub(crate) tau_g2: Vec<G2Projective>,
}

It updates the SRS by calling .update_srs() with PrivateKey and produces a

proof UpdateProof.

4. update_srs(&mut self, private_key: Fr)

It is a private function that updates SRS elements by private_key. It calls the

vandemonde_challenge() function for generating powers of private_key and

then uses the wNAF algorithm to compute scalar multiplications.

5. subgroup_check(&self) -> bool

It is used to check that the list of and elements are in the prime order subgroup

by calling is_in_correct_subgroup_assuming_on_curve(p:
&GroupAffine<Parameters>) on each point.

6. verify_update(before: &SRS, after: &SRS, update_proof:
&UpdateProof) -> bool

It is a special case of verify_updates() where a single update is involved.

7. verify_updates(before: &SRS, after: &SRS, update_proofs: &
[UpdateProof]) -> bool

It verifies whether the transition from one SRS to the other was valid by the

UpdateProof.

There are five points to check in this function:

Non-empty check

Consistency check for update_proofs and the after SRS

Proofs verification by verify_chain function

Non-zero check

Structure check for after SRS

8. structure_check(&self) -> bool

It is a private function checking whether SRS conforms with the powers of tau

structure. It performs pair-wise checks on elements by comparing

pairing(tau_i_next, tau_g2_0) and pairing(tau_i, tau_g2_1), and

likewise on elements, pairing(tau_g1_0, tau_i_next) and

pairing(tau_g1_1, tau_i).

9. structure_check_opt(&self, random_element: Fr) -> bool

It is a private function and an optimized version of structure_check based on the

note. It constructs linear combinations of elements in tau_g1 and tau_g2. It

probabilistically checks the structure of SRS using only two pairings.

https://hackmd.io/C0lk1xyWQryGggRlNYDqZw#Appendix-1---Incremental-powers-of-tau-check-Batching

update_proof.rsupdate_proof.rs

The update_proof.rs defines a struct UpdateProof which stores a degree-1 element

new_accumulated_point of the updated SRS and a witness of the secret value tau as

commitment_to_secret.

Only one method is implemented for the UpdateProof, which verifies a list of

UpdateProof.

1. verify_chain(starting_point: G1Projective,update_proofs: &
[UpdateProof],) -> bool

It uses SharedSecretChain as a subroutine. It accumulates update_proofs to a

SharedSecretChain, and then calls verify() on the chain.

shared_secret.rsshared_secret.rs

The shared_secret.rs contains a struct SharedSecretChain which reconstructs a chain of

proofs from a specified starting point. A shared secret proof proves that a point was

necessarily created by multiplying the discrete log of a series of previous points.

There are four methods implemented for the SharedSecretChain.

1. starting_from(starting_point: G1Projective) -> Self

It creates a SharedSecretChain using a point as the first element.

2. extend(&mut self, new_accumulated_point: G1Projective, witness:
G2Projective)

It extends a shared secret chain with a new accumulated point and a new witness.

3. remove_last(&mut self)

pub struct UpdateProof {
 // A commitment to the secret scalar `p`
 pub(crate) commitment_to_secret: G2Projective,
 // This is the degree-1 element of the SRS after it has been
 // updated by the contributor
 pub(crate) new_accumulated_point: G1Projective,
}

pub struct SharedSecretChain {
 accumulated_points: Vec<G1Projective>,
 witnesses: Vec<G2Projective>,
}

It removes the last element of accumulated_points and witnesses in

SharedSecretChain. It is for testing.

4. verify(&self) -> bool

It verifies a shared secret chain such that each point in accumulated_points is

updated from the previous one using the specified witness.

serialisation.rsserialisation.rs

The serialisation.rs contains some functions for serializing/deserializing SRS or

UpdateProof into/from JSON arrays.

1. serialise(&self) -> (Vec<String>, Vec<String>)

This function use the .to_json_array() method to serialize SRS or UpdateProof

into JSON array.

2. to_json_array(&self) -> (Vec<String>, Vec<String>)

It is a private function. It converts SRS or UpdateProof into two string vectors.

3. deserialise(json_arr: (Vec<String>, Vec<String>),parameters:
Parameters,) -> Option<Self>

This function use the .from_json_array() method to deserializejson_arr to

SRS or UpdateProof structure.

4. from_json_array(json_array: (Vec<String>,
Vec<String>),parameters: Parameters,) -> Option<Self>

It is a private function. This function converts a String to a point element in or

.

sdk.rssdk.rs

The sdk.rs contains a struct Transcript using the parameters specified in the kzg-

ceremony-specs.

pub struct Transcript {
 sub_ceremonies: [SRS; NUM_CEREMONIES],
}

There are two functions defined in the sdk.rs.

1. update_transcript(mut transcript: Transcript,secrets: [String;
NUM_CEREMONIES],) -> Option<(Transcript, [UpdateProof;
NUM_CEREMONIES])>

It takes a Transcript object and a list of hex-encoded secrets. First, it confirms that

each SRS parameters are correct and decodes the hex-encoded secrets to

PrivateKey structs. Then it updates the Transcript using .update() method on

SRS, and finally returns a new Transcript.

2. transcript_subgroup_check(transcript: Transcript) -> bool

It performs the prime-ordered subgroup checks on a Transcript object by calling

.subgroup_check() for each SRS.

const NUM_CEREMONIES: usize = 4;

const CEREMONIES: [Parameters; NUM_CEREMONIES] = [
 Parameters {
 num_g1_elements_needed: 4096,
 num_g2_elements_needed: 65,
 },
 Parameters {
 num_g1_elements_needed: 8192,
 num_g2_elements_needed: 65,
 },
 Parameters {
 num_g1_elements_needed: 16384,
 num_g2_elements_needed: 65,
 },
 Parameters {
 num_g1_elements_needed: 32768,
 num_g2_elements_needed: 65,
 },
];

4. Audit Process4. Audit Process

This part describes the audit steps and audit content.

4.1 Audit Steps4.1 Audit Steps

The audit strictly followed the audit specification of SECBIT Lab. The process consists of the

following steps:

Background research by going through all the documentation and external references.

Comparative evaluation of code versus related specification and documentation.

Fully analyzed the source code line by line.

Evaluation of vulnerabilities and potential risks revealed in the source code.

Communication on assessment and confirmation.

Audit report writing.

4.2 Audit Scope and Checklist4.2 Audit Scope and Checklist

The following are the audit goals and the scope of the audit.

4.2.1 Specifications4.2.1 Specifications

Check the correctness of the Powers of Tau Specification document by CarlBeek

Check the correctness of the underlying algorithm described in the document Powers
of Tau - Notes written by kevaundray

Note: The Powers of Tau Specification also contains specifications for other parts of the
KZG ceremony besides the cryptographic module, which are not included in the audit
scope. We reviewed the files named participant.md, coordinator.md, BLS.md, and
sdk.md in the repository for this audit.

https://github.com/ethereum/kzg-ceremony-specs
https://hackmd.io/@6iQDuIePQjyYBqDChYw_jg/Bk6sERCH9
https://github.com/ethereum/kzg-ceremony-specs

4.2.2 Code4.2.2 Code

Check consistency between specifications and algorithm description notes mentioned

above

Check consistency between specifications and the small-powers-of-tau code

Check the correctness and security of the small-powers-of-tau code

Analyze the potential risk of using small-powers-of-tau as a library

Check whether the libraries that the code depends on have known vulnerabilities that

could affect this project and whether they have had recent suspicious commits

Check for recent threats of supply chain-like attacks related to the underlying

codebase

Note: The ceremony-specs written by kevaundray are used as another reference
implementation to help deepen the understanding of the code and double-check the
consistency between specifications and code.

4.2.3 The Essential Steps in Detail4.2.3 The Essential Steps in Detail

The Coordinator and Contributor are vital actors in the KZG ceremony process. The

Powers of Tau Specification document describes these two actors and what they should do.

We carefully checked the code implementation against the specifications for consistency

between them. Some of the specifications described were not in the scope of the code we

targeted for audit. We have listed below the essential steps related to the code.

4.2.3.1 Coordinator4.2.3.1 Coordinator

Point Checks

Prime Subgroup checks

G1 Powers Subgroup check

G2 Powers Subgroup check

Witness Subgroup checks

Non-zero check

Witness continuity check

Pairing Checks

Running Product construction

Correct construction of G1 Powers

Correct construction of G2 Powers

https://github.com/crate-crypto/small-powers-of-tau/
https://github.com/crate-crypto/small-powers-of-tau/
https://github.com/crate-crypto/small-powers-of-tau/
https://github.com/crate-crypto/ceremony-specs
https://github.com/ethereum/kzg-ceremony-specs

4.2.3.2 Contributor (aka. Participant)4.2.3.2 Contributor (aka. Participant)

Verifying the transcript

Point Checks

G1 Powers Subgroup check

G2 Powers Subgroup check

Running Product Subgroup check

Updating the transcript

Generate the secrets

Update Powers of Tau

Multiply each of the powers_of_tau.g1_powers by incremental powers of x

and overwrite the powers_of_tau.g1_powers in the transcript

Multiply each of the powers_of_tau.g2_powers by incremental powers of x

and overwrite the powers_of_tau.g2_powers in the transcript

Update Witness

Multiply witness.running_products[-1] by x and append it to the

witness.running_products list

Append bls.G2.mul(x, bls.G2.g2) to witness.pot_pubkeys

Clearing the memory

4.3 Secure Rust Development4.3 Secure Rust Development

The small-powers-of-tau code written in Rust is the audit target for the ceremony

deployment in production.

We checked this code with the standard of secure Rust development. Specifically, we refer

to the checklist from the Secure Rust Guideline.

Below is a list of the highlighted items we have focused on for this project during the audit.

4.3.1 Libraries4.3.1 Libraries

Check for outdated dependencies versions (cargo-outdated) (LIBS-OUTDATED)

Check for security vulnerabilities report on dependencies (cargo-audit) (LIBS-AUDIT)

Check for unsafe code in dependencies (LIBS-UNSAFE)

https://github.com/crate-crypto/small-powers-of-tau/
https://anssi-fr.github.io/rust-guide/
https://anssi-fr.github.io/rust-guide/03_libraries.html#LIBS-OUTDATED
https://anssi-fr.github.io/rust-guide/03_libraries.html#LIBS-AUDIT
https://anssi-fr.github.io/rust-guide/03_libraries.html#LIBS-UNSAFE

4.3.2 Language Generalities4.3.2 Language Generalities

Don't use unsafe blocks (LANG-UNSAFE)

Use appropriate arithmetic operations regarding potential overflows (LANG-ARITH)

Use the?operator and do not use thetry!` macro (LANG-ERRDO)

Don't use functions that can cause panic! (LANG-NOPANIC)

Test properly array indexing or use the get method (LANG-ARRINDEXING)

4.3.3 Memory Management4.3.3 Memory Management

Do not use forget (MEM-FORGET)

Use clippy lint to detect use of forget (MEM-FORGET-LINT)

Do not leak memory (MEM-LEAK)

Do release value wrapped in ManuallyDrop (MEM-MANUALLYDROP)

Always call from_raw on into_raw ed value (MEM-INTOFROMRAW)

Do not use uninitialized memory (MEM-UNINIT)

Zero out the memory of sensitive data after use (MEM-ZERO)

4.3.4 Type System4.3.4 Type System

Justify Drop implementation (LANG-DROP)

Do not panic in Drop implementation (LANG-DROP-NO-PANIC)

Do not allow cycles of reference-counted Drop (LANG-DROP-NO-CYCLE)

Do not rely only on Drop to ensure security (LANG-DROP-SEC)

Justify Send and Sync implementation (LANG-SYNC-TRAITS)

Respect the invariants of standard comparison traits (LANG-CMP-INV)

Use the default method implementation of standard comparison traits (LANG-CMP-

DEFAULTS)

Derive comparison traits when possible (LANG-CMP-DERIVE)

4.4 Out of Scope4.4 Out of Scope

The following are excluded from the audit scope due to time constraints and workload

considerations.

Security of algorithms and underlying implementations of the dependent libraries

External academic papers referenced by the code are assumed to be safe, and only

their consistency with the code will be checked, not the correctness of the papers

Logical correctness of the code being called by external users as a library

Security related to coordinator software and processes

https://anssi-fr.github.io/rust-guide/04_language.html#LANG-UNSAFE
https://anssi-fr.github.io/rust-guide/04_language.html#LANG-ARITH
https://anssi-fr.github.io/rust-guide/04_language.html#LANG-ERRDO
https://anssi-fr.github.io/rust-guide/04_language.html#LANG-NOPANIC
https://anssi-fr.github.io/rust-guide/04_language.html#LANG-ARRINDEXING
https://anssi-fr.github.io/rust-guide/05_memory.html#MEM-FORGET
https://anssi-fr.github.io/rust-guide/05_memory.html#MEM-FORGET-LINT
https://anssi-fr.github.io/rust-guide/05_memory.html#MEM-LEAK
https://anssi-fr.github.io/rust-guide/05_memory.html#MEM-MANUALLYDROP
https://anssi-fr.github.io/rust-guide/05_memory.html#MEM-INTOFROMRAW
https://anssi-fr.github.io/rust-guide/05_memory.html#MEM-UNINIT
https://anssi-fr.github.io/rust-guide/05_memory.html#MEM-ZERO
https://anssi-fr.github.io/rust-guide/06_typesystem.html#LANG-DROP
https://anssi-fr.github.io/rust-guide/06_typesystem.html#LANG-DROP-NO-PANIC
https://anssi-fr.github.io/rust-guide/06_typesystem.html#LANG-DROP-NO-CYCLE
https://anssi-fr.github.io/rust-guide/06_typesystem.html#LANG-DROP-SEC
https://anssi-fr.github.io/rust-guide/06_typesystem.html#LANG-SYNC-TRAITS
https://anssi-fr.github.io/rust-guide/06_typesystem.html#LANG-CMP-INV
https://anssi-fr.github.io/rust-guide/06_typesystem.html#LANG-CMP-DEFAULTS
https://anssi-fr.github.io/rust-guide/06_typesystem.html#LANG-CMP-DERIVE

5. Audit Result5. Audit Result

This part describes the audit's detailed results and demonstrates the issues.

5.1 Summary of Audit Findings5.1 Summary of Audit Findings

We briefly summarized the findings of the audit process as follows.

5.1.1 Compiler and Linter Warnings5.1.1 Compiler and Linter Warnings

We inspected all warnings reported by the Rust compiler and Clippy Linter to ensure there

were no threats to the security of the small-powers-of-tau code.

5.1.2 Dependencies5.1.2 Dependencies

We used tools like cargo-outdated and cargo-audit to check the dependency security

of the code quickly.

The output of cargo-outdated.

Name Project Compat Latest Kind
Platform
---- ------- ------ ------ ---- -----

ahash->once_cell 1.13.0 1.13.1 1.13.1 Normal
cfg(not(all(target_arch = "arm", target_os = "none")))
atty->libc 0.2.131 0.2.132 0.2.132 Normal
cfg(unix)
bstr->serde 1.0.143 1.0.144 1.0.144 Normal ---
cpufeatures->libc 0.2.131 0.2.132 0.2.132 Normal
aarch64-apple-darwin
criterion->plotters 0.3.2 0.3.3 0.3.3 Normal ---
criterion->serde 1.0.143 1.0.144 1.0.144 Normal ---
criterion->serde_derive 1.0.143 1.0.144 1.0.144 Normal ---
criterion->serde_json 1.0.83 1.0.85 1.0.85 Normal ---
crossbeam-epoch->once_cell 1.13.0 1.13.1 1.13.1 Normal ---

https://github.com/rust-lang/rust-clippy
https://github.com/crate-crypto/small-powers-of-tau/
https://github.com/kbknapp/cargo-outdated
https://github.com/RustSec/rustsec/tree/main/cargo-audit

The output of cargo-audit.

We have reviewed the results individually and found no issues that affect this project. We

also checked the recent commits of all the dependencies for about half a year and found no

security vulnerabilities related to these dependencies.

crossbeam-utils->once_cell 1.13.0 1.13.1 1.13.1 Normal ---
csv->serde 1.0.143 1.0.144 1.0.144 Normal ---
getrandom->libc 0.2.131 0.2.132 0.2.132 Normal
cfg(unix)
hermit-abi->libc 0.2.131 0.2.132 0.2.132 Normal ---
itertools->either 1.7.0 1.8.0 1.8.0 Normal ---
num_cpus->libc 0.2.131 0.2.132 0.2.132 Normal
cfg(not(windows))
plotters->plotters-svg 0.3.2 0.3.3 0.3.3 Normal ---
rand->libc 0.2.131 0.2.132 0.2.132 Normal
cfg(unix)
rayon->either 1.7.0 1.8.0 1.8.0 Normal ---
semver-parser->pest 2.2.1 2.3.0 2.3.0 Normal ---
serde_cbor->serde 1.0.143 1.0.144 1.0.144 Normal ---
serde_json->serde 1.0.143 1.0.144 1.0.144 Normal ---
sha2->cpufeatures 0.2.2 0.2.4 0.2.4 Normal
cfg(any(target_arch = "aarch64", target_arch = "x86_64", target_arch =
"x86"))
tinytemplate->serde 1.0.143 1.0.144 1.0.144 Normal ---
tinytemplate->serde_json 1.0.83 1.0.85 1.0.85 Normal ---
wasm-bindgen-backend->bumpalo 3.10.0 3.11.0 3.11.0 Normal ---
wasm-bindgen-backend->once_cell 1.13.0 1.13.1 1.13.1 Normal ---

 Scanning Cargo.lock for vulnerabilities (108 crate dependencies)
Crate: serde_cbor
Version: 0.11.2
Warning: unmaintained
Title: serde_cbor is unmaintained
Date: 2021-08-15
ID: RUSTSEC-2021-0127
URL: https://rustsec.org/advisories/RUSTSEC-2021-0127
Dependency tree:
serde_cbor 0.11.2
└── criterion 0.3.6
 └── small-powers-of-tau 0.1.0

warning: 1 allowed warning found

5.1.3 Test Cases5.1.3 Test Cases

To confirm their validity, we reviewed all the test cases in the small-powers-of-tau code. We

have also checked the test coverage and added test cases or double-checked the code that

was not covered.

5.1.4 Fuzz Testing5.1.4 Fuzz Testing

We fuzz-tested the main interface of small-powers-of-tau code to see if it would panic on a

specific input. We found several potential overflows and out-of-bounds errors. Details are

documented in the next section.

5.1.5 Secure Memory Zeroing for Private Keys5.1.5 Secure Memory Zeroing for Private Keys

We checked if the Rust code correctly handled sensitive information in memory as

described in the specifications. We found that the code uses the ZeroizeOnDrop trait of

the zeroize zero crate to automatically and securely zeroing memory. It is a good and

common practice.

5.1.6 Specifications vs. Code5.1.6 Specifications vs. Code

We found minor typo-related errors in Powers of Tau Specification and reported them to the

team for confirmation.

During the audit, we found that the specifications and the code did not align in some small

spots. The main reason for this was that they did not handle the witness in the same way.

We reported these issues to the team and documented them in this report.

In addition, the small-powers-of-tau code does not have an apparent role abstraction as

defined in the Spec documentation. Since some of the key steps are included in the lower-

level functions, we recommend that the application using small-powers-of-tau as a library

requires careful reference to the specifications to ensure the correctness of each step. As

the underlying cryptography library, the small-powers-of-tau also does not handle the

validation of transcript files or JSON Schema. After confirming with the developer, these

should be accomplished by the upper-level applications.

Update: A transcript check function is added in commit 80ba440.

5.1.7 Supply Chain Attack Check5.1.7 Supply Chain Attack Check

We have inspected the commit records of some essential dependencies over the recent year

and found no apparent traces of supply chain attacks.

https://github.com/crate-crypto/small-powers-of-tau/
https://github.com/crate-crypto/small-powers-of-tau/
https://crates.io/crates/zeroize
https://github.com/ethereum/kzg-ceremony-specs
https://github.com/crate-crypto/small-powers-of-tau/
https://github.com/crate-crypto/small-powers-of-tau/
https://github.com/crate-crypto/small-powers-of-tau/
https://github.com/crate-crypto/small-powers-of-tau/commit/80ba44058bed7c874f91ed77bfd902dfd6232a13

We did this to reduce the risk of this project being targeted or poisoned by the supply chain,

i.e., someone disrupting the ceremony by inserting malicious code into the dependencies.

The start and end commit hash of the dependencies we checked are as follows.

serde

First commit: a6690ea2fe83924e5bb37bbb6a1341444d26a65b

Last commit: d208762c81883a181e8c6a9ca3f303e040105c7d

rayon

First commit: f9292a7efc3dfb083cb1f22a8749c2944d263a32

Last commit: c00b997fc5f47ccd70dff99ab341e8da71f849d9

itertools

First commit: 599ae8cced7ede91c85a0e507808e8dcbf1acd27

Last commit: 677900a0dd817638db718faa8e26b8df3b99cf07

zeroize

First commit: ec11298b5556c898cf81a35ed023630e9dd3003c

Last commit: 1261e29ff91aeb26b010832ea6a855c0f360ea04

hex

First commit: bfe146e0bb92ae99c302f0e5e87115e1036f37ad

Last commit: c333cf5128b6f5135d8f561b217f68e670275031

5.2 Issues5.2 Issues

1. Potential overflow or array out-of-bounds errors may cause panic

Security Risk Medium

Description: Multiple branches in the code can enter overflow or array out-of-

bounds errors. Due to Rust's protection mechanism, the entire program will

panic.

fn vandemonde_challenge(x: Fr, n: usize) -> Vec<Fr> {
 let mut challenges: Vec<Fr> = Vec::with_capacity(n);
 challenges.push(x);
 for i in 0..n - 1 { // @audit n=0, then panic with 'attempt
to subtract with overflow' error
 challenges.push(challenges[i] * x);
 }
 challenges
}

https://crates.io/crates/serde
https://crates.io/crates/rayon
https://crates.io/crates/itertools
https://crates.io/crates/zeroize
https://crates.io/crates/hex

pub fn verify_updates(before: &SRS, after: &SRS, update_proofs:
&[UpdateProof]) -> bool {
 ...
 if after.tau_g1[1] ! = last_update.new_accumulated_point {
 return false;
 }

 // 2. Check the update proofs are correct and form a chain
of updates
 if !UpdateProof::verify_chain(before.tau_g1[1],
update_proofs) {
 return false;
 }
 if after.tau_g1[1].is_zero() { // @audit could panic with
'index out of bounds' error
 return false;
 }
 if after.tau_g2[1].is_zero() {
 return false;
 }
 ...
}

fn structure_check(&self) -> bool {
 let tau_g2_0 = self.tau_g2[0];
 let tau_g2_1 = self.tau_g2[1];

 let tau_g1_0 = self.tau_g1[0];
 let tau_g1_1 = self.tau_g1[1];
 ...
}

pub fn update(&mut self, private_key: PrivateKey) ->
UpdateProof {
 ...
 let updated_tau = self.tau_g1[1];
 ...
}

pub fn structure_check_opt(&self, random_element: Fr) -> bool {
 ...
 let tau_g2_0 = self.tau_g2[0];
 let tau_g2_1 = self.tau_g2[1];

Consequence

In extreme cases, misusing this library can cause the whole program to panic,

leading to a DOS risk.

Suggestion

Given that resisting DOS is vital for this project, we recommend adding more

checks. It is recommended that the SRS::new() function be given an upper and

lower length check for tau_g1 and tau_g2. We explained the reason for adding

a lower bound above. The upper bound prevents someone from passing in a

value that is too large, causing a memory allocation error, or causing the

program to take an infinitely long time to execute. These basic checks help

reduce the risk of DOS. We also recommend adding a length check to

SRS::verify_updates() since it accepts dynamic size arrays directly.

Status

The team has adopted this suggestion, and added length check for tau_g1 and

tau_g2 at the SRS::new() function and the SRS::deserialise function.

2. Redundant array allocation

 Code Optimization Low

Description

The vandemonde_challenge() function calculates a set of values in a challenge

value by doing exponential operations with increasing exponents. It is used at

update_srs() function(#L75) and vandemonde_challenge()

function(#L185).

The parameter n, representing the array's length, is max_number_elements in

both places, but max_number_elements-1 is enough.

 let tau_g1_0 = self.tau_g1[0];
 let tau_g1_1 = self.tau_g1[1];
 ...
}

// #L75
let powers_of_priv_key = vandemonde_challenge(private_key,
max_number_elements);
// #L185
let rand_pow = vandemonde_challenge(random_element,
max_number_elements);

Consequence

It won't cause an error. But it will simply make the for loop in the

vandemonde_challenge() function do one more unnecessary operation.

Suggestion

Change both max_number_elements to max_number_elements - 1

Status

The team has adopted this suggestion and changed both

max_number_elements to max_number_elements - 1

3. Unfixed dependencies versions

 Code Optimization Low

Description

In Cargo.toml, the version of hex and zeroize are "*", which is rather dangerous

because we are not sure whether the future updates of the hex repository will

cause small-powers-of-tau not to work.

And the official documentation of rust also mentions that 'Avoid * requirements,

as they are not allowed on crates.io, and they can pull in SemVer-breaking

changes during a normal cargo update.'

Consequence

Future changes to these two dependencies may cause the small-powers-of-tau

library not to work as expected.

Suggestion

Change to a fixed version.

Status

The team has adopted this suggestion and replaced the version of "*" with a fixed

version.

fn vandemonde_challenge(x: Fr, n: usize) -> Vec<Fr> {
 let mut challenges: Vec<Fr> = Vec::with_capacity(n);
 challenges.push(x);
 for i in 0..n - 1 {
 challenges.push(challenges[i] * x);
 }
 challenges
}

4. Redundant file

 Code Optimization Info

Description

The ceremony.rs file is not referenced as a module by lib.rs, so the contents

in this file will not work.

Consequence

Unnecessary file.

Suggestion

Remove the ceremony.rs file.

Status

The team has adopted this suggestion and removed the ceremony.rs file.

5. Redundant functions

 Code Optimization Info

Description

In the serialisation.rs file, two from_bytes() and two to_bytes()

functions are not used.

impl SRS {
 fn to_bytes(&self) -> Vec<u8> {
 ...
 }
 fn from_bytes(bytes: &[u8], parameters: Parameters) ->
Option<Self> {
 ...
 }
}

impl UpdateProof {
 fn to_bytes(&self) -> Vec<u8> {
 ...
 }
 fn from_bytes(bytes: &[u8]) -> Option<Self> {
 ...
 }
}

Suggestion

Remove those functions.

Status

The team has adopted this suggestion and removed those functions.

6. Typo in kzg-ceremony-specs(Correct construction of G1/G2 Powers)

 Code Optimization Low

Description

In the coordinator.md file in the kzg-ceremony-specs. There are some typos

in the pseudo code of Correct construction of G1 Powers and Correct
construction of G2 Powers.

Both next_power and power are the G1 points, which are used as the G2 points

in bls.pairing(pi, power) != bls.pairing(bls.G1.g1,
next_power).

The pi is a G2 point, which is used as a G1 point.

g1_power is a G1 point, and g2_power is a G2 point, but both are misused.

// in "Correct construction of G1 Powers"
def g1_powers_check(transcript: Transcript) -> bool:
 for sub_ceremony in transcript.sub_ceremonies:
 powers = sub_ceremony.powers_of_tau.g1_powers
 pi = sub_ceremony.witness.running_products[-1]
 for power, next_power in zip(powers[:-1], powers[1:]):
 if bls.pairing(pi, power) != bls.pairing(bls.G1.g1,
next_power):
 return False
 return True

// in "Correct construction of G2 Powers"
def g2_powers_check(transcript: Transcript) -> bool:
 for sub_ceremony in transcript.sub_ceremonies:
 g1_powers = sub_ceremony.powers_of_tau.g1_powers
 g2_powers = sub_ceremony.powers_of_tau.g2_powers
 for g1_power, g2_power in zip(g1_powers, g2_powers):
 if bls.pairing(bls.G1.g1, g1_power) !=
bls.pairing(g2_power, bls.G2.g2):
 return False
 return True

https://github.com/ethereum/kzg-ceremony-specs

The team fixed the first mistake in commit 50b5e12, but it is still inaccurate.

In "Correct construction of G1 Powers", the G1 point next_power is used as a G2

point.

Suggestion

Change the pseudo code as follows.

Status

The team has adopted this suggestion and fixed those typos.

7. Typo in kzg-ceremony-specs(Running Product Subgroup check)

Document Optimization Info

Description

There is a typo in the Running Product Subgroup check pseudo code of

the participant.md file in the kzg-ceremony-specs.

[:-1] in python means "Remove the last element of the list". To "get the last

element of the list", we should use [-1].

Suggestion

Change the pseudo code as follows.

// in "Correct construction of G1 Powers"
if bls.pairing(bls.G1.g1, next_power) != bls.pairing(power,
pi):

// in "Correct construction of G1 Powers"
if bls.pairing(next_power, bls.G2.g2) != bls.pairing(power,
pi):

// in "Correct construction of G2 Powers"
if bls.pairing(bls.G1.g1, g2_power) != bls.pairing(g1_power,
bls.G2.g2):

// Running Product Subgroup check
if not
bls.G1.is_in_prime_subgroup(sub_ceremony.witness.running_produc
ts[:-1]):
 return False

https://github.com/ethereum/kzg-ceremony-specs/commit/50b5e1237a3ee21bb17206102805a882e9ab5fb2

Status

The team has adopted this suggestion and fixed those typos.

8. Inconsistency between Rust code and kzg-ceremony-specs about 'Witness Subgroup

checks'

Document Optimization Info

Description

The coordinator must do 'Witness Subgroup checks'(For each of the points in

witness, check that they are elements of their respective subgroups.) according

to the kzg-ceremony-specs. But in the Rust code, there is no such check at all.

Consequence

Inconsistency between Rust code and kzg-ceremony-specs

Suggestion

Add the check.

Status

The team explained the issue. This check was supposed to be added to match the

specifications, but it's not necessary for the actual code because the pairings

check would fail if the witness were not in the correct group.

9. Inconsistency between Rust code and kzg-ceremony-specs about Transcript

Document Optimization Info

Description

All the witnesses should be transferred between the coordinator and

participants according to the kzg-ceremony-specs. But in the Rust code,

participants do not need to download witnesses and only upload their witnesses

to the coordinator.

Consequence

Inconsistency between Rust code and kzg-ceremony-specs

// Running Product Subgroup check
if not
bls.G1.is_in_prime_subgroup(sub_ceremony.witness.running_produc
ts[-1]):
 return False

Suggestion

Change the kzg-ceremony-specs to match the Rust code.

Status

The team explained this issue. The full transcript is no longer sent to

participants. Only a contribution.json file will be sent, a stripped-down version

that doesn't contain the complete witnesses, just the necessary powers.

6. Conclusion6. Conclusion

This trusted setup ceremony is the first step in a series of essential cryptographic-related

upgrades to Ethereum. The SECBIT team has audited the core cryptography module of the

ceremony. Having carefully reviewed the specification and source code, the SECBIT team

found no fatal bugs or flaws. The specification is well documented, and the code is concise

and efficient. The SECBIT team has found some issues and proposed corresponding

suggestions, as shown above. The SECBIT team has reported to the development team and

confirmed with them. They were responsive and fixed the issues promptly. The SECBIT

team then confirmed that the updated code addressed all of the issues raised in the report.

Besides, we recommend that any developer who needs to use the cryptography library of

this project should read the relevant documentation carefully to ensure that the overall

process is understood correctly.

DisclaimerDisclaimer

The security audit service by SECBIT Labs assesses the code's correctness, security, and

performability in code quality, logic design, and potential risks. The report is provided "as

is", without any warranties about the code practicability, business model, management

system's applicability, and anything related to the contract adaptation. This audit report is

not to be taken as an endorsement of the platform, team, company, or investment.

LevelLevel DescriptionDescription

High Severely damage to the system's integrity

Medium Damage to the application's security under given conditions

Low Cause no actual impairment to the application

Info Relevant to practice or rationality of the code could possibly bring risks.

Discussion Some suggestions for optimizing the code logic

APPENDIXAPPENDIX

Appendix 1: Vulnerability/Risk Level ClassificationAppendix 1: Vulnerability/Risk Level Classification

TypeType DescriptionDescription

Security Risk The risk of compromising system security directly

Code Optimization Optimize code implementation

Logical Implementation Vulnerability in design or implementation logic

Potential Risk The potential risk of compromising system security

Code Revising Non-standard usage of code writing

Document Optimization Optimize the description in the documents

Appendix 2: Type ClassificationAppendix 2: Type Classification

SECBIT Labs is devoted to construct a common-consensus, reliable and

ordered blockchain economic entity.

 http://www.secbit.io

 audit@secbit.io

 @secbit_io

http://www.secbit.io/
mailto:audit@secbit.io
https://twitter.com/secbit_io

	
	KZG10 Ceremony Audit Report
	1. Introduction
	2. Overview
	2.1 Basic Information
	2.2 File Lists
	2.3 Findings

	3. Project Analysis
	3.1 Overview of PoT ceremonies
	3.2 Function Description
	lib.rs
	keypair.rs
	srs.rs
	update_proof.rs
	shared_secret.rs
	serialisation.rs
	sdk.rs

	4. Audit Process
	4.1 Audit Steps
	4.2 Audit Scope and Checklist
	4.2.1 Specifications
	4.2.2 Code
	4.2.3 The Essential Steps in Detail
	4.2.3.1 Coordinator
	4.2.3.2 Contributor (aka. Participant)

	4.3 Secure Rust Development
	4.3.1 Libraries
	4.3.2 Language Generalities
	4.3.3 Memory Management
	4.3.4 Type System

	4.4 Out of Scope

	5. Audit Result
	5.1 Summary of Audit Findings
	5.1.1 Compiler and Linter Warnings
	5.1.2 Dependencies
	5.1.3 Test Cases
	5.1.4 Fuzz Testing
	5.1.5 Secure Memory Zeroing for Private Keys
	5.1.6 Specifications vs. Code
	5.1.7 Supply Chain Attack Check

	5.2 Issues

	6. Conclusion
	Disclaimer
	APPENDIX
	Appendix 1: Vulnerability/Risk Level Classification
	Appendix 2: Type Classification
	

