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Abstract

Notes taken while reading about Spartan [1], [2].

Usually while reading papers I take handwritten notes, this document
contains some of them re-written to LaTeX.

The notes are not complete, don’t include all the steps neither all the
proofs.
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1 CCS

1.1 RI1CS to CCS overview

R1CS instance Sgics = (m,n,N,l, A, B,C)
where m,n are such that A € F™*™ and [ such that the public inputs
x € FL. Also z = (w, 1,z) € F", thus w € F*~!=1,

CCS instance Sccos = (m,n,N,l,t,q,d, M, S, c)
where we have the same parameters than in Sgicg, but additionally:
t =|M|, ¢ = |c| =|S|, d= max degree in each variable.

R1CS-to-CCS parameters n=n, m=m, N=N,l=1,t=3,q=2,d=
2, M ={A,B,C}, S={{0, 1}, {2}}, c={1,-1}



The CCS relation check:
q—1
> ci-OjesiMj-2==0
i=0

where z = (w,1,x) € F™.
In our R1CS-to-CCS parameters is equivalent to

Co - ((M()Z) o (Mlz)) + Cy - (MQZ) ==
—1-((42) 0 (B2)) + (~1) - (C2) ==
—((A2) 0 (B2)) — (C2) ==0

which is equivalent to the R1CS relation: Azo Bz == Cz

An example of the conversion from R1CS to CCS implemented in SageMath
can be found at
https://github.com/arnaucube/math/blob/master/rlcs-ccs.sage.

1.2 Committed CCS

Reccoces instance: (C,x), where C' is a commitment to a multilinear polynomial
in s’ — 1 variables.
Sat if:

i. Commit(pp,w) = C

ii. Z?:1 G (Hjesi (Zye{o,l}bgm ]\f/f](%y) 5(3/)))
where 3(y) = (w, 1,x)(z) Vz € {0,1}*

1.3 Linearized Committed CCS

Rrcccos instance: (C,u,x,7,v1,...,v;), where C is a commitment to a multi-
linear polynomial in s’ — 1 variables, and u € F, x € F!, r € F*, v; € F Vi € [t].
Sat if:

i. Commit(pp,w) = C
it Vi€ [t], v = Cyeqoay Miry) - Z(y)
where Z(y) = (w,u,x)(z) Vz € {0,1}*
2 Multifolding Scheme for CCS

Recall sum-check protocol notation: C + (P,V(r))(g,,d,T):

T = Z Z Z g(x1,29,...,27)

x1€{0,1} z2€{0,1} z;€{0,1}



https://github.com/arnaucube/math/blob/master/r1cs-ccs.sage

where g is a [-variate polynomial, with degree at most d in each variable, and
T is the claimed value.

Let s =logm, s’ = logn.
1.V—sP:yeclF, Bl Fs
2. Virl et s

3. V & P: sum-check protocol:

T
—

¢ < <P7V(r;)>(g,s,d+ L Z ’yj 'Uj)
jelt]

where:

g@) = 34 Li@) | +4"* - Q(a)
JE[t]

for LCCCS: L(x) := éq(ry, ) - Z ]\%(x,y) -z1(y)
ye{0,1}’

this is the check from LCCCS

q

for CCCS: Q(x) :=eq(B, x) - Zci . H Z ]\Ajj(m,y) - Zo(y)

=1 J€S: \we{o,1}

this is the check from CommittedCCS
Notice that v; = Zye{o,l}s’ M;(r,y) - Z(y) = Zme{o,l}s L;(x).

4. P—=V: ((01,...,00),(01,...,0)), where Vj € [t],

oj= > M,y 2y

ye{0,1}3*
b= Y. M) ()
yE{O,l}S,
where o, 6; are the checks from LCCCS and CCCS respectively with

!
T =7,



5. V: €1 < 67](7"1771/1)7 €2 < &](5,7‘;)
check:

q
j t+1

c= Zyjelaj—i—"y"' €2 Zci- H o

JE(t] i=1 JES:

which should be equivalent to the g(z) computed by V, P in the sum-check
protocol.

6. V>P:pchF

7. V, P: output the folded LCCCS instance (C’',u ,x',r.,v],...,v;), where
Vi € [t]:
C'+Ci+p Co
wWe—u+tp-1
N S~ X1+ pXe
vl oi+p-b;

8. P: output folded witness: W' < w1 + p - Ws.

A Appendix: Some details

This appendix contains some notes on things that don’t specifically appear in the
paper, but that would be needed in a practical implementation of the scheme.

A.1 DMatrix and Vector to Sparse Multilinear Extension

Let M € F™*™ be a matrix. We want to compute its MLE

Mzy,....c)= S M(e)-égla.e)

e€{0,1}!

We can view the matrix M € F"™*"™ as a function with the following signa-
ture:

M():{0,1}* x {0,1}* = F
where s = [logm], s’ = [logn].
An entry in M can be accessed with a (s + s’)-bit identifier.

eg.:
= L 23 3X2
M(4 5 6)€]F
m=3, n=2, S:|—10g3-|:2’ 5/:|—10g2-|:1
So, M(50781) = x, where sg € {07 1}3, 51 € {0’ l}s  zcT

M(00,0) M(01,0) M(10,0) ‘o
M= (M(Oo,l) M(01,1) M(10, 1)) € F’



This logic can be defined as follows:

Algorithm 1 Generating a Sparse Multilinear Polynomial from a matrix

set empty vector v € (index: Z, z : F)s*’
for i ton do
for j to m do
if Mi,j 7& 0 then
v.append({index : i-m +j, x : M; ;})
end if
end for
end for
return v > v represents the evaluations of the polynomial

Once we have the polynomial, its MLE comes from

M(z1,...,Tsps) = Z M(e) - éq(z, e)
ec{0,1}s+s’

M(X) € F[X1,..., X,

Multilinear extensions of vectors Given a vector u € F™, the polynomial u
is the MLE of u, and is obtained by viewing u as a function mapping (s = logm)

u(z) : {0,1}° = F

u(x, e) is the multilinear extension of the function u(x)

ﬂ(xla“'vxs) = Z u(6)~&]($,€)

e€{0,1}s
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