
Ethereum Foundation

KZG Powers Of Tau Ceremony Review
Version: 2.0

January, 2023

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Findings Summary . 3
Detailed Findings 4

Summary of Findings 5BLST Library Decoding Errors Not Handled Correctly . 6Use of Bearer HTTP Authorisation Without TLS . 8HTTP Body Unnecessarily Contains Authorisation Token session_id 9DoS Vector Fetching info/current_state API Endpoint . 10
LobbyIsFull Error is Not Correctly Detected During Sign-in . 11BLST random_fr() Does Not Use 512 Bits of Expanded Entropy 12Unbounded Recursion May Break Max Stack Depth . 13Use of Yanked Crates in kzg-ceremony-sequencer Repository . 15Inconsistent Handling of Zero X-Coordinate and Point at Infinity 16
active_contributor State Does Not Update on Error . 17Potential Panics if bytes_to_hex() is Called With Disproportionate Sizes 18Inefficient Conversion of Uint8Array to string . 19Error Handling in Lobby Will Continue to Loop . 20Overall Test Coverage . 22Miscellaneous General Comments . 23

A Test Coverage 26

B Vulnerability Severity Classification 28

1

KZG Powers Of Tau Ceremony Review Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Ethereum FoundationKZG Ceremony. The review focused solely on the security aspects of the Rust implementation of the KZGCeremony Sequencer code and associated React front-end, though general recommendations and informationalcomments are also provided.

Disclaimer

Sigma Prime makes all effort but holds no responsibility for the findings of this security review. Sigma Primedoes not provide any guarantees relating to the function of the code. Sigma Prime makes no judgements on, orprovides any security review, regarding the underlying business model or the individuals involved in the project.

Document Structure

The first section provides an overview of the functionality of the Powers Of Tau KZG Ceremony containedwithin the scope of the security review. A summary followed by a detailed review of the discovered vulnera-bilities is then given which assigns each vulnerability a severity rating (see Vulnerability Severity Classification),an open/closed/resolved status and a recommendation. Additionally, findings which do not have direct securityimplications (but are potentially of interest) are marked as informational.
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Ethereum Foundation’s KZG Ceremony.

Overview

ThePowers of TauKZGCeremony is a required step to implement EIP-4844 "Proto-Danksharding" and "Dankshard-ing" on Ethereum.
This is a trusted setup with a 1 of N trust model, meaning we only need to trust that one actor is trustworthy andacting as intended in order to make the whole process trustworthy. As a result of this the ceremony is intendedto be as large as possible with several thousand participants over its lifetime.
The Sequencer is an important part of this, as it coordinates the actions of contributors and validates theircontributions. In addition to the Sequencer, a React front-end website provides a means for users to take partin the ceremony and contribute to the setup by generating entropy within their browser.

Page | 2

KZG Powers Of Tau Ceremony Review Security Assessment Summary

Security Assessment Summary

This review was conducted on the files hosted on the kzg-ceremony-sequencer repository and were assessedat commit 6da76be4cb for the sequencer. For the frontend, the files in this review were hosted on the trusted-setup-frontend repository and were assessed at commit c2fc0fdf8d.
Retesting was performed on commits 34b5fc8 for the sequencer and 40d421f for the frontend. Retesting cov-ered all mitigations to raised issues. No new issues were found during retesting.
The manual code review section of the report is focused on identifying any and all issues/vulnerabilities asso-ciated with the business logic implementation of the code. This includes their internal interactions, intendedfunctionality and correct implementation with respect to the underlying functionality of Rust and Typescript.
Additionally, the manual review process focused on all known Rust and Typescript anti-patterns and attack vec-tors. These include, but are not limited to, the following vectors: error handling and wrapping, panicking macros,arithmetic errors, UTF-8 strings handling, index out of bounds and resource exhaustion.
To support this review, the testing team used the following automated testing tools:

• cargo audit: https://crates.io/crates/cargo-audit
• cargo deny: https://github.com/EmbarkStudios/cargo-deny
• cargo tarpaulin: https://crates.io/crates/cargo-tarpaulin
• cargo geiger: https://github.com/rust-secure-code/cargo-geiger
• clippy: https://github.com/rust-lang/rust-clippy

Output for these automated tools is available upon request.

Findings Summary

The testing team identified a total of 15 issues during this assessment. Categorized by their severity:
• Critical: 1 issue.
• Medium: 2 issues.
• Low: 6 issues.
• Informational: 6 issues.

Page | 3

https://github.com/ethereum/kzg-ceremony-sequencer
https://github.com/ethereum/kzg-ceremony-sequencer/tree/6da76be4cbf2444bcd7e6acd3344c3f6c2eabf46
https://github.com/zkparty/trusted-setup-frontend
https://github.com/zkparty/trusted-setup-frontend
https://github.com/zkparty/trusted-setup-frontend/tree/c2fc0fdf8d3bbd2d7b03c45c62b76f20df1c5b2b
https://github.com/ethereum/kzg-ceremony-sequencer/tree/34b5fc87740e9518f2919ce813e4024c8237df6d
https://github.com/zkparty/trusted-setup-frontend/tree/40d421f16aafd93273f636e46dc8e0a39e4690b7
https://crates.io/crates/cargo-audit
https://github.com/EmbarkStudios/cargo-deny
https://crates.io/crates/cargo-tarpaulin
https://github.com/rust-secure-code/cargo-geiger
https://github.com/rust-lang/rust-clippy

KZG Powers Of Tau Ceremony Review Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Ethereum Foundation’scodebase. Each vulnerability has a severity classification which is determined from the likelihood and impact ofeach issue by the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 4

Summary of Findings

ID Description Severity Status
KZG-01 BLST Library Decoding Errors Not Handled Correctly Critical Resolved

KZG-02 Use of Bearer HTTP Authorisation Without TLS Medium Resolved

KZG-03 HTTP Body Unnecessarily Contains Authorisation Token session_id Medium Resolved

KZG-04 DoS Vector Fetching info/current_state API Endpoint Low Resolved

KZG-05 LobbyIsFull Error is Not Correctly Detected During Sign-in Low Resolved

KZG-06 BLST random_fr() Does Not Use 512 Bits of Expanded Entropy Low Resolved

KZG-07 Unbounded Recursion May Break Max Stack Depth Low Resolved

KZG-08 Use of Yanked Crates in kzg-ceremony-sequencer Repository Low Resolved

KZG-09 Inconsistent Handling of Zero X-Coordinate and Point at Infinity Low Open

KZG-10 active_contributor State Does Not Update on Error Informational Resolved

KZG-11 Potential Panics if bytes_to_hex() is CalledWithDisproportionate Sizes Informational Resolved

KZG-12 Inefficient Conversion of Uint8Array to string Informational Resolved

KZG-13 Error Handling in Lobby Will Continue to Loop Informational Resolved

KZG-14 Overall Test Coverage Informational Resolved

KZG-15 Miscellaneous General Comments Informational Resolved

5

KZG Powers Of Tau Ceremony Review Detailed Findings

KZG-01 BLST Library Decoding Errors Not Handled Correctly
Asset crypto/src/engine/blst/g1.rs & crypto/src/engine/blst/g2.rs

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

When using the BLST library to perform cryptography it is necessary to be able to decode byte inputs into the cryp-tography structures used in the library. The decoding is performed by the BLST external library using the functions
blst_p1_uncompress() for G1 and blst_p2_uncompress() for G2. The return values of these functions are error mes-
sages from the BLST library. kzg-ceremony-crypto immediately drops the return values from these functions, henceallows malformed objects which are not valid points on the curve to be successfully decoded.
The following code snippet from crypto/src/engine/blst/g2.rs shows the decoding of a byte array into a BLST object.

12 fn try_from(g2: G2) -> Result<Self, Self::Error> {
unsafe {

14 let mut p = Self::default();
blst_p2_uncompress(&mut p, g2.0.as_ptr());

16 Ok(p)
}

18 }

As seen in this snippet the return value of blst_p2_uncompress() is immediately dropped, thereby preventing thecorrect handling of errors.
The impact is rated as critical due to the ability to pass points that are malformed to the ceremony.
One such example breaks the sequencer’s intended actions by bypassing the check that the current Tau public key isnot the point at infinity.
blst_p2_uncompress(&mut p, g2.0.as_ptr()) will notmodify p for certain errors. p will therefore be Self::default()

for these errors, which is the point at infinity. For example G2([0u8; 96]) (i.e. in hex 0x0000...00) will decode to thepoint at infinity when the valid response should be to error since the correct encoding of infinity is 0xc000...00 .
The following check occurs in crypto/src/transcript.rs.

92 // Non-zero check
if contribution.pot_pubkey == G2::zero() {

94 return Err(CeremonyError::ZeroPubkey);
}

Both contribution.pot_pubkey and G2::zero() are 96 byte arrays to represent compressed G2 points. G2::zero()is a constant which in hex form is 0xc000...00 . Since 0x0000...00 also represents the point at infinity due to thepreviously mentioned bugwemay bypass the check for infinity in transcript.rs by setting contribution.pot_pubkeyto 0x0000...00 .
The result of this would be sending current and future Tau powers to the point at infinity rendering the ceremonyuseless.

Page | 6

https://github.com/ethereum/kzg-ceremony-sequencer/blob/6da76be4cbf2444bcd7e6acd3344c3f6c2eabf46/crypto/src/transcript.rs#L92-L95

KZG Powers Of Tau Ceremony Review Detailed Findings

Recommendations

The return values need to be handled in each of blst_p1_uncompress() and blst_p2_uncompress() in
crypto/src/engine/blst/g1.rs and crypto/src/engine/blst/g2.rs respectively. For the case where the return value
is not BLST_SUCCESS = 0 the error should be propagated and the malicious contribution to be rejected.

Resolution

The issue has been resolved in PR #142.
Additional checks have been added to both TryFrom<G1> and TryFrom<G2> for the BLST points. The checks verify the
return value of blst_p1_uncompress() and blst_p2_uncompress() is BLST_SUCCESS and return an error if required.

Page | 7

https://github.com/ethereum/kzg-ceremony-sequencer/pull/142/files

KZG Powers Of Tau Ceremony Review Detailed Findings

KZG-02 Use of Bearer HTTP Authorisation Without TLS
Asset kzg-ceremony-sequencer/*

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

The Sequencer uses Bearer authorisation to identify different users. However, this is not used with HTTPS and so theBearer token is included in the HTTP Header as plain text.
The impact is that any attacker witnessing the request can read the user’s Bearer token. With access to the token theuser can hijack the session and input a contribution on the user’s behalf or spam messages and force the user to berejected through rate limiting.

Recommendations

We recommend using HTTPS. Adding TLS to the HTTP messages will encrypt the header and prevent the Bearer tokenfrom being read by a third party.

Resolution

The development team have planned and implemented a setup where an HTTPS proxy is used as a wrapper aroundthe sequencer server. The HTTPS proxy is intended to be located on the same machine as the sequencer server. Anyexternal API calls are encryptedwith TLS to theHTTPS proxywhich are then internally forward to the sequencer server.

Page | 8

KZG Powers Of Tau Ceremony Review Detailed Findings

KZG-03 HTTP Body Unnecessarily Contains Authorisation Token session_id

Asset trusted-setup-frontend/src/api.ts

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

The function tryContribute() has a API call that contains session_id within the JSON body in addition to the HTTP
Authorise field. The session_id is a Bearer token which providers authorisation and may be re-used indefinitely byany attacker who has read this token. Hence, its usage should be kept to a minimum to reduce the attack surface ofstealing the authorisation token.
async tryContribute(

session_id: string
): Promise<ErrorRes | TryContributeRes> {

const res = await fetch(`${API_ROOT}/lobby/try_contribute`, {
method: 'POST',
headers: {

'Content-Type': 'application/json',
Authorization: `Bearer ${session_id}`

},
body: JSON.stringify({

session_id
})

})
return await res.json()

}

The code snippet above shows session_id being included in both the HTTP header and body.

Recommendations

Remove the unneeded session_id from the body of the /lobby/try_contribute API call.

Resolution

Commit da2634d resolves this issue by removing the session_id from the JSON body.

Page | 9

https://github.com/zkparty/trusted-setup-frontend/commit/da2634da28b0fd6e6159860e5abaee92d9e55fe3

KZG Powers Of Tau Ceremony Review Detailed Findings

KZG-04 DoS Vector Fetching info/current_state API Endpoint
Asset trusted-setup-frontend/src/pages/entropyInput.tsx

Status Resolved: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

The API endpoint GET into/current_state returns the current Powers of Tau transcript file causing a DoS (Denial ofService) attack vector.
As an unauthorised endpoint any machine can make GET requests to this endpoint. The transcript file will be at least6 megabytes in size.
Additionally, the transcript file is required to be written to and read from the contribute API. Acquiring a write-lock
over the transcript file in contribute means it will need to wait for the read lock to be free in info/current_state tobe released.
The impact is therefore two-fold in using significant network resources by returning at least a 6 megabytes file andcreating a contested lock.

Recommendations

Consider allowing the info/current_state endpoint to be disabled during periods of attack or heavy network usage.
Additionally, consider caching the transcript file in memory to avoid reading from disk and minimise requirements toobtain the file lock.

Resolution

The solution to be implemented by the development team adds an HTTP proxy server to wrap the sequencer server.The proxy will cache all info/* requests thereby reducing the need to read from disk.
Furthermore, the proxy will have a DoS protection system similar to Cloud Flare to provide DoS protection.

Page | 10

KZG Powers Of Tau Ceremony Review Detailed Findings

KZG-05 LobbyIsFull Error is Not Correctly Detected During Sign-in
Asset trusted-setup-frontend/src/pages/signin.tsx

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The AuthErrorPayload::LobbyIsFull error message is not correctly handled for either of the functions onSigninSIE()

and onSigninGithub() in signin.tsx .
api.getRequestLink() makes an API call to the sequencer using the /auth/request_link endpoint. The API
auth/request_link will return the AuthErrorPayload::LobbyIsFull error when the lobby is full.
The return values of api.getRequestLink() are used as redirect URLs during sign-in, as seen in the following codesnippet.
const onSigninSIE = async () => {

setIsLoading(true);
const requestLinks = await api.getRequestLink()
window.location.replace(requestLinks.eth_auth_url)

}

const onSigninGithub = async () => {
setIsLoading(true);
const requestLinks = await api.getRequestLink()
window.location.replace(requestLinks.github_auth_url)

}

When there is an error in api.getRequestLink() the value of requestLinks will be undefined . Hence, the user is
redirected to /undefined , as this route does not exist the result will be a blank page.

Recommendations

This issue may be resolved by improving the error handling to catch the LobbyIsFull along with error in each of
onSigninSIE() and onSigninGithub() .

Resolution

The issue is resolved in commit 3a99149 by handling the LobbyIsFull error and redirecting to the LOBBY_FULL page.

Page | 11

https://github.com/zkparty/trusted-setup-frontend/commit/3a99149649eee1464d0469d486271a146d89afa5

KZG Powers Of Tau Ceremony Review Detailed Findings

KZG-06 BLST random_fr() Does Not Use 512 Bits of Expanded Entropy
Asset crypto/src/hex_format.rs

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The function random_fr() is used to generate a field prime object to represent the private key or Tau of a ceremonycontribution. To avoid modulo bias random entropy should first be expanded before it is reduced.
There is a bug in the current random_fr() implementation for BLST that entropy is expanded to 64 bytes howeveronly 32 bytes are used.

10 pub fn random_fr(entropy: [u8; 32]) -> blst_fr {
// Use ChaCha20 CPRNG

12 let mut rng = ChaCha20Rng::from_seed(entropy);

14 // Generate tau by reducing 512 bits of entropy modulo prime.
let mut buffer = [0u8; 64];

16 rng.fill(&mut buffer);

18 let mut scalar = blst_scalar::default();
let mut ret = blst_fr::default();

20
unsafe {

22 blst_scalar_from_be_bytes(&mut scalar, buffer.as_ptr(), 32);
blst_fr_from_scalar(&mut ret, &scalar);

24 }

26 ret
}

From the code snippet blst_scalar_from_be_bytes(&mut scalar, buffer.as_ptr(), 32) is called with 32 as the final
parameter. As a result only 32 bytes of the array buffer will be read rather than the full 64 bytes in buffer .

Recommendations

Consider using the blst::blst_keygen() function to generate a secret key. This function adheres to the CFRG Speci-fications.

Resolution

The recommendation to this issue has been implemented in PR #148, thereby resolving the issue.
Furthermore, the Arkworks engine has been updated to implement an equivalent key generation.

Page | 12

https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/
https://github.com/ethereum/kzg-ceremony-sequencer/pull/148/files

KZG Powers Of Tau Ceremony Review Detailed Findings

KZG-07 Unbounded Recursion May Break Max Stack Depth
Asset trusted-setup-front-end/src/pages/lobby.tsx

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The poll() function used to repeatedly make the API call /lobby/try_contribute operates recursively without adeterministic base case to terminate the recursion.
A recursive function should have a maximum number of recursions that can occur. The function poll() will continuemaking recursive calls until the user successfully enters the lobby and begins contributing. Progression from the lobbyto contributing is a psuedorandom function, the next user to contribute after the previous user has completed theircontribution. Hence, there is no strict upper bound for how much longer a user may remain in the lobby.
The user will recursively call poll every LOBBY_CHECKIN_FREQUENCY while they are in the lobby. The impact of the
recursion is that eventually RangeError: Maximum call stack size exceeded will be triggered.
The following code snippet shows the recursive programming of poll() .
useEffect(() => {

async function poll(): Promise<void> {
// periodically post /slot/join
const res = await tryContribute.mutateAsync()
if (isSuccessRes(res) && res.hasOwnProperty('contributions')) {

updateContribution(JSON.stringify(res))
navigate(ROUTES.CONTRIBUTING)

} else {
const resError = res as ErrorRes
switch (resError.code) {
case 'TryContributeError::RateLimited':

setError(resError.error)
break

case 'TryContributeError::UnknownSessionId':
setError(
resError.error +

'. You might have taken more time to get into the lobby. Please reload and sign in again'
)
break

case 'TryContributeError::AnotherContributionInProgress':
setError(resError.error)
break

default:
setError('Unknown error code: ' + resError.code)
break

}
// try again after LOBBY_CHECKIN_FREUQUENCY
await sleep(LOBBY_CHECKIN_FREQUENCY)
return await poll()

}
}
poll()

// eslint-disable-next-line react-hooks/exhaustive-deps
}, [])

Page | 13

KZG Powers Of Tau Ceremony Review Detailed Findings

Recommendations

To avoid breaching the maximum call stack size a loop may be used rather than recursion. A loop will garbage collectvariables that fall out of scope thereby maintaining a consistent call stack size.

Resolution

The recursion has been translated into a while loop in commit 32fe7bd.

Page | 14

https://github.com/zkparty/trusted-setup-frontend/commit/32fe7bd44dd6bdc01982db686de891a3ca7d2696

KZG Powers Of Tau Ceremony Review Detailed Findings

KZG-08 Use of Yanked Crates in kzg-ceremony-sequencer Repository
Asset kzg-ceremony-sequencer/*

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

Rust advisory lists two crates that exist in the dependency tree that have been yanked.

• blake2 version "0.10.4"
blake2 0.10.4

coins-core 0.7.0
coins-bip32 0.7.0

ethers-signers 1.0.0
kzg-ceremony-sequencer 0.1.0

coins-bip39 0.7.0
ethers-signers 1.0.0

• futures-intrusive version "0.4.1"
futures-intrusive 0.4.1

sqlx-core 0.6.2
sqlx-macros 0.6.2

sqlx 0.6.2
kzg-ceremony-sequencer 0.1.0

sqlx 0.6.2

Recommendations

Crates may be yanked for a range of bugs or issues. It is strongly recommended against using yanked crates, this mayrequire pushing changes upstream to bump dependency versions.

Resolution

The Cargo.lock file has been updated such that no yanked crates are used as dependencies. PR #159 shows the
updates made to Cargo.lock .

Page | 15

https://github.com/ethereum/kzg-ceremony-sequencer/pull/159

KZG Powers Of Tau Ceremony Review Detailed Findings

KZG-09 Inconsistent Handling of Zero X-Coordinate and Point at Infinity
Asset kzg-ceremony-sequencer/crypto/engine/*

Status Open

Rating Severity: Low Impact: Low Likelihood: Low

Description

There are two implementations of the underlying BLS cryptography protocol, BLST and Arkworks. Discrepancies existbetween the two protocols about how the point at infinity should be handled.
Each of the protocols implement a rust trait Engine .
The there is a discrepancy between the two implementations in how they handle the points with X-coordinate zero(i.e. (0,±2)) for the function add_tau_g1(tau: &Tau, powers: &mut [G1]) . Arkworks will error if any of powers has
X-coordinate zero whereas BLST will return Ok() multiplying the coordinate by Tau. The impact is low as the points
are not within the correct subgroup and so will be rejected by validate_g1() .
A second discrepancy exists in verify_signature() and how the points at infinity are handled. Arkworks may verifythe signature as valid if both the signature and public key are the point at infinity whereas BLSTwill reject this signature.The impact is low as the Powers of Tau public key validated to be non-zero.

Recommendations

We recommend aligning these implementations for both of these cases. Since zero public keys are undesirable, considerupdating the BLST implementation to reject these signatures.
Additionally, since the points (0,±2) are not in the correct subgroup they may be safely rejected by returning error in
add_tau_g1() .

Page | 16

KZG Powers Of Tau Ceremony Review Detailed Findings

KZG-10 active_contributor State Does Not Update on Error
Asset kzg-ceremony-sequencer/src/api/v1/contribute.rs

Status Resolved: See Resolution
Rating Informational

Description

During processing a user’s contribution, if an error occurs in the signer receipt.sign() on line [88] then this triggersan immediate return without modifying the contributor state.
The result of this is that the active_contributor state would be stuck in Contributing until the
expire_current_contributor() thread is triggered. This unnecessarily consumes the sequencer’s contributing
time as lobby/try_contribute will not promote any other users to the active_contributor .
Furthermore, the transcript state is updated before receipt.sign() and the storage state is updated after. Therefore,the storage state and transcript state will no longer be synchronised.
This issue is raised as informational as it should not occur in production. For receipt.sign() to error an external signer
must be used. That is a signer where the private key is not handled directly by the kzg-ceremony-sequence program.

Recommendations

Move receipt.sign() after the lobby_state.clear_current_contributor() , storage.finish_contribution() and
num_contributions.fetch_add() then an error will not impact the transcript, lobby or storage state.

Resolution

PR #150 resolves this issue by applying the recommendation. The transcript, lobby and storage states will now remainsynchronised.

Page | 17

https://github.com/ethereum/kzg-ceremony-sequencer/pull/160/files

KZG Powers Of Tau Ceremony Review Detailed Findings

KZG-11 Potential Panics if bytes_to_hex() is Called With Disproportionate Sizes
Asset crypto/src/hex_format.rs

Status Resolved: See Resolution
Rating Informational

Description

The function bytes_to_hex() can panic if the input arguments N or M are of disproportionate size.
12 pub fn bytes_to_hex<S: Serializer, const N: usize, const M: usize>(

serializer: S,
14 bytes: [u8; N],

) -> Result<S::Ok, S::Error> {
16 assert_eq!(2 + 2 * N, M);

if serializer.is_human_readable() {
18 let mut hex = [0_u8; M];

hex[0] = b'0';
20 hex[1] = b'x';

hex::encode_to_slice(bytes, &mut hex[2..])
22 .expect("BUG: output buffer is of the correct size");

let str = std::str::from_utf8(&hex).expect("BUG: hex is valid UTF-8");
24 serializer.serialize_str(str)

} else {
26 serializer.serialize_bytes(&bytes)

}
28 }

The first panic will occur on line [16] if the assert_eq!() macro fails.
A second index out of bounds panic will occur if N = 0 and M = 2 , when hex[2..] is indexed on line [21].
These values are type level arguements that are supplied at compile time. All occurrences in the
kzg-ceremony-sequencer repository have been checked against the panic conditions and therefore the issue israised as informational.

Recommendations

Consider returning an error for both potential panics. That is if N == 0 || 2 + 2 * N != M .

Resolution

The code has been updated such that it will not panic in the case of malformed arguements. Two separate pull requestsare made to resolved this issue, PR #161 and PR #150.

Page | 18

https://github.com/ethereum/kzg-ceremony-sequencer/pull/161/files
https://github.com/ethereum/kzg-ceremony-sequencer/pull/150/files

KZG Powers Of Tau Ceremony Review Detailed Findings

KZG-12 Inefficient Conversion of Uint8Array to string

Asset trusted-setup-frontend/src/pages/entropyInput.tsx

Status Resolved: See Resolution
Rating Informational

Description

There is an inefficient conversion of Uint8Array to string and then back to Uint8Array . The following code snippet
is from the function processGeneratedEntropy() .
const entropy = mouseEntropy + keyEntropy + randomBytes(32)
const entropyAsArray = Uint8Array.from(

entropy.split('').map((x) => x.charCodeAt(0))
)

randomBytes(32) is of type Uint8Array and mouseEntropy and keyEntropy are of type string . Therefore, entropy

is of type string . randomBytes(32) is cast to a string object which uses the default format 1,2,3,4,5,6,...,32 .
entropyAsArray reads each character in the string as an ASCII value. The values of randomBytes(32) will be 44 (",") or48-57 ("0"-"9").
It is inefficient to cast the values of a Uint8Array to string then back to Uint8Array .
The issue is raised as informational as there is no loss in cryptographic entropy used in HKDF.

Recommendations

Consider having entropy only include mouseEntropy and keyEntropy and convert this to a Uint8Array then append
randomBytes(32) .

Resolution

The issue is mitigated by first converting entropy input from the mouse and keyboard to a Uint8Array then appending
randomBytes() . Commit 46f5532 contains the updated functionality.

Page | 19

https://github.com/zkparty/trusted-setup-frontend/commit/46f553250920909f5e09ff532940846405451451

KZG Powers Of Tau Ceremony Review Detailed Findings

KZG-13 Error Handling in Lobby Will Continue to Loop
Asset trusted-setup-front-end/src/pages/lobby.tsx

Status Resolved: See Resolution
Rating Informational

Description

The function poll() will intermittently call the API /lobby/try_contribute . Certain errors are non-
recoverable such as TryContributeError::RateLimited which removes the user when they are rate limited and
TryContributeError::UnknownSessionId which implies the user does not have a valid Bearer token. These errors willcontinue the recursion, although they cannot recover.
async function poll(): Promise<void> {

// periodically post /slot/join
const res = await tryContribute.mutateAsync()
if (isSuccessRes(res) && res.hasOwnProperty('contributions')) {

updateContribution(JSON.stringify(res))
navigate(ROUTES.CONTRIBUTING)

} else {
const resError = res as ErrorRes
switch (resError.code) {
case 'TryContributeError::RateLimited':

setError(resError.error)
break

case 'TryContributeError::UnknownSessionId':
setError(
resError.error +

'. You might have taken more time to get into the lobby. Please reload and sign in again'
)
break

case 'TryContributeError::AnotherContributionInProgress':
setError(resError.error)
break

default:
setError('Unknown error code: ' + resError.code)
break

}
// try again after LOBBY_CHECKIN_FREUQUENCY
await sleep(LOBBY_CHECKIN_FREQUENCY)
return await poll()

}
}

poll()

The code block above shows how TryContributeError::UnknownSessionId and TryContributeError::RateLimited

will break the switch statement and then recursively call poll() . Each recursion iteration will repeat
these errors, except TryContributeError::RateLimited removes the session, hence the next error will be
TryContributeError::UnknownSessionId .
The issue is considered informational as it does not pose a security risk. The client will continue the recursion causingthe /lobby/try_contribute API to be called every LOBBY_CHECKIN_FREQUENCY which is a minor drain on resources forboth the client and server.

Page | 20

KZG Powers Of Tau Ceremony Review Detailed Findings

Recommendations

Consider handling the non-recoverable errors by displaying the error message and either redirecting to the sign-in pageor stopping the recursion.

Resolution

Commit bdff216 adds a case to handle the LobbyIsFull error.

Page | 21

https://github.com/zkparty/trusted-setup-frontend/commit/bdff216780d3457342b3262ebb02b9d36a2e2150

KZG Powers Of Tau Ceremony Review Detailed Findings

KZG-14 Overall Test Coverage
Asset /*

Status Resolved: See Resolution
Rating Informational

Description

Testing is a core procedure in quality assurance (QA) to help minimise bugs. The overall quality and quantity of the testsis reasonable in kzg-ceremony-sequencer and trusted-setup-frontend .
The output of cargo tarpaulin as seen in Appendix Test Coverage shows the test coverage of the
kzg-ceremony-sequencer workspace to be 75%. Test coverage should aim for 100% code coverage and to exploreall possible code paths.
A reasonable level of testing is also performed on the trusted-setup-frontend repository.
Due to the large scale nature and limit time frame during which the protocol the load testing should also be performed.

Recommendations

We recommend extensive load testing for the kzg-ceremony-sequencer server on a machine equivalent to the pro-duction machine. Additionally include any production specific setups such as HTTP Proxies. Furthermore, load testingshould be performed for integration between the server and trusted-setup-frontend .
We also recommend increasing the unit test coverage of kzg-ceremony-sequencer to 100% such that all code paths
are covered. Consider adding cargo tarpaulin to the development life cycle of the project.

Resolution

cargo tarpaulin has been added to the CI pipeline to measure test coverage on an iterative basis. With the additionaltests included in PR #150 coverage has been increased to 83%.
As some code paths may not be reachable it is infeasible to reach 100% coverage. The development team have per-formed a manual review of the lines which do not have test coverage.
Load testing has not yet been performed butwill be implemented and is considered outside the scope of this repository.

Page | 22

https://github.com/ethereum/kzg-ceremony-sequencer/pull/150/files

KZG Powers Of Tau Ceremony Review Detailed Findings

KZG-15 Miscellaneous General Comments
Asset /*

Status Resolved: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

Sequencer comments

1. Unnecessary unwraps in the code base.
The unwrap on line [15] of src/receipt.rs is unreachable however, it is preferable to return a result.

2. Redundant code.
mem::replace() on line [144] of src/lobby.rs is unnecessary and can be replaced with a read-only reference.

3. TODO comments in code that pose low security threat.

• crypto/src/engine/arkworks/mod.rs on line [235] Tau entropy should be less than the subgroup order.
• crypto/src/engine/arkworks/endomorphism.rs on line [52, 65, 78, 171] optimise code with WNAF.
• crypto/src/engine/arkworks/endomorphism.rs on line [213, 244, 252] improve test coverage.
• crypto/src/engine/mod.rs on line [8] include rust docs.
• crypto/src/engine/blst/mod.rs on line [38, 64] BLST decoding of points is buggy as seen in KZG-01.
• crypto/src/engine/blst/mod.rs on line [248] the Tau secret should be zeroised where possible to preventreading a secret from memory after use, however this is considered a low security threat for the currentsystem.
• crypto/src/engine/both.rs on line [52] generating Tau will only use the first implementation.
• crypto/src/batch_contribution.rs on line [61] ChaCha20Rng should be zeroised but this is considered alow security threat.
• src/oauth/ethereum.rs on line [72] logging is desirable but is considered a low security risk.
• src/io.rs on line [1, 125] panics should be avoided and errors handled for both read_json_file() and

write_json_file() .
• src/api/v1/auth.rs on line [389] use an error instead of option.
• src/lib.rs on line [4] handle clippy lints.

Frontend comments

1. Switch statement does not handle all error cases
The switch statement starting on line [44] of src/pages/lobby.tsx does not handle all error cases. The following
errors are not handled LobbyIsFull and StorageError instead these trigger the default case.

Page | 23

KZG Powers Of Tau Ceremony Review Detailed Findings

2. Outdated comments
The comment on line [37] of src/pages/lobby.tsx states "// periodically post /slot/join" but the actual
route is /lobby/try_contribute not /slot/join .

3. Unused API functions
In src/api.ts the following functions are unused and can be removed:

• getStatus()

• getCurrentState()

• getAuthorized()

Alternatively these functions could be implemented and used in the following cases rather than making rawqueries:
• getStatus() in src/hooks/useSequencerStatus.ts

• getCurrentState() in src/hook/useRecord.ts

4. Unused files
The following pages are unused and can be safely deleted:

• pages/gate.tsx

• pages/mobile.tsx

5. Unused type
GetAuthorizedRes in src/types.ts is unused and can be safely removed.

6. Unprogrammed button
The button View Contribution in pages/complete.tsx does not have an action.

7. Spelling mistakes
These typos were found in a newer commit f091b87:

• In src/locales/en/translation.json on line [27] "Your Secret, Sigil, and Sample" should read
"Your Secret, Sigil and Sample" .

• In src/locales/en/translation.json on line [28]
"Don’t forget to return for the summoning ending & spread the words." should read
"Don’t forget to return for the summoning ending & spread the word." .

• In src/locales/en/translation.json on line [101] "Use the same wallet you used to signing with Ethereum"
should read "Use the same wallet you used to sign-in with Ethereum" .

• In src/locales/en/translation.json on line [121] "An unexpected number of contributions have been send"
should read "An unexpected number of contributions have been sent" .

8. Unnecessary mobile route
ROUTES.DOUBLE_SIGN should not be accessible from mobile in main/src/routes.ts .

9. TODO comments in code that pose low security threat.

• public/wasm/pkg/wrapper_small_pot.js on line [112] quantity of tests should be increased.
• src/hooks/useRecord.ts on line [9] data should be fetched via API.
• src/pages/doubleSign.ts on line [69] potential name change in dependency.
• src/pages/complete.ts on line [28] extra feature for verifying contribution.

Page | 24

KZG Powers Of Tau Ceremony Review Detailed Findings

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The development team have acknowledged these findings, addressing them where appropriate as follows.
Sequencer comments

1. Fixed in PR #162.
2. Fixed in PR #149.
3. Each of the TODO statements has been addressed. The testing team have reviewed all comments provided bythe development team in relation to each TODO .

Frontend comments

1. Wontfix
2. Fixed in commit a1de4cb
3. Fix in commit 2cf65a7
4. Fixed in commits 21a8604 and be306ef
5. Fixed in commit a1de4cb
6. Fixed in commit b331cff
7. Fixed in commit a1de4cb
8. Fixed in commit aff4eb1
9. Partially fixed in various commits

Page | 25

https://github.com/ethereum/kzg-ceremony-sequencer/pull/162
https://github.com/ethereum/kzg-ceremony-sequencer/pull/149
https://github.com/zkparty/trusted-setup-frontend/commit/a1de4cb2e887d014ac1ddea04dee378e8ea6408c
https://github.com/zkparty/trusted-setup-frontend/commit/2cf65a7e3c96e40362a04237393b0cc450e59184
https://github.com/zkparty/trusted-setup-frontend/commit/21a8604e5f3de5352e05ac892e1f3808bf4bc554
https://github.com/zkparty/trusted-setup-frontend/commit/be306efeaa6ea7b62953a8e1ab8b47db2f27f483
https://github.com/zkparty/trusted-setup-frontend/commit/a1de4cb2e887d014ac1ddea04dee378e8ea6408c#diff-769911c416ccf8514d8fd941ae0abe8fb5c606ade0c218e22151a5f5f9f3d700
https://github.com/zkparty/trusted-setup-frontend/commit/b331cff997452cbc31667ce185a49c66c27b8db0
https://github.com/zkparty/trusted-setup-frontend/commit/a1de4cb2e887d014ac1ddea04dee378e8ea6408c
https://github.com/zkparty/trusted-setup-frontend/commit/aff4eb1ce15d03d53ae37d0d055060e358dc1ab2

KZG Powers Of Tau Ceremony Review Test Coverage

Appendix A Test Coverage

The output of cargo tarpaulin --avoid-cfg-tarpaulin shows the test coverage and lines lacking test coverage.
INFO cargo_tarpaulin::report: Coverage Results:
|| Uncovered Lines:
|| crypto/src/batch_contribution.rs: 33, 35, 46-48, 51-54, 56, 74-76, 78-81, 84
|| crypto/src/batch_transcript.rs: 61-63, 74, 80, 87, 93-94
|| crypto/src/contribution.rs: 20-21, 47, 49-52
|| crypto/src/engine/arkworks/endomorphism.rs: 25, 41, 60, 73, 86, 99, 137-138, 141, 152, 164
|| crypto/src/engine/arkworks/ext_field.rs: 30
|| crypto/src/engine/arkworks/hashing/hash_to_curve.rs: 119, 122-123, 225-226, 232-235, 240, 289-290, 296, 379, 466-470, 474, 479
|| crypto/src/engine/arkworks/hashing/hash_to_field.rs: 107, 112-113
|| crypto/src/engine/arkworks/hashing/xmd_expander.rs: 45-48, 53
|| crypto/src/engine/arkworks/mod.rs: 46-48, 60-62, 77, 100, 128, 202, 205, 209, 212, 221, 226, 250, 258-260
|| crypto/src/engine/arkworks/zcash_format.rs: 55, 62-63, 97-99, 124, 128, 132, 134, 137-138, 150, 154, 159
|| crypto/src/engine/blst/g1.rs: 16, 87, 92-94
|| crypto/src/engine/blst/g2.rs: 16, 78, 83-85
|| crypto/src/engine/blst/mod.rs: 88, 90, 101, 103, 122, 149, 182, 210, 214
|| crypto/src/engine/blst/scalar.rs: 37-38, 40, 54-55
|| crypto/src/engine/both.rs: 83, 92
|| crypto/src/error.rs: 17-19, 21, 87-88, 113-114
|| crypto/src/group.rs: 26-27, 34-35, 44-45, 70-71, 76-77
|| crypto/src/hex_format.rs: 17, 53-56, 64, 67, 70, 73, 86-87, 103-105, 119, 123, 127
|| crypto/src/powers.rs: 44-46, 50-52
|| crypto/src/signature/identity.rs: 20, 23, 25, 40, 49, 88, 92, 95, 97, 105, 115, 119
|| crypto/src/signature/mod.rs: 184-185
|| crypto/src/transcript.rs: 56-57, 72, 75-77, 81-83
|| src/api/v1/auth.rs: 195, 197, 203, 206, 208, 214, 246-247, 264-265, 268-269, 273-274, 336-337, 344-345, 363-366, 378-379,

435-438↪→
|| src/api/v1/contribute.rs: 75, 103-104, 117, 125, 133, 151, 156
|| src/api/v1/error_response.rs: 25-26, 28, 30, 32, 39, 42, 69, 76, 86-88, 90, 103, 106-107, 117-120, 123
|| src/api/v1/info.rs: 52
|| src/api/v1/lobby.rs: 46, 119
|| src/io.rs: 34, 39, 54, 66, 73, 145-148
|| src/keys.rs: 38-39, 53-54, 70-73, 88, 96, 102
|| src/lib.rs: 57, 135, 172, 188, 191
|| src/lobby.rs: 184, 221, 249, 271, 352-353
|| src/main.rs: 5-6
|| src/sessions.rs: 27-28, 45-46, 86, 88
|| src/storage.rs: 58-59, 97-98, 103, 105-106, 111, 115-116, 121, 126, 132-133, 140-142, 144, 148
|| src/util.rs: 14, 20-21, 31-32, 38, 40
|| Tested/Total Lines:
|| crypto/src/batch_contribution.rs: 16/34 +14.33%
|| crypto/src/batch_transcript.rs: 27/35 +32.88%
|| crypto/src/contribution.rs: 8/15 -2.92%
|| crypto/src/engine/arkworks/endomorphism.rs: 63/74 -1.35%
|| crypto/src/engine/arkworks/ext_field.rs: 5/6
|| crypto/src/engine/arkworks/hashing/hash_to_curve.rs: 81/102
|| crypto/src/engine/arkworks/hashing/hash_to_field.rs: 23/26
|| crypto/src/engine/arkworks/hashing/xmd_expander.rs: 34/39
|| crypto/src/engine/arkworks/mod.rs: 116/135 -1.47%
|| crypto/src/engine/arkworks/zcash_format.rs: 61/76 -1.07%
|| crypto/src/engine/blst/g1.rs: 42/47 -2.13%
|| crypto/src/engine/blst/g2.rs: 41/46 -2.17%
|| crypto/src/engine/blst/mod.rs: 113/122 -0.29%
|| crypto/src/engine/blst/scalar.rs: 42/47 +1.27%
|| crypto/src/engine/both.rs: 52/54 +0.07%
|| crypto/src/error.rs: 0/8
|| crypto/src/group.rs: 14/24
|| crypto/src/hex_format.rs: 29/46 +4.22%
|| crypto/src/powers.rs: 13/19
|| crypto/src/signature/identity.rs: 43/55
|| crypto/src/signature/mod.rs: 42/44
|| crypto/src/transcript.rs: 32/41 -2.44%
|| src/api/v1/auth.rs: 160/188 +8.06%
|| src/api/v1/contribute.rs: 50/58 -6.82%

Page | 26

KZG Powers Of Tau Ceremony Review Test Coverage

|| src/api/v1/error_response.rs: 28/49 +1.82%
|| src/api/v1/info.rs: 13/14 +42.86%
|| src/api/v1/lobby.rs: 39/41 +1.79%
|| src/io.rs: 48/57 +30.64%
|| src/keys.rs: 19/30
|| src/lib.rs: 61/66 +1.00%
|| src/lobby.rs: 138/144 +1.43%
|| src/main.rs: 0/2
|| src/oauth/ethereum.rs: 5/5
|| src/oauth/github.rs: 3/3
|| src/receipt.rs: 5/5
|| src/sessions.rs: 10/16
|| src/storage.rs: 50/69
|| src/util.rs: 17/24
82.69% coverage, 1543/1866 lines covered

Page | 27

KZG Powers Of Tau Ceremony Review Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

Page | 28

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	BLST Library Decoding Errors Not Handled Correctly
	Use of Bearer HTTP Authorisation Without TLS
	HTTP Body Unnecessarily Contains Authorisation Token session_id
	DoS Vector Fetching info/current_state API Endpoint
	LobbyIsFull Error is Not Correctly Detected During Sign-in
	BLST random_fr() Does Not Use 512 Bits of Expanded Entropy
	Unbounded Recursion May Break Max Stack Depth
	Use of Yanked Crates in kzg-ceremony-sequencer Repository
	Inconsistent Handling of Zero X-Coordinate and Point at Infinity
	active_contributor State Does Not Update on Error
	Potential Panics if bytes_to_hex() is Called With Disproportionate Sizes
	Inefficient Conversion of Uint8Array to string
	Error Handling in Lobby Will Continue to Loop
	Overall Test Coverage
	Miscellaneous General Comments

	Test Coverage
	Vulnerability Severity Classification

