package kzg
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/rand"
|
|
"fmt"
|
|
"math/big"
|
|
"strconv"
|
|
|
|
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
|
|
)
|
|
|
|
// Q is the order of the integer field (Zq) that fits inside the snark
|
|
var Q, _ = new(big.Int).SetString(
|
|
"21888242871839275222246405745257275088696311157297823662689037894645226208583", 10)
|
|
|
|
// R is the mod of the finite field
|
|
var R, _ = new(big.Int).SetString(
|
|
"21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
|
|
|
|
func randBigInt() (*big.Int, error) {
|
|
maxbits := R.BitLen()
|
|
b := make([]byte, (maxbits/8)-1)
|
|
_, err := rand.Read(b)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
r := new(big.Int).SetBytes(b)
|
|
rq := new(big.Int).Mod(r, R)
|
|
|
|
return rq, nil
|
|
}
|
|
|
|
func arrayOfZeroes(n int) []*big.Int {
|
|
r := make([]*big.Int, n)
|
|
for i := 0; i < n; i++ {
|
|
r[i] = new(big.Int).SetInt64(0)
|
|
}
|
|
return r[:]
|
|
}
|
|
|
|
//nolint:deadcode,unused
|
|
func arrayOfZeroesG1(n int) []*bn256.G1 {
|
|
r := make([]*bn256.G1, n)
|
|
for i := 0; i < n; i++ {
|
|
r[i] = new(bn256.G1).ScalarBaseMult(big.NewInt(0))
|
|
}
|
|
return r[:]
|
|
}
|
|
|
|
//nolint:deadcode,unused
|
|
func arrayOfZeroesG2(n int) []*bn256.G2 {
|
|
r := make([]*bn256.G2, n)
|
|
for i := 0; i < n; i++ {
|
|
r[i] = new(bn256.G2).ScalarBaseMult(big.NewInt(0))
|
|
}
|
|
return r[:]
|
|
}
|
|
|
|
func compareBigIntArray(a, b []*big.Int) bool {
|
|
if len(a) != len(b) {
|
|
return false
|
|
}
|
|
for i := 0; i < len(a); i++ {
|
|
if a[i] != b[i] {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
//nolint:deadcode,unused
|
|
func checkArrayOfZeroes(a []*big.Int) bool {
|
|
z := arrayOfZeroes(len(a))
|
|
return compareBigIntArray(a, z)
|
|
}
|
|
|
|
func fAdd(a, b *big.Int) *big.Int {
|
|
ab := new(big.Int).Add(a, b)
|
|
return ab.Mod(ab, R)
|
|
}
|
|
|
|
func fSub(a, b *big.Int) *big.Int {
|
|
ab := new(big.Int).Sub(a, b)
|
|
return new(big.Int).Mod(ab, R)
|
|
}
|
|
|
|
func fMul(a, b *big.Int) *big.Int {
|
|
ab := new(big.Int).Mul(a, b)
|
|
return ab.Mod(ab, R)
|
|
}
|
|
|
|
func fDiv(a, b *big.Int) *big.Int {
|
|
ab := new(big.Int).Mul(a, new(big.Int).ModInverse(b, R))
|
|
return new(big.Int).Mod(ab, R)
|
|
}
|
|
|
|
func fNeg(a *big.Int) *big.Int {
|
|
return new(big.Int).Mod(new(big.Int).Neg(a), R)
|
|
}
|
|
|
|
//nolint:deadcode,unused
|
|
func fInv(a *big.Int) *big.Int {
|
|
return new(big.Int).ModInverse(a, R)
|
|
}
|
|
|
|
func fExp(base *big.Int, e *big.Int) *big.Int {
|
|
res := big.NewInt(1)
|
|
rem := new(big.Int).Set(e)
|
|
exp := base
|
|
|
|
for !bytes.Equal(rem.Bytes(), big.NewInt(int64(0)).Bytes()) {
|
|
// if BigIsOdd(rem) {
|
|
if rem.Bit(0) == 1 { // .Bit(0) returns 1 when is odd
|
|
res = fMul(res, exp)
|
|
}
|
|
exp = fMul(exp, exp)
|
|
rem.Rsh(rem, 1)
|
|
}
|
|
return res
|
|
}
|
|
|
|
func max(a, b int) int {
|
|
if a > b {
|
|
return a
|
|
}
|
|
return b
|
|
}
|
|
|
|
func polynomialAdd(a, b []*big.Int) []*big.Int {
|
|
r := arrayOfZeroes(max(len(a), len(b)))
|
|
for i := 0; i < len(a); i++ {
|
|
r[i] = fAdd(r[i], a[i])
|
|
}
|
|
for i := 0; i < len(b); i++ {
|
|
r[i] = fAdd(r[i], b[i])
|
|
}
|
|
return r
|
|
}
|
|
|
|
func polynomialSub(a, b []*big.Int) []*big.Int {
|
|
r := arrayOfZeroes(max(len(a), len(b)))
|
|
for i := 0; i < len(a); i++ {
|
|
r[i] = fAdd(r[i], a[i])
|
|
}
|
|
for i := 0; i < len(b); i++ {
|
|
r[i] = fSub(r[i], b[i])
|
|
}
|
|
return r
|
|
}
|
|
|
|
func polynomialMul(a, b []*big.Int) []*big.Int {
|
|
r := arrayOfZeroes(len(a) + len(b) - 1)
|
|
for i := 0; i < len(a); i++ {
|
|
for j := 0; j < len(b); j++ {
|
|
r[i+j] = fAdd(r[i+j], fMul(a[i], b[j]))
|
|
}
|
|
}
|
|
return r
|
|
}
|
|
|
|
func polynomialDiv(a, b []*big.Int) ([]*big.Int, []*big.Int) {
|
|
// https://en.wikipedia.org/wiki/Division_algorithm
|
|
r := arrayOfZeroes(len(a) - len(b) + 1)
|
|
rem := a
|
|
for len(rem) >= len(b) {
|
|
l := fDiv(rem[len(rem)-1], b[len(b)-1])
|
|
pos := len(rem) - len(b)
|
|
r[pos] = l
|
|
aux := arrayOfZeroes(pos)
|
|
aux1 := append(aux, l)
|
|
aux2 := polynomialSub(rem, polynomialMul(b, aux1))
|
|
rem = aux2[:len(aux2)-1]
|
|
}
|
|
return r, rem
|
|
}
|
|
|
|
func polynomialMulByConstant(a []*big.Int, c *big.Int) []*big.Int {
|
|
for i := 0; i < len(a); i++ {
|
|
a[i] = fMul(a[i], c)
|
|
}
|
|
return a
|
|
}
|
|
func polynomialDivByConstant(a []*big.Int, c *big.Int) []*big.Int {
|
|
for i := 0; i < len(a); i++ {
|
|
a[i] = fDiv(a[i], c)
|
|
}
|
|
return a
|
|
}
|
|
|
|
// polynomialEval evaluates the polinomial over the Finite Field at the given value x
|
|
func polynomialEval(p []*big.Int, x *big.Int) *big.Int {
|
|
r := big.NewInt(int64(0))
|
|
for i := 0; i < len(p); i++ {
|
|
xi := fExp(x, big.NewInt(int64(i)))
|
|
elem := fMul(p[i], xi)
|
|
r = fAdd(r, elem)
|
|
}
|
|
return r
|
|
}
|
|
|
|
// newPolZeroAt generates a new polynomial that has value zero at the given value
|
|
func newPolZeroAt(pointPos, totalPoints int, height *big.Int) []*big.Int {
|
|
fac := 1
|
|
for i := 1; i < totalPoints+1; i++ {
|
|
if i != pointPos {
|
|
fac = fac * (pointPos - i)
|
|
}
|
|
}
|
|
facBig := big.NewInt(int64(fac))
|
|
hf := fDiv(height, facBig)
|
|
r := []*big.Int{hf}
|
|
for i := 1; i < totalPoints+1; i++ {
|
|
if i != pointPos {
|
|
ineg := big.NewInt(int64(-i))
|
|
b1 := big.NewInt(int64(1))
|
|
r = polynomialMul(r, []*big.Int{ineg, b1})
|
|
}
|
|
}
|
|
return r
|
|
}
|
|
|
|
// zeroPolynomial returns the zero polynomial:
|
|
// z(x) = (x - z_0) (x - z_1) ... (x - z_{k-1})
|
|
func zeroPolynomial(zs []*big.Int) []*big.Int {
|
|
z := []*big.Int{fNeg(zs[0]), big.NewInt(1)} // (x - z0)
|
|
for i := 1; i < len(zs); i++ {
|
|
z = polynomialMul(z, []*big.Int{fNeg(zs[i]), big.NewInt(1)}) // (x - zi)
|
|
}
|
|
return z
|
|
}
|
|
|
|
var sNums = map[string]string{
|
|
"0": "⁰",
|
|
"1": "¹",
|
|
"2": "²",
|
|
"3": "³",
|
|
"4": "⁴",
|
|
"5": "⁵",
|
|
"6": "⁶",
|
|
"7": "⁷",
|
|
"8": "⁸",
|
|
"9": "⁹",
|
|
}
|
|
|
|
func intToSNum(n int) string {
|
|
s := strconv.Itoa(n)
|
|
sN := ""
|
|
for i := 0; i < len(s); i++ {
|
|
sN += sNums[string(s[i])]
|
|
}
|
|
return sN
|
|
}
|
|
|
|
// PolynomialToString converts a polynomial represented by a *big.Int array,
|
|
// into its string human readable representation
|
|
func PolynomialToString(p []*big.Int) string {
|
|
s := ""
|
|
for i := len(p) - 1; i >= 1; i-- {
|
|
if bytes.Equal(p[i].Bytes(), big.NewInt(1).Bytes()) {
|
|
s += fmt.Sprintf("x%s + ", intToSNum(i))
|
|
} else if !bytes.Equal(p[i].Bytes(), big.NewInt(0).Bytes()) {
|
|
s += fmt.Sprintf("%sx%s + ", p[i], intToSNum(i))
|
|
}
|
|
}
|
|
s += p[0].String()
|
|
return s
|
|
}
|
|
|
|
// LagrangeInterpolation implements the Lagrange interpolation:
|
|
// https://en.wikipedia.org/wiki/Lagrange_polynomial
|
|
func LagrangeInterpolation(x, y []*big.Int) ([]*big.Int, error) {
|
|
// p(x) will be the interpoled polynomial
|
|
// var p []*big.Int
|
|
if len(x) != len(y) {
|
|
return nil, fmt.Errorf("len(x)!=len(y): %d, %d", len(x), len(y))
|
|
}
|
|
p := arrayOfZeroes(len(x))
|
|
k := len(x)
|
|
|
|
for j := 0; j < k; j++ {
|
|
// jPol is the Lagrange basis polynomial for each point
|
|
var jPol []*big.Int
|
|
for m := 0; m < k; m++ {
|
|
// if x[m] == x[j] {
|
|
if m == j {
|
|
continue
|
|
}
|
|
// numerator & denominator of the current iteration
|
|
num := []*big.Int{fNeg(x[m]), big.NewInt(1)} // (x^1 - x_m)
|
|
den := fSub(x[j], x[m]) // x_j-x_m
|
|
mPol := polynomialDivByConstant(num, den)
|
|
if len(jPol) == 0 {
|
|
// first j iteration
|
|
jPol = mPol
|
|
continue
|
|
}
|
|
jPol = polynomialMul(jPol, mPol)
|
|
}
|
|
p = polynomialAdd(p, polynomialMulByConstant(jPol, y[j]))
|
|
}
|
|
|
|
return p, nil
|
|
}
|
|
|
|
// TODO add method to 'clean' the polynomial, to remove right-zeroes
|